Displaying publications 221 - 240 of 248 in total

Abstract:
Sort:
  1. Tan KK, Kim KH
    PMID: 23606892 DOI: 10.1155/2013/845172
    The antidiabetic potential of Alternanthera sessilis Red was investigated using the obese type 2 diabetic rats induced by high fat diet and streptozotocin. Three fractions (hexane, ethyl acetate, and water) were obtained from the crude ethanol extract of Alternanthera sessilis Red. Alternanthera sessilis Red ethyl acetate fraction (ASEAF) was found to possess the most potent antihyperglycemic effect through oral glucose tolerance test. The ASEAF was subsequently given to the diabetic rats for two weeks. It was found that two-week administration of ASEAF reduces the fasting blood glucose level, triglyceride level, and free fatty acid level of the rats. ASEAF-treated diabetic rats showed higher pancreatic insulin content and pancreatic total superoxide dismutase activity compared to the untreated diabetic rats. Also, the insulin sensitivity indexes suggested that ASEAF ameliorates the insulin resistant state of the diabetic rats. In conclusion, ASEAF could be developed into a potential antidiabetic agent for the management of type 2 diabetes.
    Matched MeSH terms: Diabetes Mellitus, Experimental
  2. Anand Swarup KR, Sattar MA, Abdullah NA, Abdulla MH, Salman IM, Rathore HA, et al.
    Pharmacognosy Res, 2010 Jan;2(1):31-5.
    PMID: 21808536 DOI: 10.4103/0974-8490.60582
    Cardiovascular complications are consistently observed in diabetic patients across all age groups. The objective of the present study was to investigate the effect of aqueous extract of the fruit pulp of Hylocereus undatus (DFE) on aortic stiffness and oxidative stress in streptozotocin (STZ)-induced diabetes in rats. Twenty-four male, Sprague-Dawley rats were randomized into four groups: I (control), II (diabetic), III (DFE, 250 mg/kg) and IV (DFE 500 mg/kg). Diabetes was induced in groups II, III and IV by intraperitoneal (i.p.) injection of STZ (40 mg/kg). After confirmation of diabetes, group III and IV received DFE for 5 weeks. Pulse wave velocity (PWV) was used as a marker of aortic stiffness and was determined at the end of 5 weeks. DFE significantly decreased (P < 0.05) the fasting blood glucose levels in diabetic rats, but not to normal levels. Systolic blood pressure, pulse pressure and PWV were significantly increased (P < 0.05) in diabetic rats at the end of 5 weeks in comparison with control group. DFE treatment significantly decreased (P < 0.05) these elevations. Oxidative damage was observed in group II after 5 weeks. Plasma malondialdehyde levels significantly decreased (P < 0.05), while superoxide dismutase and total antioxidant capacity significantly increased (P < 0.05) with DFE treatment in comparison with group II. These data demonstrate that DFE treatment was effective in controlling oxidative damage and decreasing the aortic stiffness measured by PWV in STZ-induced diabetes in rats.
    Matched MeSH terms: Diabetes Mellitus, Experimental
  3. Fatima N, Hafizur RM, Hameed A, Ahmed S, Nisar M, Kabir N
    Eur J Nutr, 2017 Mar;56(2):591-601.
    PMID: 26593435 DOI: 10.1007/s00394-015-1103-y
    PURPOSE: The present study was undertaken to explore the possible anti-diabetic mechanism(s) of Emblica officinalis (EO) and its active constituent, ellagic acid (EA), in vitro and in vivo.

    METHOD: Neonatal streptozotocin-induced non-obese type 2 diabetic rats were treated with a methanolic extract of EO (250 or 500 mg/kg) for 28 days, and blood glucose, serum insulin, and plasma antioxidant status were measured. Insulin and glucagon immunostaining and morphometry were performed in pancreatic section, and liver TBARS and GSH levels were measured. Additionally, EA was tested for glucose-stimulated insulin secretion and glucose tolerance test.

    RESULTS: Treatment with EO extract resulted in a significant decrease in the fasting blood glucose in a dose- and time-dependent manner in the diabetic rats. It significantly increased serum insulin in the diabetic rats in a dose-dependent manner. Insulin-to-glucose ratio was also increased by EO treatment. Immunostaining of pancreas showed that EO250 increased β-cell size, but EO500 increased β-cells number in diabetic rats. EO significantly increased plasma total antioxidants and liver GSH and decreased liver TBARS. EA stimulated glucose-stimulated insulin secretion from isolated islets and decreased glucose intolerance in diabetic rats.

