OBJECTIVE: This study aimed to optimize the yield of pectin extracted from sweet potato residue and investigate its emulsifying properties.
METHODS: Response surface methodology (RSM) has been utilized to investigate the pectin extracted from sweet potato peels using citric acid as the extracting solvent. Investigation of the effect of different extraction conditions namely temperature (°C), time (min) and solution pH on pectin yield (%) were conducted. A Box-Benhken design with three levels of variation was used to optimize the extraction conditions.
RESULTS: The optimal conditions determined were temperature 76°C, time 64 min and pH 1.2 with 65.2% yield of pectin. The degree of esterification (DE) of the sweet potato pectin was determined using Fourier Transform Infrared (FTIR) Spectroscopy. The pectin is high-methoxyl pectin with DE of 58.5%. Emulsifying properties of sweet potato pectin were investigated by measuring the zeta-potential, particle size and creaming index with addition of 0.4 and 1.0 wt % pectin to the emulsion.
CONCLUSION: Extraction using citric acid could improve the pectin yield. Improved emulsion stability was observed with the addition of the sweet potato pectin.
PURPOSE: This scoping review aims to describe the effect of lipid-based formulations on the oral bioavailability of herbal compounds.
METHODS: A systematic search was conducted across three electronic databases (Medline, Embase and Cochrane Library) between January 2010 and January 2021 to identify relevant studies. The articles were rigorously screened for eligibility. Data from eligible studies were then extracted and collated for synthesis and descriptive analysis using Covidence.
RESULTS: A total of 109 studies were included in the present review: 105 animal studies and four clinical trials. Among the formulations investigated, 50% were emulsions, 34% lipid particulate systems, 12% vesicular systems, and 4% were other types of lipid-based formulations. Within the emulsion system classification, self-emulsifying drug delivery systems were observed to produce the best improvements in oral bioavailability, followed by mixed micellar formulations. The introduction of composite lipid-based formulations and the use of uncommon surfactants such as sodium oleate in emulsion preparation was shown to consistently enhance the bioavailability of herbal compounds with poor oral absorption. Interestingly, the lipid-based formulations of magnesium lithospermate B and Pulsatilla chinensis produced an absolute bioavailability greater than 100% indicating the possibility of prolonged systemic circulation. With respect to chemical conjugation, D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was the most frequently used and significantly improved the bioavailability of its phytoconstituents.
CONCLUSION: Our findings suggest that there is no distinct lipid-based formulation superior to the other. Bioavailability improvements were largely dependent on the nature of the phytoconstituents. This scoping review, however, provided a detailed summary of the most up-to-date evidence on phytoconstituents formulated into lipid preparations and their oral bioavailability. We conclude that a systematic review and meta-analysis between bioavailability improvements of individual phytoconstituents (such as kaempferol, morin and myricetin) in various lipid-based formulations will provide a more detailed association. Such a review will be highly beneficial for both researchers and herbal manufacturers.