Displaying publications 221 - 240 of 829 in total

Abstract:
Sort:
  1. Adamu Ahmad K, Sabo Mohammed A, Abas F
    Molecules, 2016 Mar 14;21(3):256.
    PMID: 26985885 DOI: 10.3390/molecules21030256
    The use of chitosan as a delivery carrier has attracted much attention in recent years. In this study, chitosan nanoparticles (CS-NP) and chitosan-ΦKAZ14 bacteriophage-loaded nanoparticles (C-ΦKAZ14 NP) were prepared by a simple coercavation method and characterized. The objective was to achieve an effective protection of bacteriophage from gastric acids and enzymes in the chicken gastrointestinal tract. The average particle sizes for CS-NP and C-ΦKAZ14 NP were 188 ± 7.4 and 176 ± 3.2 nm, respectively. The zeta potentials for CS-NP and C-ΦKAZ14 NP were 50 and 60 mV, respectively. Differential scanning calorimetry (DSC) of C-ΦKAZ14 NP gave an onset temperature of -17.17 °C with a peak at 17.32 °C and final end set of 17.41 °C, while blank chitosan NP had an onset of -20.00 °C with a peak at -19.78 °C and final end set at -20.47. FT-IR spectroscopy data of both CS-NP and C-ΦKAZ14 NP were the same. Chitosan nanoparticles showed considerable protection of ΦKAZ14 bacteriophage against degradation by enzymes as evidenced in gel electrophoresis, whereby ΦKAZ14 bacteriophage encapsulated in chitosan nanoparticles were protected whereas the naked ΦKAZ14 bacteriophage were degraded. C-ΦKAZ14 NP was non-toxic as shown by a chorioallantoic membrane (CAM) toxicity assay. It was concluded that chitosan nanoparticles could be a potent carrier of ΦKAZ14 bacteriophage for oral therapy against colibacillosis in poultry.
    Matched MeSH terms: Escherichia coli Infections/prevention & control; Escherichia coli Infections/veterinary*
  2. Chong FC, Tan WS, Biak DR, Ling TC, Tey BT
    J Chromatogr B Analyt Technol Biomed Life Sci, 2009 May 15;877(14-15):1561-7.
    PMID: 19395325 DOI: 10.1016/j.jchromb.2009.03.048
    Nucleocapsid (N) protein of Nipah virus (NiV) is a potential serological marker used in the diagnosis of NiV infections. In this study, a rapid and efficient purification system, HisTrap 6 Fast Flow packed bed column was applied to purify recombinant histidine-tagged N protein of NiV from clarified feedstock. The optimizations of binding and elution conditions of N protein of NiV onto and from Nickel Sepharose 6 Fast Flow were investigated. The optimal binding was achieved at pH 7.5, superficial velocity of 1.25 cm/min. The bound N protein was successfully recovered by a stepwise elution with different concentration of imidazole (50, 150, 300 and 500 mM). The N protein of NiV was captured and eluted from an inlet N protein concentration of 0.4 mg/ml in a scale-up immobilized metal affinity chromatography (IMAC) packed bed column of Nickel Sepharose 6 Fast Flow with the optimized condition obtained from the method scouting. The purification of histidine-tagged N protein using IMAC packed bed column has resulted a 68.3% yield and a purification factor of 7.94.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism
  3. Alkotaini B, Anuar N, Kadhum AA
    Appl Biochem Biotechnol, 2015 Feb;175(4):1868-78.
    PMID: 25427593 DOI: 10.1007/s12010-014-1410-4
    The mechanisms of action of AN5-1 against Gram-negative and Gram-positive bacteria were investigated by evaluations of the intracellular content leakage and by microscopic observations of the treated cells. Escherichia coli and Staphylococcus aureus were used for this investigation. Measurements of DNA, RNA, proteins, and β-galactosidase were taken, and the results showed a significant increase in the cultivation media after treatment with AN5-1 compared with the untreated cells. The morphological changes of treated cells were shown using transmission electron microscopy (TEM) and atomic force microscopy (AFM). The observations showed that AN5-1 acts against E. coli and against S. aureus in similar ways, by targeting the cell wall, causing disruptions; at a high concentration (80 AU/ml), these disruptions led to cell lysis. The 3D AFM imaging system showed that at a low concentration of 20 AU/ml, the effect of AN5-1 is restricted to pore formation only. Moreover, a separation between the cell wall and the cytoplasm was observed when Gram-negative bacteria were treated with a low concentration (20 AU/ml) of AN5-1.