    CONCLUSION: Ellagic acid in EO exerts anti-diabetic activity through the action on β-cells of pancreas that stimulates insulin secretion and decreases glucose intolerance.

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  4. Varatharajan R, Sattar MZ, Chung I, Abdulla MA, Kassim NM, Abdullah NA
    PMID: 24074026 DOI: 10.1186/1472-6882-13-242
    Catechins-rich oil palm (Elaeis guineensis) leaves extract (OPLE) is known to have antioxidant activity. Several polyphenolic compounds reported as antioxidants such as quercetin, catechins and gallic acid have been highlighted to have pro-oxidant activity at high doses. Therefore, the present study was conducted to investigate the antioxidant and pro-oxidant effects of chronically administering high dose of OPLE (1000 mg kg⁻¹) in an animal model of diabetic nephropathy (DN).
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism
  5. Sasidharan S, Sumathi V, Jegathambigai NR, Latha LY
    Nat Prod Res, 2011 Dec;25(20):1982-7.
    PMID: 21707251 DOI: 10.1080/14786419.2010.523703
    Diabetes mellitus is a global disease that is increasing in an alarming rate. The present study was undertaken to study the antidiabetic effect of the ethanol extracts of Carica papaya and Pandanus amaryfollius on streptozotocin-induced diabetic mice. The results of the present study indicated that there was no significant difference in the body weight of the treated groups when compared to diabetic control. Whereas, there was significant (P 
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  6. Rezvanian M, Ng SF, Alavi T, Ahmad W
    Int J Biol Macromol, 2021 Feb 28;171:308-319.
    PMID: 33421467 DOI: 10.1016/j.ijbiomac.2020.12.221
    Previously we developed and characterized a novel hydrogel film wound dressing containing Sodium Alginate and Pectin loaded with Simvastatin with multi-functional properties. This study investigated the in-vivo efficacy of the developed wound dressing on type I diabetic wound model. Experiments were performed on male Wistar rats for the period of 21-days. Animals developed diabetes after intraperitoneal injection (50 mg/kg) of Streptozotocin then randomly divided into different groups. On days 7, 14, and 21 of post-wounding, animals were euthanized and the wounds tissue were harvested for analysis. The wound healing rate, hematology and histological analysis, hydroxyproline assay, and Vascular Endothelial Growth Factor A measurements were noted. The results revealed that the wound dressing healed the wounded area significantly (p 
    Matched MeSH terms: Diabetes Mellitus, Experimental/complications*
  7. Nna VU, Abu Bakar AB, Ahmad A, Mohamed M
    Arch Physiol Biochem, 2021 Feb;127(1):51-60.
    PMID: 31072137 DOI: 10.1080/13813455.2019.1610778
    CONTEXT: Lactate is the preferred energy substrate for developing testicular germ cells. Diabetes is associated with impaired testicular lactate transport/utilisation, and poor sexual behaviour.

    OBJECTIVE: To examine the effects of metformin on parameters involved in testicular lactate production, transport/utilisation, and sexual behaviour in diabetic state.

    METHODS: Male Sprague-Dawley rats were assigned into normal control (NC), diabetic control (DC), and metformin-treated diabetic group (n = 6/group). Metformin (300 mg/kg b.w./day) was administrated orally for 4 weeks.

    RESULTS: Intra-testicular glucose and lactate levels, and lactate dehydrogenase (LDH) activity increased, while the mRNA transcript levels of genes responsible for testicular glucose and lactate transport/utilisation (glucose transporter 3, monocarboxylate transporter 4 (MCT4), MCT2, and LDH type C) decreased in DC group. Furthermore, penile nitric oxide increased, while cyclic guanosine monophosphate decreased, with impaired sexual behaviour in DC group. Treatment with metformin improved these parameters.

    CONCLUSIONS: Metformin increases testicular lactate transport/utilisation and improves sexual behaviour in diabetic state.

