Displaying publications 201 - 220 of 512 in total

Abstract:
Sort:
  1. Balaji R, Lee Siang H, Yaakob O, Koh KK, Adnan FAB, Ismail NB, et al.
    Environ Technol, 2018 May;39(9):1102-1114.
    PMID: 28425309 DOI: 10.1080/09593330.2017.1321691
    Waste heat recovery from shipboard machineries could be a potential source for heat treatment of ballast water. Similar to a shipboard schematic arrangement, a laboratory-scale engine-heat exchanger set-up harvesting waste heat from jacket water and exhaust gases was erected to test the level of species' mortalities. Mortalities were also assessed under experimental conditions for cultured and natural plankton communities at laboratory level. Effect of pump impellers on species' mortalities were also tested. Exposures between 60°C and 70°C for 60 sec resulted in 80-100% mortalities. Mortalities due to pump impeller effects were observed in the range of 70-100% for zooplankton. On the laboratory-scale arrangement, >95% mortalities of phytoplankton, zooplankton and bacteria were recorded. It was demonstrated that the temperature of tropical sea waters used as secondary coolant can be raised to cause species' mortalities, employing engine exhaust gases. The results also indicated that pump impeller effects will enhance species' mortalities. The limitations of the shipboard application of this method would be the large ballast volumes, flow rates and time for treatment.
    Matched MeSH terms: Water Purification
  2. Zafira Madzin, Faradiella Mohd Kusin, Mohd Shakirin Md Zahar, Siti Nurjaliah Muhammad
    MyJurnal
    The contamination of water bodies from heavy metals, either from natural sources or
    anthropogenic sources, has become a major concern to the public. Industrial activities with improper
    water treatment, and then leach into the water body, have become contaminated and harmful to
    consume. Passive remediation is one of the treatments introduced to counter this problem as it is a low
    cost but effective technique. After being widely acknowledged and through research conducted, the
    most suitable remediation technique found is the permeable reactive barriers (PRBs). PRB is defined
    as an in situ permeable treatment zone filled with reactive materials, designed to intercept and
    remediate a contaminant plume under natural hydraulic gradients. There have been many findings
    made from PRB which can be used to remove contaminants such as heavy metal, chlorinated solvents,
    carbonates and aromatic hydrocarbons. The most crucial criteria in making a successful PRB is the
    reactive media used to remove contaminants. The current paper presents an overview of the PRB
    selective medias that have been used and also the unresolved issue on the long term performance of
    PRB. The overall methodology for the application of PRB at a given site is also discussed in this
    paper. This inexpensive but effective technique is crucial as a sustainable technology in order to treat
    the drainage before it enters water tables to prevent water pollution and can be used as an alternative
    raw water source.
    Matched MeSH terms: Water Purification
  3. Alomari. Nashwan K., Badronnisa Yusuf, Thamer Ahmed Mohammed Ali, Abdul Halim Ghazali
    MyJurnal
    Branching channel flow refers to any side water withdrawals from rivers or main channels.
    Branching channels have wide application in many practical projects, such as irrigation and drainage
    network systems, water and waste water treatment plants, and many water resources projects. In the
    last decades, extensive theoretical and experimental investigations of the branching open channels
    have been carried out to understand the characteristics of this branching flow, varying from case
    studies to theoretical and experimental investigations. The objectives of this paper are to review and
    summarise the relevant literatures regarding branching channel flow. These literatures were reviewed
    based on flow characteristics, physical characteristics, and modeling of the branching flow.
    Investigations of the flow into branching channel show that the branching discharge depends on many
    interlinked parameters. It increases with the decreasing of the main channel flow velocity and Froude
    number at the upstream of the branch channel junction. Also it increases with the increasing of the
    branch channel bed slope. In subcritical flow, water depth in the branch channel is always lower than
    the main channel water depth. The flow diversion to the branch channel leads to an increase of water
    depth at the downstream of the main channel. From the review, it is important to highlight that most
    of the study concentrated on flow characteristics in a right angle branch channel with a rigid boundary.
    Investigations on different branching angles with movable bed have still to be explored.