    Matched MeSH terms: Escherichia coli/drug effects*; Escherichia coli/metabolism; Escherichia coli/ultrastructure*
  4. Suhaimi SN, Phang LY, Maeda T, Abd-Aziz S, Wakisaka M, Shirai Y, et al.
    Braz J Microbiol, 2012 Apr;43(2):506-16.
    PMID: 24031858 DOI: 10.1590/S1517-83822012000200011
    Bioconverting glycerol into various valuable products is one of glycerol's promising applications due to its high availability at low cost and the existence of many glycerol-utilizing microorganisms. Bioethanol and biohydrogen, which are types of renewable fuels, are two examples of bioconverted products. The objectives of this study were to evaluate ethanol production from different media by local microorganism isolates and compare the ethanol fermentation profile of the selected strains to use of glucose or glycerol as sole carbon sources. The ethanol fermentations by six isolates were evaluated after a preliminary screening process. Strain named SS1 produced the highest ethanol yield of 1.0 mol: 1.0 mol glycerol and was identified as Escherichia coli SS1 Also, this isolated strain showed a higher affinity to glycerol than glucose for bioethanol production.
    Matched MeSH terms: Escherichia coli
  5. Azaman SN, Ramakrishnan NR, Tan JS, Rahim RA, Abdullah MP, Ariff AB
    Biotechnol Appl Biochem, 2010 Aug;56(4):141-50.
    PMID: 20604747 DOI: 10.1042/BA20100104
    Induction strategies for the periplasmic production of recombinant human IFN-alpha2b (interferon-alpha2b) by recombinant Escherichia coli Rosetta-gami 2(DE3) were optimized in shake-flask cultures using response surface methodology based on the central composite design. The factors included in the present study were induction point, which related to the attenuance of the cell culture, IPTG (isopropyl beta-D-thiogalactoside) concentration and induction temperature. Second-order polynomial models were used to correlate the abovementioned factors to soluble periplasmic IFN-alpha2b formation and percentage of soluble IFN-alpha2b translocated to the periplasmic space of E. coli. The models were found to be significant and subsequently validated. The proposed induction strategies consisted of induction at an attenuance of 4 (measured as D600), IPTG concentration of 0.05 mM and temperature of 25 degrees C. The optimized induction strategy reduced inclusion-body formation as evidenced by electron microscopy and yielded 323.8 ng/ml of IFN-alpha2b in the periplasmic space with translocation of 74% of the total soluble product. In comparison with the non-optimized condition, soluble periplasmic production and the percentage of soluble IFN-alpha2b translocated to the periplasmic space obtained in optimized induction strategies were increased by approx. 20-fold and 1.4-fold respectively.
    Matched MeSH terms: Escherichia coli/cytology; Escherichia coli/growth & development; Escherichia coli/metabolism*
  6. Yap WB, Tey BT, Alitheen NB, Tan WS
    J Chromatogr A, 2010 May 21;1217(21):3473-80.
    PMID: 20388569 DOI: 10.1016/j.chroma.2010.03.012
    Hepatitis B core antigen (HBcAg) is used as a diagnostic reagent for the detection of hepatitis B virus infection. In this study, immobilized metal affinity-expanded bed adsorption chromatography (IMA-EBAC) was employed to purify N-terminally His-tagged HBcAg from unclarified bacterial homogenate. Streamline Chelating was used as the adsorbent and the batch adsorption experiment showed that the optimal binding pH of His-tagged HBcAg was 8.0 with a binding capacity of 1.8 mg per ml of adsorbent. The optimal elution condition for the elution of His-tagged HBcAg from the adsorbent was at pH 7 in the presence of 500 mM imidazole and 1.5 M NaCl. The IMA-EBAC has successfully recovered 56% of His-tagged HBcAg from the unclarified E. coli homogenate with a purification factor of 3.64. Enzyme-linked immunosorbent assay (ELISA) showed that the antigenicity of the recovered His-tagged HBcAg was not affected throughout the IMA-EBAC purification process and electron microscopy revealed that the protein assembled into virus-like particles (VLP).