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  8. Giribabu N, Karim K, Kilari EK, Kassim NM, Salleh N
    Can J Diabetes, 2018 Apr;42(2):138-149.
    PMID: 28673757 DOI: 10.1016/j.jcjd.2017.04.005
    OBJECTIVES: Consumption of Vitis vinifera seed has been reported to ameliorate liver pathology in diabetes mellitus; however, the mechanisms underlying its effects remain unknown. In this study, the anti-inflammatory, anti-apoptotic and pro-proliferative effects of the ethanolic seed extract of V. vinifera (VVSEE) in the liver in cases of diabetes were identified.

    METHODS: Adult male rats with streptozotocin-nicotinamide-induced diabetes were given 50, 100 or 200 mg/kg body weight VVSEE orally for 28 days. At the end of the treatment, body weights were determined, and the blood was collected for analyses of fasting blood glucose, insulin and liver enzyme levels. Following sacrifice, livers were harvested and their wet weights and glycogen contents were measured. Histologic appearances of the livers were observed under light microscopy, and the expression and distribution of inflammatory, apoptosis and proliferative markers in the livers were identified by molecular biologic techniques.

    RESULTS: Treatment of rats with diabetes by VVSEE attenuates decreased body weight, liver weight and liver glycogen content. Additionally, increases in fasting blood glucose levels and liver enzyme levels and decreases in serum insulin levels were ameliorated. Lesser histopathologic changes were also observed: decreased inflammation and apoptosis, as indicated by decreased levels of inflammatory markers (TNF-α, NF-Kβ, IKK-β, IL-6, IL-1β) and apoptosis markers (caspase-3, caspase-9 and Bax). VVSEE treatment induces increase in hepatocyte regeneration, as indicated by increased PCNA and Ki-67 distribution in the livers of rats with diabetes. Several molecules identified in VVSEE via gas chromatography mass spectrometry might contribute to these effects.

    CONCLUSIONS: The anti-inflammatory, anti-apoptotic and pro-proliferative effects of VVSEE could account for its hepatoprotective actions in diabetes.

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  9. Nazratun Nafizah AH, Budin SB, Zaryantey AH, Mariati AR, Santhana RL, Osman M, et al.
    Arab J Gastroenterol, 2017 Mar;18(1):13-20.
    PMID: 28336227 DOI: 10.1016/j.ajg.2017.02.001
    BACKGROUND AND STUDY AIMS: The complex series of deleterious events among diabetes patients leads to multiple organ failure. Therefore, a holistic approach of treatment is urgently required to prevent worsening of complications. The present investigation was carried out to study the possible protective effects of Roselle or Hibiscus sabdariffa Linn (HSL) calyxes aqueous extract, as an antidiabetic and antioxidant agent against oxidative liver injury in streptozotocin-induced diabetic rats.

    MATERIAL AND METHODS: A single dose of streptozotocin (45mg/kg body weight, iv) was used to induced diabetes in male Sprague Dawley rats which were then divided into two groups: Diabetic control (DC) and HSL-treated diabetic (DR) group. Normal rats were divided into normal control (NC), HSL-treated control (NR). Aqueous calyxes extract of HSL (100mg/kg/day, orally) was given for 28 consecutive days in the treated group. Weight, biochemical and histopathological (light and electron microscopic) parameters were compared in all groups.

    RESULTS: Supplementation of HSL significantly lowered the level of fasting blood glucose and increased plasma insulin level in DR group compared to DC group (p<0.05). Alanine aminotransaminases and aspartate aminotransferase enzymes level were found to be significantly reduced in DR compared to DC. Microscopic examination demonstrated destruction of the liver architecture, cytoplasmic vacuolation of the hepatocytes and signs of necrosis in diabetic rats. Moreover, dilatation and congestion of blood vessels with leucocytes adherence were detected. Ultrastructural study using electron microscope showed homogeneous substance accumulation in nuclear chromatin, a decrease of organelles and mitochondrial degeneration in the diabetic rats.

    CONCLUSION: Administration of HSL in diabetic rats causes significant decrease in hepatocyte destruction and prevented the changes associated with the diabetic condition. Thus, our findings provide a scientific rationale for the use of HSL as promising agent in preventing liver injury in diabetes.

    Matched MeSH terms: Diabetes Mellitus, Experimental*
  10. Ismail CAN, Suppian R, Abd Aziz CB, Haris K, Long I
    Diabetes Metab J, 2019 Apr;43(2):222-235.
    PMID: 30604591 DOI: 10.4093/dmj.2018.0020
    BACKGROUND: This study investigated the role of NR2B in a modulated pain process in the painful diabetic neuropathy (PDN) rat using various pain stimuli.