    Matched MeSH terms: Water Purification
  4. Augustine Chioma Affam, Malay Chaudhuri, Shamsul Rahman Mohammed Kutty
    MyJurnal
    The study examined modified Fenton (FeGAC/H2O2) pretreatment of the antibiotics amoxicillin and cloxacillin in aqueous solution for biological treatment. The treatment was optimized by the response surface methodology (RSM). The optimum operating conditions at pH3 were H2O2/COD molar ratio 2.0, FeGAC dose 3.5 g/L and reaction time 90 min for 87.53% removal of COD, 78.01% removal of TOC, and 98.24% removal of NH3-N. Biodegradability (BOD5/COD ratio) improved from zero to 0.36, indicating the effluent was amenable to biological treatment. Meanwhile, FTIR spectra indicated degradation of the antibiotics. Compared with Fenton or photo-Fenton, modified Fenton (FeGAC/H2O2) was more effective in the pre-treatment of the antibiotics amoxicillin and cloxacillin in aqueous solution for biological treatment.
    Matched MeSH terms: Water Purification
  5. Ong CS, Al-Anzi B, Lau WJ, Goh PS, Lai GS, Ismail AF, et al.
    Sci Rep, 2017 07 31;7(1):6904.
    PMID: 28761159 DOI: 10.1038/s41598-017-07369-4
    Despite its attractive features for energy saving separation, the performance of forward osmosis (FO) has been restricted by internal concentration polarization and fast fouling propensity that occur in the membrane sublayer. These problems have significantly affected the membrane performance when treating highly contaminated oily wastewater. In this study, a novel double-skinned FO membrane with excellent anti-fouling properties has been developed for emulsified oil-water treatment. The double-skinned FO membrane comprises a fully porous sublayer sandwiched between a highly dense polyamide (PA) layer for salt rejection and a fairly loose dense bottom zwitterionic layer for emulsified oil particle removal. The top dense PA layer was synthesized via interfacial polymerization meanwhile the bottom layer was made up of a zwitterionic polyelectrolyte brush - (poly(3-(N-2-methacryloxyethyl-N,N-dimethyl) ammonatopropanesultone), abbreviated as PMAPS layer. The resultant double-skinned membrane exhibited a high water flux of 13.7 ± 0.3 L/m2.h and reverse salt transport of 1.6 ± 0.2 g/m2.h under FO mode using 2 M NaCl as the draw solution and emulsified oily solution as the feed. The double-skinned membrane outperforms the single-skinned membrane with much lower fouling propensity for emulsified oil-water separation.
    Matched MeSH terms: Water Purification
  6. Das R, Leo BF, Murphy F
    Nanoscale Res Lett, 2018 Jun 18;13(1):183.
    PMID: 29915874 DOI: 10.1186/s11671-018-2589-z
    Without nanosafety guidelines, the long-term sustainability of carbon nanotubes (CNTs) for water purifications is questionable. Current risk measurements of CNTs are overshadowed by uncertainties. New risks associated with CNTs are evolving through different waste water purification routes, and there are knowledge gaps in the risk assessment of CNTs based on their physical properties. Although scientific efforts to design risk estimates are evolving, there remains a paucity of knowledge on the unknown health risks of CNTs. The absence of universal CNT safety guidelines is a specific hindrance. In this paper, we close these gaps and suggested several new risk analysis roots and framework extrapolations from CNT-based water purification technologies. We propose a CNT safety clock that will help assess risk appraisal and management. We suggest that this could form the basis of an acceptable CNT safety guideline. We pay particular emphasis on measuring risks based on CNT physico-chemical properties such as diameter, length, aspect ratio, type, charge, hydrophobicity, functionalities and so on which determine CNT behaviour in waste water treatment plants and subsequent release into the environment.
    Matched MeSH terms: Water Purification
  7. Gafar, A.A., Khayat, M.E., Abdul Rahim, M.B.H., Shukor, M.Y.
    MyJurnal
    Acrylamide is a synthetic monomer that has been classified as toxic and carcinogenic apart
    from its diverse application in the industry. Its application is in the formation of
    polyacrylamide. Polyacrylamide usage is diverse and is found as herbicide formulation, as soil
    treatment agent and in water treatment plants. Deaths and sickness due to the accidental
    exposure to acrylamide have been reported while chronic toxicity is also a source of the
    problem. This review highlighted the toxic effect of acrylamide to various organisms like
    human, animal and plant. This review also discusses on the potential use of biological
    technologies to remediate acrylamide pollution in the environment and the degradation
    pathways these microorganisms utilize to assimilate acrylamide as a nitrogen, carbon or both as
    carbon and nitrogen sources.