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism; Escherichia coli/chemistry*
  7. Juahir H, Zain SM, Aris AZ, Yusoff MK, Mokhtar MB
    J Environ Monit, 2010 Jan;12(1):287-95.
    PMID: 20082024 DOI: 10.1039/b907306j
    The present study deals with the assessment of Langat River water quality with some chemometrics approaches such as cluster and discriminant analysis coupled with an artificial neural network (ANN). The data used in this study were collected from seven monitoring stations under the river water quality monitoring program by the Department of Environment (DOE) from 1995 to 2002. Twenty three physico-chemical parameters were involved in this analysis. Cluster analysis successfully clustered the Langat River into three major clusters, namely high, moderate and less pollution regions. Discriminant analysis identified seven of the most significant parameters which contribute to the high variation of Langat River water quality, namely dissolved oxygen, biological oxygen demand, pH, ammoniacal nitrogen, chlorine, E. coli, and coliform. Discriminant analysis also plays an important role as an input selection parameter for an ANN of spatial prediction (pollution regions). The ANN showed better prediction performance in discriminating the regional area with an excellent percentage of correct classification compared to discriminant analysis. Multivariate analysis, coupled with ANN, is proposed, which could help in decision making and problem solving in the local environment.
    Matched MeSH terms: Escherichia coli/growth & development; Escherichia coli/isolation & purification; Escherichia coli/metabolism
  8. Yap CF, Tan WS, Sieo CC, Tey BT
    Biotechnol Prog, 2013 Mar-Apr;29(2):564-7.
    PMID: 23364925 DOI: 10.1002/btpr.1697
    NP(Δc375) is a truncated version of the nucleocapsid protein of Newcastle disease virus (NDV) which self-assembles into a long helical structure. A packed bed anion exchange chromatography (PB-AEC), SepFastTM Supor Q pre-packed column, was used to purify NP(Δc375) from clarified feedstock. This PB-AEC column adsorbed 76.2% of NP(Δc375) from the clarified feedstock. About 67.5% of the adsorbed NP(Δc375) was successfully eluted from the column by applying 50 mM Tris-HCl elution buffer supplemented with 0.5 M NaCl at pH 7. Thus, a recovery yield of 51.4% with a purity of 76.7% which corresponds to a purification factor of 6.5 was achieved in this PB-AEC operation. Electron microscopic analysis revealed that the helical structure of the NP(Δc375) purified by SepFast(TM) Supor Q pre-packed column was as long as 490 nm and 22-24 nm in diameter. The antigenicity of the purified NP(Δc375) was confirmed by enzyme-linked immunosorbent assay.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism; Escherichia coli/chemistry*
  9. Lim YL, Ee R, How KY, Lee SK, Yong D, Tee KK, et al.
    PeerJ, 2015;3:e1225.
    PMID: 26336650 DOI: 10.7717/peerj.1225
    In this study, we sequenced the genome of Pandoraea pnomenusa RB38 using Pacific Biosciences RSII (PacBio) Single Molecule Real Time (SMRT) sequencing technology. A pair of cognate luxI/R homologs was identified where the luxI homolog, ppnI, was found adjacent to a luxR homolog, ppnR1. An additional orphan luxR homolog, ppnR2, was also discovered. Multiple sequence alignment and phylogenetic analysis revealed that ppnI is an N-acyl homoserine lactone (AHL) synthase gene that is distinct from those of the nearest phylogenetic neighbor viz. Burkholderia spp. High resolution tandem mass spectrometry (LC-MS/MS) analysis showed that Escherichia coli BL21 harboring ppnI produced a similar AHL profile (N-octanoylhomoserine lactone, C8-HSL) as P. pnomenusa RB38, the wild-type donor strain, confirming that PpnI directed the synthesis of AHL in P. pnomenusa RB38. To our knowledge, this is the first documentation of the luxI/R homologs of the genus Pandoraea.