    METHODS: Thirty-two Sprague-Dawley male rats were randomly allocated into four groups (n=8): control, diabetes mellitus (DM) rats and diabetic rats treated with ifenprodil at a lower dose (0.5 μg/day) (I 0.5) or higher dose (1.0 μg/day) (I 1.0). DM was induced by a single injection of streptozotocin at 60 mg/kg on day 0 of experimentation. Diabetic status was assessed on day 3 of the experimentation. The responses on both tactile and thermal stimuli were assessed on day 0 (baseline), day 14 (pre-intervention), and day 22 (post-intervention). Ifenprodil was given intrathecally for 7 days from day 15 until day 21. On day 23, 5% formalin was injected into the rats' hind paw and the nociceptive responses were recorded for 1 hour. The rats were sacrificed 72 hours post-formalin injection and an analysis of the spinal NR2B expression was performed.

    RESULTS: DM rats showed a significant reduction in pain threshold in response to the tactile and thermal stimuli and higher nociceptive response during the formalin test accompanied by the higher expression of phosphorylated spinal NR2B in both sides of the spinal cord. Ifenprodil treatment for both doses showed anti-allodynic and anti-nociceptive effects with lower expression of phosphorylated and total spinal NR2B.

    CONCLUSION: We suggest that the pain process in the streptozotocin-induced diabetic rat that has been modulated is associated with the higher phosphorylation of the spinal NR2B expression in the development of PDN, which is similar to other models of neuropathic rats.