    Matched MeSH terms: Water Purification
  8. Shamsul Azhar Shah, Suzuki H, Mohd Rohaizat Hassan, Saito R, Nazarudin Safian, Shaharudin Idrus
    Sains Malaysiana, 2012;41:911-919.
    The determination of the high-risk area and clusters of typhoid cases is critical in typhoid control. The purpose of this study was to identify and describe the epidemiology and spatial distribution of typhoid in four selected districts in Kelantan using GIS (geographical information system). A total of 1215 (99%) of the cases were coordinated with GPS (global positioning system) and mapping was done using ArcGIS 9.2. Spatial analysis was performed to determine the cluster and high-risk area of typhoid. Results showed that typhoid incidence was not associated with race and sex. Most affected were from the age group of 5-14 followed by 15-24 year olds. Nine sub-districts were categorized as highly endemic. In addition typhoid has shown a significant tendency to cluster and a total of 22 hotspots were found in Kota Bharu, Bachok and Tumpat with a few sub districts identified as high risk for typhoid. No significant relationships between the treated water ratio and flood risk area were found with the cluster of cases. The cluster of typhoid cases in the endemic area did not appear to be related to environmental risk factors. Understanding the characteristics of these clusters would enable the prevention of typhoid disease in the future.
    Matched MeSH terms: Water Purification
  9. Abd Halim NS, Wirzal MDH, Bilad MR, Md Nordin NAH, Adi Putra Z, Sambudi NS, et al.
    Polymers (Basel), 2019 Dec 17;11(12).
    PMID: 31861059 DOI: 10.3390/polym11122117
    Electrospun nanofiber membrane (NFM) has a high potential to be applied as a filter for produced water treatment due to its highly porous structure and great permeability. However, it faces fouling issues and has low mechanical properties, which reduces the performance and lifespan of the membrane. NFM has a low integrity and the fine mat easily detaches from the sheet. In this study, nylon 6,6 was selected as the polymer since it offers great hydrophilicity. In order to increase mechanical strength and separation performance of NFM, solvent vapor treatment was implemented where the vapor induces the fusion of fibers. The fabricated nylon 6,6 NFMs were treated with different exposure times of formic acid vapor. Results show that solvent vapor treatment helps to induce the fusion of overlapping fibers. The optimum exposure time for solvent vapor is 5 h to offer full retention of dispersed oil (100% of oil rejection), has 62% higher in tensile strength (1950 MPa) compared to untreated nylon 6,6 NFM (738 MPa), and has the final permeability closest to the untreated nylon 6,6 NFM (733 L/m2.h.bar). It also took more time to get fouled (220 min) compared to untreated NFM (160 min).
    Matched MeSH terms: Water Purification
  10. Ang WL, Mohammad AW, Johnson D, Hilal N
    Sci Total Environ, 2020 Mar 01;706:136047.
    PMID: 31864996 DOI: 10.1016/j.scitotenv.2019.136047
    Study of forward osmosis (FO) has been increasing steadily over recent years with applications mainly focusing on desalination and wastewater treatment processes. The working mechanism of FO lies in the natural movement of water between two streams with different osmotic pressure, which makes it useful in concentrating or diluting solutions. FO has rarely been operated as a stand-alone process. Instead, FO processes often appear in a hybrid or integrated form where FO is combined with other treatment technologies to achieve better overall process performance and cost savings. This article aims to provide a comprehensive review on the need for hybridization/integration for FO membrane processes, with emphasis given to process enhancement, draw solution regeneration, and pretreatment for FO fouling mitigation. In general, integrated/hybrid FO processes can reduce the membrane fouling propensity; prepare the solution suitable for subsequent value-added uses and production of renewable energy; lower the costs associated with energy consumption; enhance the quality of treated water; and enable the continuous operation of FO through the regeneration of draw solution. The future potential of FO lies in the success of how it can be hybridized or integrated with other technologies to minimize its own shortcomings, while enhancing the overall performance.
    Matched MeSH terms: Water Purification
  11. Nur-Zhafarina A., Asyraf M.
    Sains Malaysiana, 2017;46:1241-1248.
    The main focus of this study was to examine the morphology of Mimosa pigra, an invasive weed in response to artificial biotic and abiotic stressors. Seedlings of M. pigra were subjected to stressors such as seed sowing density, leaf defoliation and water regime. Comparatively, morphological performance related to different sowing practices differed significantly (p<0.05), as seedlings that grew from high density populations had lean and outstanding apical growth. A comparison between the four different levels of defoliation on the morphological changes revealed that the increase in leaf defoliation significantly decreased the plant morphological traits (i.e. height, stem diameter and flower bud productivity) and biomass allocation. Relatively low growth performance was found in plants subjected to 100% defoliation, with markedly lower flower bud productivity in comparison with 0%, 25% and 50% (no flower buds compared to 27, 13 and 6 flower buds, respectively). For water stress treatment, M. pigra showed no significant difference (p>0.05) in morphological performance under different levels of water regime. However, seedlings that received low water (LW) treatment showed better growth performance than seedlings that received high water (HW) treatment, which had the lowest morphological traits and biomass allocation.
    Matched MeSH terms: Water Purification
  12. Hui-hui Wang, Jing-lan Liu, Rong Zhang, Jia-kai Liu, Yu-qi Zou, Zhen-ming Zhang
    Sains Malaysiana, 2017;46:2375-2381.
    This paper had selected watermifoil (Myriophyllum veticillatum Linn.), softstem bulrush (Scirpus validus Vahl) and yellow-flowered iris (Iris wilsonii), in showing the water purification through different configuration. AFIs with different combination of aquatic plants were set up to purify the water quality for 50 days. This paper aimed to evaluate chemical and vegetative characteristics of each type of plant and also to find configuration of aquatic plants to maximize the contaminants removal efficiency by artificial floating island (AFI). The result indicated that the trophic waterbody promote the growth of plants and all of the AFIs have the ability to purify water and reduce contaminants. However, the most effective way is by combination of these three aquatic plants which has strong capacity to remove COD, NO3-, total nitrogen, total phosphorous and improve pH levels. Watermifoil (Myriophyllum verticillatum Linn.) is better than yellow-flowered iris (Iris wilsonii) and softstem bulrush (Scirpus validus Vahl) in disposing water pollutants.
    Matched MeSH terms: Water Purification
  13. Elfikrie N, Ho YB, Zaidon SZ, Juahir H, Tan ESS
    Sci Total Environ, 2020 Apr 10;712:136540.
    PMID: 32050383 DOI: 10.1016/j.scitotenv.2020.136540
    Agricultural activities have been arising along with the use of pesticides. The use of pesticides can impact not only on vector or other pest but also able to harm human health. Pesticide may leach from the irrigation of plant into the groundwater and in surface water. These waters could be sources of drinking water in a pesticides polluted area. This study aims to determine the occurrence pesticides in surface water and pesticides removal efficiency in a conventional drinking water treatment plant (DWTP) and the potential health risk to consumers. The study was conducted in Tanjung Karang, Selangor, Malaysia. Thirty river water samples and eighteen water samples from DWTP were collected. The water samples were extracted using solid phase extraction (SPE) before injected to the ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Five hundreds and ten respondents were interviewed using questionnaires to obtain information for health risk assessments. The results showed that propiconazole had the highest mean concentration (4493.1 ng/L) while pymetrozine had the lowest mean concentration (1.3 ng/L) in river water samples. The pesticides removal efficiencies in the conventional DWTP were 77% (imidacloprid), 86% (propiconazole and buprofezin), 88% (tebuconazole) and 100% (pymetrozine, tricyclazole, chlorantraniliprole, azoxystrobin and trifloxystrobin), respectively. The hazard quotients (HQs) and hazard index (HI) for all target pesticides were <1, indicating there was no significant chronic non-carcinogenic health risk due to consumption of the drinking water. Conventional DWTP was not able to completely remove four pesticide; thus, advanced treatment systems need to be considered to safeguard the health of the community in future.