    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced*
  11. Abdel-Rahman RF, Ezzat SM, Ogaly HA, Abd-Elsalam RM, Hessin AF, Fekry MI, et al.
    J Nutr Sci, 2020 01 20;9:e2.
    PMID: 32042410 DOI: 10.1017/jns.2019.40
    Ficus deltoidea var. deltoidea Jack (FD) is a well-known plant used in Malay folklore medicine to lower blood glucose in diabetic patients. For further research of the antihyperglycemic mechanisms, the protein tyrosine phosphatase 1B (PTP1B)-inhibitory effect of FD was analysed both in vitro and in vivo. To optimise a method for FD extraction, water, 50, 70, 80, 90 and 95 % ethanol extracts were prepared and determined for their total phenolic and triterpene contents, and PTP1B-inhibition capacity. Among the tested extracts, 70 % ethanol FD extract showed a significant PTP1B inhibition (92·0 % inhibition at 200 µg/ml) and high phenolic and triterpene contents. A bioassay-guided fractionation of the 70 % ethanol extract led to the isolation of a new triterpene (3β,11β-dihydroxyolean-12-en-23-oic acid; F3) along with six known compounds. In vivo, 4 weeks' administration of 70 % ethanol FD extract (125, 250 and 500 mg/kg/d) to streptozotocin-nicotinamide-induced type 2 diabetic rats reversed the abnormal changes of blood glucose, insulin, total Hb, GLUT2, lipid profile, and oxidative stress in liver and pancreas. Moreover, FD reduced the mRNA expression of the key gluconeogenic enzymes (phosphoenolpyruvate carboxykinase and glucose 6-phosphatase) and restored insulin receptor and GLUT2 encoding gene (Slc2a2) expression. In addition, FD significantly down-regulated the hepatic PTP1B gene expression. These results revealed that FD could potentially improve insulin sensitivity, suppress hepatic glucose output and enhance glucose uptake in type 2 diabetes mellitus through down-regulation of PTP1B. Together, our findings give scientific evidence for the traditional use of FD as an antidiabetic agent.
    Matched MeSH terms: Diabetes Mellitus, Experimental/blood
  12. Erejuwa OO, Sulaiman SA, Wahab MS, Salam SK, Salleh MS, Gurtu S
    Int J Mol Sci, 2011;12(1):829-43.
    PMID: 21340016 DOI: 10.3390/ijms12010829
    Hyperglycemia-induced increase in oxidative stress is implicated in diabetic complications. This study investigated the effect of metformin and/or glibenclamide in combination with honey on antioxidant enzymes and oxidative stress markers in the kidneys of streptozotocin (60 mg/kg; intraperitoneal)-induced diabetic rats. Diabetic rats were randomized into eight groups of five to seven rats and received distilled water (0.5 mL); honey (1.0 g/kg); metformin (100 mg/kg); metformin (100 mg/kg) and honey (1.0 g/kg); glibenclamide (0.6 mg/kg); glibenclamide (0.6 mg/kg) and honey (1.0 g/kg); metformin (100 mg/kg) and glibenclamide (0.6 mg/kg); or metformin (100 mg/kg), glibenclamide (0.6 mg/kg) and honey (1.0 g/kg) orally once daily for four weeks. Malondialdehyde (MDA) levels, glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were significantly elevated while catalase (CAT) activity, total antioxidant status (TAS), reduced glutathione (GSH), and GSH:oxidized glutathione (GSSG) ratio was significantly reduced in the diabetic kidneys. CAT, glutathione reductase (GR), TAS, and GSH remained significantly reduced in the diabetic rats treated with metformin and/or glibenclamide. In contrast, metformin or glibenclamide combined with honey significantly increased CAT, GR, TAS, and GSH. These results suggest that combination of honey with metformin or glibenclamide might offer additional antioxidant effect to these drugs. This might reduce oxidative stress-mediated damage in diabetic kidneys.
    Matched MeSH terms: Diabetes Mellitus, Experimental
  13. Nna VU, Abu Bakar AB, Md Lazin MRML, Mohamed M
    Food Chem Toxicol, 2018 Oct;120:305-320.
    PMID: 30026088 DOI: 10.1016/j.fct.2018.07.028
    Diabetes mellitus is characterized by hyperglycemia which causes oxidative stress. Propolis has been reported to have antihyperglycemic and antioxidant potentials. The present study therefore examined the anti-hyperglycemic, antioxidant and anti-inflammatory activities of Malaysian propolis (MP) using streptozotocin-induced diabetic rats. Ethanol extract of MP showed in vitro antioxidant (DPPH, FRAP and H2O2 radical scavenging) and α-glucosidase inhibition activities. Male Sprague Dawley rats were either treated with distilled water (normal control and diabetic control), MP (300 mg/kg b. w.), metformin (Met) (300 mg/kg b. w.) or both. After four weeks, fasting blood glucose decreased, while body weight change and serum insulin level increased significantly in MP, Met and MP + Met treated diabetic groups compared to diabetic control (DC) group. Furthermore, pancreatic antioxidant enzymes, total antioxidant capacity, interleukin (IL)-10 and proliferating cell nuclear antigen increased, while malondialdehyde, nuclear factor-kappa B (p65), tumor necrosis factor alpha, IL-1β and cleaved caspase-3 decreased significantly in the treated diabetic groups compared to DC group. Histopathology of the pancreas showed increased islet area and number of beta cells in the treated groups, compared to DC group, with D + MP + Met group comparable to normal control. We conclude that MP has anti-hyperglycemic, antioxidant, anti-inflammatory and antiapoptotic potentials, and exhibits synergistic effect with metformin.
    Matched MeSH terms: Diabetes Mellitus, Experimental
  14. Vântu A, Ghertescu D, Fiscă C, Mărginean A, Hutanu A, Gheban D, et al.
    Malays J Pathol, 2019 Apr;41(1):25-32.
    PMID: 31025634
    INTRODUCTION: Experimental models are essential for clarifying the pathogenesis of atherosclerosis in the context of diabetes mellitus (DM). We aimed to evaluate the presence and the magnitude of several factors known to promote atherogenesis, and to assess the potential of a pro-atherogenic environment to stimulate the development of atherosclerotic lesions in a rat model of long-term type 1 DM.

    MATERIALS AND METHODS: Six control and five DM Wistar rats were evaluated. DM was induced at 11 weeks of age using streptozotocin (STZ; 60 mg/kg, intraperitoneal). Animals were monitored up to 38 weeks of age, when plasma glucose, lipid profile, and markers specific for systemic inflammation, endothelial dysfunction, and oxidative stress were measured. The amount of fat within the aortic wall was assessed semiquantitatively using Oil Red O staining.

    RESULTS: Diabetic rats presented significantly higher plasma glucose (p < 0.001), total cholesterol and triglycerides (both p = 0.02), high-sensitivity C-reactive protein (p = 0.01), and vascular endothelial growth factor (p = 0.04) levels, and significantly lower interleukin-10 (p = 0.04), superoxide dismutase (p < 0.01), and glutathione peroxidase (p = 0.01) levels than the control rats. Mild (grade 1) atherosclerotic lesions were observed in the aortic wall of 80% of the diabetic rats and in none of the control rats.

    CONCLUSIONS: This study presents a STZ-induced type 1 DM rat model with one of the longest follow-ups in the literature. In this model, long-term DM created a highly pro-atherogenic environment characterised by hyperglycemia, dyslipidemia, systemic inflammation, endothelial dysfunction, and oxidative stress that resulted in the development of early aortic atherosclerotic lesions.

    Matched MeSH terms: Diabetes Mellitus, Experimental
  15. Choy KW, Zain ZM, Murugan DD, Giribabu N, Zamakshshari NH, Lim YM, et al.
    Front Pharmacol, 2021;12:632169.
    PMID: 33986669 DOI: 10.3389/fphar.2021.632169
    Type 2 diabetes mellitus is characterized by both resistance to the action of insulin and defects in insulin secretion. Bird's nest, which is derived from the saliva of swiftlets are well known to possess multiple health benefits dating back to Imperial China. However, it's effect on diabetes mellitus and influence on the actions of insulin action remains to be investigated. In the present study, the effect of standardized aqueous extract of hydrolyzed edible bird nest (HBN) on metabolic characteristics and insulin signaling pathway in pancreas, liver and skeletal muscle of db/db, a type 2 diabetic mice model was investigated. Male db/db diabetic and its euglycemic control, C57BL/6J mice were administered HBN (75 and 150 mg/kg) or glibenclamide (1 mg/kg) orally for 28 days. Metabolic parameters were evaluated by measuring fasting blood glucose, serum insulin and oral glucose tolerance test (OGTT). Insulin signaling and activation of inflammatory pathways in liver, adipose, pancreas and muscle tissue were evaluated by Western blotting and immunohistochemistry. Pro-inflammatory cytokines were measured in the serum at the end of the treatment. The results showed that db/db mice treated with HBN significantly reversed the elevated fasting blood glucose, serum insulin, serum pro-inflammatory cytokines levels and the impaired OGTT without affecting the body weight of the mice in all groups. Furthermore, HBN treatment significantly ameliorated pathological changes and increased the protein expression of insulin, and glucose transporters in the pancreatic islets (GLUT-2), liver and skeletal muscle (GLUT-4). Likewise, the Western blots analysis denotes improved insulin signaling and antioxidant enzyme, decreased reactive oxygen species producing enzymes and inflammatory molecules in the liver and adipose tissues of HBN treated diabetic mice. These results suggest that HBN improves β-cell function and insulin signaling by attenuation of oxidative stress mediated chronic inflammation in the type 2 diabetic mice.
    Matched MeSH terms: Diabetes Mellitus, Experimental
  16. Shiming Z, Mak KK, Balijepalli MK, Chakravarthi S, Pichika MR
    Biomed Pharmacother, 2021 Jul;139:111576.
    PMID: 33862494 DOI: 10.1016/j.biopha.2021.111576
    Diabetes mellitus or type-2 diabetes, commonly referred as diabetes, is a metabolic disorder that results in high blood sugar level. Despite the availability of several antidiabetic drugs in the market, they still do not adequately regulate blood sugar levels. Thus, in general people prefer to use herbal supplements/medicines along with antidiabetic drugs to control blood sugar levels. One of such herbal medicine is Swietenia macrophylla seeds. It is widely used in Asia for controlling blood sugar levels. One of the major bioactive compounds, Swietenine, is reported to be responsible for controlling blood glucose levels. However, there were no studies on its efficacy in controlling the blood glucose in diabetic rats. In this study, we evaluated the antihyperglycemic activity of Swietenine and its pharmacodynamic interaction with Metformin in Streptozotocin induced diabetes in rats. The activity of Swietenine was investigated at three different doses: 10, 20 and 40 mg/kg body weight (bw). Metformin (50 mg/kg bw) was used as a standard drug. Swietenine (20 and 40 mg/kg bw) and Metformin (50 mg/kg bw) showed significant effect in reducing the glucose, cholesterol, triglycerides, low-density lipoprotein, urea, creatinine, alanine transaminase, alkaline phosphatase, aspartate transaminase, alanine transaminase, and malondialdehyde level in serum while it had increased the high-density lipoprotein, glutathione, and total antioxidant capacity level. In addition, Swietenine (20 and 40 mg/kg) had shown significant synergistic effect with Metformin. Administration of Swietenine at 10 mg/kg bw neither showed activity nor influenced Metformin's activity. The results from this study confirmed the beneficial effects of Swietenine and its synergistic action with Metformin in controlling the dysregulated serum parameters in Streptozotocin induced diabetes in rats.