    Matched MeSH terms: Water Purification
  14. Ahmad T, Danish M
    J Environ Manage, 2018 Jan 15;206:330-348.
    PMID: 29100146 DOI: 10.1016/j.jenvman.2017.10.061
    This review article explores utilization of banana waste (fruit peels, pseudo-stem, trunks, and leaves) as precursor materials to produce an adsorbent, and its application against environmental pollutants such as heavy metals, dyes, organic pollutants, pesticides, and various other gaseous pollutants. In recent past, quite a good number of research articles have been published on the utilization of low-cost adsorbents derived from biomass wastes. The literature survey on banana waste derived adsorbents shown that due to the abundance of banana waste worldwide, it also considered as low-cost adsorbents with promising future application against various environmental pollutants. Furthermore, raw banana biomass can be chemically modified to prepare efficient adsorbent as per requirement; chemical surface functional group modification may enhance the multiple uses of the adsorbent with industrial standard. It was evident from a literature survey that banana waste derived adsorbents have significant removal efficiency against various pollutants. Most of the published articles on banana waste derived adsorbents have been discussed critically, and the conclusion is drawn based on the results reported. Some results with poorly performed experiments were also discussed and pointed out their lacking in reporting. Based on literature survey, the future research prospect on banana wastes has a significant impact on upcoming research strategy.
    Matched MeSH terms: Water Purification
  15. Sarwono A, Man Z, Bustam MA, Subbarao D, Idris A, Muhammad N, et al.
    Environ Technol, 2018 Jun;39(12):1522-1532.
    PMID: 28524800 DOI: 10.1080/09593330.2017.1332108
    Coating fertilizer particles with thin films is a possibility to control fertilizer release rates. It is observed that novel urea cross-linked starch-lignin composite thin films, prepared by solution casting, swell on coming into contact with water due to the increase in volume by water uptake by diffusion. The effect of lignin content, varied from 0% to 20% in steps of 5% at three different temperatures (25°C, 35°C and 45°C), on swelling of the film was investigated. By gravimetric analysis, the equilibrium water uptake and diffusion coefficient decrease with lignin content, indicating that the addition of lignin increases the hydrophobicity of the films. When temperature increases, the diffusion coefficient and the amount of water absorbed tend to increase. Assuming that swelling of the thin film is by water uptake by diffusion, the diffusion coefficient is estimated. The estimated diffusion coefficient decreases from 4.3 to 2.1 × 10-7 cm2/s at 25°C, from 5.3 to 2.9 × 10-7 cm2/s at 35°C and from 6.2 to 3.8 × 10-7 cm2/s at 45°C depending on the lignin content. Activation energy for the increase in diffusion coefficient with temperature is observed to be 16.55 kJ/mol. An empirical model of water uptake as a function of percentage of lignin and temperature was also developed based on Fick's law.
    Matched MeSH terms: Water Purification
  16. Su CX, Teng TT, Wong YS, Morad N, Rafatullah M
    Chemosphere, 2016 Mar;146:503-10.
    PMID: 26741557 DOI: 10.1016/j.chemosphere.2015.12.048
    A thermal degradation pathway of the decolourisation of Reactive Cibacron Blue F3GA (RCB) in aqueous solution through catalytic thermolysis is established. Catalytic thermolysis is suitable for the removal of dyes from wastewater as it breaks down the complex dye molecules instead of only transferring them into another phase. RCB is a reactive dye that consists of three main groups, namely anthraquinone, benzene and triazine groups. Through catalytic thermolysis, the bonds that hold the three groups together were effectively broken and at the same time, the complex molecules degraded to form simple molecules of lower molecular weight. The degradation pathway and products were characterized and determined through UV-Vis, FT-IR and GCMS analysis. RCB dye molecule was successfully broken down into simpler molecules, namely, benzene derivatives, amines and triazine. The addition of copper sulphate, CuSO4, as a catalyst, hastens the thermal degradation of RCB by aiding in the breakdown of large, complex molecules. At pH 2 and catalyst mass loading of 5 g/L, an optimum colour removal of 66.14% was observed. The degradation rate of RCB is well explained by first order kinetics model.