    Matched MeSH terms: Diabetes Mellitus, Experimental
  17. Wen W, Lin Y, Ti Z
    PMID: 31708869 DOI: 10.3389/fendo.2019.00716
    Annona reticulata L. (Bullock's heart) is a pantropic tree commonly known as custard apple, which is used therapeutically for a variety of maladies. The present research was carried out to evaluate the possible protective effects of Annona reticulata L. (A. reticulata) ethanolic seed extract on an experimentally induced type 2 diabetes rat model. Male Albino Wistar rats were randomly divided into five groups with six animals in each group viz., control rats in group I, diabetic rats in group II, diabetic rats with 50 and 100 mg/kg/bw of ethanolic seed extract of A. reticulata in groups III and IV, respectively, and diabetic rats with metformin in group V. Treatment was given for 42 consecutive days through oral route by oro-gastric gavage. Administration of A. reticulata seed extract to diabetes rats significantly restored the alterations in the levels of body weight, food and water intake, fasting blood glucose (FBG), insulin levels, insulin sensitivity, HbA1c, HOMA-IR, islet area and insulin positive cells. Furthermore, A. reticulata significantly decreased the levels of triglycerides, cholesterol, LDL, and significantly increased the HDL in diabetic rats. A. reticulata effectively ameliorated the enzymatic (ALT, AST, ALP, GGT) and modification of histopathological changes in diabetic rats. The serum levels of the BUN, creatinine levels, uric acid, urine volume, and urinary protein were significantly declined with a significant elevation in CCr in diabetic rats treated with A. reticulata. MDA and NO levels were significantly reduced with an enhancement in SOD, CAT, and GPx antioxidant enzyme activities in the kidney, liver, and pancreas of diabetic rats treated with A. reticulata. Diabetic rats treated with A. reticulata have shown up-regulation in mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H:quinone oxidoreductase 1 (NQO1), Heme oxygenase-1 (HO-1) and protein expression level of Nrf2 with diminution in Keap1 mRNA expression level in pancreas, kidney, and liver. From the outcome of the current results, it can be inferred that seed extract of A. reticulata exhibits a protective effect in diabetic rats through its anti-diabetic, anti-hyperlipidemic, antioxidant and anti-inflammatory effects and could be considered as a promising treatment therapy in the treatment of diabetes mellitus.
    Matched MeSH terms: Diabetes Mellitus, Experimental
  18. Perumal, V., Khoo, W.C., Abdul-Hamid, A., Ismail, A., Saari, K., Murugesu, S., et al.
    MyJurnal
    Momordica charantia, also known as bitter melon or ‘peria katak’ in Malaysia, is a member of the family Cucurbitaceae. Bitter melon is an excellent source of vitamins and minerals that made it extensively nutritious. Moreover, the seed, fruit and leave of the plant contain bioactive compounds with a wide range of biological activities that have been used in traditional medicines in the treatment of several diseases, including inflammation, infections, obesity and diabetes. The aim of this study was to evaluate changes in urinary metabolite profile of the normal, streptozotocin-induced type 1 diabetes and M. charantia treated diabetic rats using proton nuclear magnetic resonance (1H-NMR) -based metabolomics profiling. Study had been carried out by inducing diabetes in the rats through injection of streptozotocin, which exhibited type 1 diabetes. M. charantia extract (100 and 200 mg/kg body weight) was administrated to the streptozotocin-induced diabetic rats for one week. Blood glucose level after administration was measured to examine hypoglycemic effect of the extract. The results obtained indicated that M. charantia was effective in lowering blood glucose level of the diabetic rats. The loading plot of Partial Least Square (PLS) component 1 showed that diabetic rats had increased levels of lactate and glucose in urine whereas normal and the extract treated diabetic rats had higher levels of succinate, creatine, creatinine, urea and phenylacetylglycine in urine. While the loading plot of PLS component 2 showed a higher levels of succinate, citrate, creatine, creatinine, sugars, and hippurate in urine of normal rat compared to the extract treated diabetic rat. Administration of M. charantia extract was found to be able to regulate the altered metabolic processes. Thus, it could be potentially used to treat the diabetic patients.
    
    Matched MeSH terms: Diabetes Mellitus, Experimental
  19. Ajay M, Achike FI, Mustafa MR
    Pharmacol Res, 2007 May;55(5):385-91.
    PMID: 17317209
    In this study, we report the effects of a non-antioxidant flavonoid flavone on vascular reactivity in Wistar-Kyoto (WKY) rat isolated aortae. Whether flavone directly modulates vascular reactivity in spontaneously hypertensive rat (SHR) and streptozotocin-induced diabetic-WKY rat isolated aortae was also determined. Thoracic aortic rings were mounted in organ chambers and exposed to various drug treatments in the presence of flavone (10 microM) or its vehicle (DMSO), which served as control. Pretreatment with flavone enhanced relaxant effects to endothelium-dependent vasodilator acetylcholine (ACh) and attenuated contractile effects to alpha(1)-receptor agonist phenylephrine (PE) in WKY aortae compared to those observed in control aortic rings. Flavone had no effect on relaxations to ACh in WKY aortae incubated with either L-NAME or methylene blue, but enhanced relaxations to ACh in WKY aortae incubated with indomethacin or partially depolarized with KCl. Relaxations to ACh are totally abolished in both control or flavone pretreated endothelium-denuded WKY aortae. Flavone attenuated the inhibition by beta-NADH of ACh-induced relaxation in WKY aortae, but it had no significant effect on the transient contractions induced by beta-NADH nor the pyrogallol-induced abolishment of ACh-induced relaxation in WKY aortae. Flavone enhanced endothelium-independent relaxation to sodium nitroprusside (SNP) in both endothelium-intact and -denuded WKY aortae. Flavone enhanced relaxation to ACh and SNP as well as attenuated contractile effects to PE in SHR and diabetic aortae, a finding similar to that observed in normal WKY aortae. From these results, we conclude that flavone modulates vascular reactivity in normal as well as hypertensive and diabetic aortae. These effects of flavone results probably through enhanced bioactivity of nitric oxide released from the endothelium.
    Matched MeSH terms: Diabetes Mellitus, Experimental/metabolism; Diabetes Mellitus, Experimental/physiopathology*
  20. Mehrabani M, Najafi M, Kamarul T, Mansouri K, Iranpour M, Nematollahi MH, et al.
    Cell Prolif, 2015 Oct;48(5):532-49.
    PMID: 26332145 DOI: 10.1111/cpr.12209
    OBJECTIVES: Both excessive and insufficient angiogenesis are associated with progression of diabetic complications, of which poor angiogenesis is an important feature. Currently, adipose-derived stem cells (ADSCs) are considered to be a promising source to aid therapeutic neovascularization. However, functionality of these cells is impaired by diabetes which can result from a defect in hypoxia-inducible factor-1 (HIF-1), a key mediator involved in neovascularization. In the current study, we sought to explore effectiveness of pharmacological priming with deferoxamine (DFO) as a hypoxia mimetic agent, to restore the compromised angiogenic pathway, with the aid of ADSCs derived from streptozotocin (STZ)-induced type 1 diabetic rats ('diabetic ADSCs').

    MATERIALS AND METHODS: Diabetic ADSCs were treated with DFO and compared to normal and non-treated diabetic ADSCs for expression of HIF-1α, VEGF, FGF-2 and SDF-1, at mRNA and protein levels, using qRT-PCR, western blotting and ELISA assay. Activity of matrix metalloproteinases -2 and -9 were measured using a gelatin zymography assay. Angiogenic potential of conditioned media derived from normal, DFO-treated and non-treated diabetic ADSCs were determined by in vitro (in HUVECs) and in vivo experiments including scratch assay, three-dimensional tube formation testing and surgical wound healing models.

    RESULTS: DFO remarkably enhanced expression of noted genes by mRNA and protein levels and restored activity of matrix metalloproteinases -2 and -9. Compromised angiogenic potential of conditioned medium derived from diabetic ADSCs was restored by DFO both in vitro and in vivo experiments.

    CONCLUSION: DFO preconditioning restored neovascularization potential of ADSCs derived from diabetic rats by affecting the HIF-1α pathway.

    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced; Diabetes Mellitus, Experimental/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links