    Matched MeSH terms: Water Purification/methods*
  17. Liau KF, Shoji T, Ong YH, Chua AS, Yeoh HK, Ho PY
    Bioprocess Biosyst Eng, 2015 Apr;38(4):729-37.
    PMID: 25381606 DOI: 10.1007/s00449-014-1313-3
    A recently reported stable and efficient EBPR system at high temperatures around 30 °C has led to characterization of kinetic and stoichiometric parameters of the Activated Sludge Model no. 2d (ASM2d). Firstly, suitable model parameters were selected by identifiability analysis. Next, the model was calibrated and validated. ASM2d was found to represent the processes well at 28 and 32 °C except in polyhyroxyalkanoate (PHA) accumulation of the latter. The values of the kinetic parameters for PHA storage (q PHA), polyphosphate storage (q PP) and growth (μ PAO) of polyphosphate-accumulating organisms (PAOs) at 28 and 32 °C were found to be much higher than those reported by previous studies. Besides, the value of the stoichiometric parameter for the requirement of polyphosphate for PHA storage (Y PO4) was found to decrease as temperature rose from 28 to 32 °C. Values of two other stoichiometric parameters, i.e. the growth yield of heterotrophic organisms (Y H) and PAOs (Y PAO), were high at both temperatures. These calibrated parameters imply that the extremely active PAOs of the study were able to store PHA, store polyphosphate and even utilize PHA for cell growth. Besides, the parameters do not follow the Arrhenius correlation due to the previously reported unique microbial clade at 28 and 32 °C, which actively performs EBPR at high temperatures.
    Matched MeSH terms: Water Purification/methods*
  18. Njoku VO, Islam MA, Asif M, Hameed BH
    J Environ Manage, 2015 May 1;154:138-44.
    PMID: 25721981 DOI: 10.1016/j.jenvman.2015.02.002
    The removal of toxic herbicide from wastewater is challenging due to the availability of suitable adsorbents. The Langsat empty fruit bunch is an agricultural waste and was used in this study as a cheap precursor to produce activated carbon for the adsorption of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) at different initial concentrations ranging from 50 to 400 mg/L. The produced Langsat empty fruit bunch activated carbon (LEFBAC) was mesoporous and had high surface area of 1065.65 m(2)/g with different active functional groups. The effect of shaking time, temperature and pH on 2,4-D removal were investigated using the batch technique. The adsorption capacity of 2,4-D by LEFBAC was decreased with increase in pH of solution whereas adsorption capacity increased with temperature. The adsorption data was well described by Langmuir isotherm followed by removal capacity of 261.2 mg/g at 30 °C. The results from this work showed that LEFBAC can be used as outstanding material for anionic herbicide uptake from wastewater.
    Matched MeSH terms: Water Purification/methods*
  19. Liew WL, Kassim MA, Muda K, Loh SK, Affam AC
    J Environ Manage, 2015 Feb 1;149:222-35.
    PMID: 25463585 DOI: 10.1016/j.jenvman.2014.10.016
    The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated.
    Matched MeSH terms: Water Purification/methods*
  20. Aljuboori AH, Uemura Y, Osman NB, Yusup S
    Bioresour Technol, 2014 Nov;171:66-70.
    PMID: 25189510 DOI: 10.1016/j.biortech.2014.08.038
    This study evaluated the potential of bioflocculant production from Aspergillus niger using palm oil mill effluent (POME) as carbon source. The bioflocculant named PM-5 produced by A. niger showed a good flocculating capability and flocculating rate of 76.8% to kaolin suspension could be achieved at 60 h of culture time. Glutamic acid was the most favorable nitrogen source for A. niger in bioflocculant production at pH 6 and temperature 35 °C. The chemical composition of purified PM-5 was mainly carbohydrate and protein with 66.8% and 31.4%, respectively. Results showed the novel bioflocculant (PM-5) had high potential to treat river water from colloids and 63% of turbidity removal with the present of Ca(2+) ion.
    Matched MeSH terms: Water Purification/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links