    Matched MeSH terms: Escherichia coli
  10. Vadivelu J, Feachem RG, Drasar BS, Harrison TJ, Parasakthi N, Thambypillai V, et al.
    Epidemiol Infect, 1989 Dec;103(3):497-511.
    PMID: 2691267
    The membrane-filter assay, GM1-ELISA, and DNA-DNA hybridization assay, were used to detect enterotoxigenic Escherichia coli (ETEC) in samples of water, weaning food, food preparation surface swabs, fingerprints of mothers, and the fingerprints and stools of children under 5 years of age, in 20 households in a Malaysian village. Weaning food and environmental samples were frequently contaminated by faecal coliforms, including ETEC. The membrane-filter assay detected and enumerated faecal coliforms and LT-ETEC in all types of water and weaning food samples. Highest concentrations of faecal coliforms and LT-ETEC were found in weaning food, followed by well-water, stored water and stored drinking water. The GM1-ELISA detected LT-ETEC in weaning food, food preparation surfaces, fingerprints and stool samples. The DNA-DNA hybridization assay detected a larger proportion of STa2-ETEC than the other toxotypes, either singly or in combination. All the assays in combination detected the presence of ETEC in all types of samples on at least one occasion in each household. It was not possible to classify households as consistently more or less contaminated with ETEC. On individual occasions it was possible to show a significant association of the presence of LT-ETEC between the fingerprints of children and their stools, fingerprints of mothers and children, and weaning food and the stools of the child consuming the food.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/isolation & purification*; Escherichia coli/metabolism
  11. Siti Nurul Ain Saipullizan, Razalee Sedek, Sahilah Abd. Mutalib
    Sains Malaysiana, 2018;47:1527-1533.
    This study aimed to evaluate the level of knowledge, attitude and practice (KAP) amongst food handlers in food utensils
    hygiene and presence of bacterial contamination on food utensils. There were two approaches used in this study. In the
    first approach, 134 of food handlers from 75 food premises were interviewed via questionnaires to assess their knowledge,
    attitude and practice. In the second approach, the presence of Staphylococcus aureus, Escherichia coli and total coliform
    of 225 utensils (knives (75), chopping boards (75) and dish plates (75)) was examined. The result showed that the food
    handlers had sufficient level of knowledge (80.5%), attitude (87.4%) and practice (90.1%). Highest contamination was
    found on the chopping boards for the presence of S. aureus (82.8%), E. coli (9.7%) and total coliform (73.9%). Logistic
    regression analysis showed that knowledge contributes to the presence of E. coli on the dish plates; and total coliform
    on the knives. Thus, ongoing training that focused on food utensils hygiene must be emphasized to improve knowledge,
    attitude and practice amongst the food handlers.
    Matched MeSH terms: Escherichia coli
  12. Gan HM, Eng WWH, Dhanoa A
    Data Brief, 2019 Aug;25:104257.
    PMID: 31384648 DOI: 10.1016/j.dib.2019.104257
    We report the whole genome sequencing data and de novo genome assemblies for eight extended-spectrum beta-lactamases (ESBL) producing Enterobacteriaceae isolates from Malaysia consisting of four Klebsiella pneumoniae, two Enterobacter harmaechei, one Citrobacter freundii and one Escherichia coli. We identified at least one ESBL gene in each genome, with blaCTX-M-15 being the most prevalent ESBL gene in the current genomic sampling.
    Matched MeSH terms: Escherichia coli
  13. Muhammad H, Omar MH, Rasid ENI, Suhaimi SN, Mohkiar FH, Siu LM, et al.
    Plants (Basel), 2021 Feb 11;10(2).
    PMID: 33670296 DOI: 10.3390/plants10020343
    The present study was carried out to assess the genotoxicity potential of Ficus deltoidea var. kunstleri aqueous extract (FDAE) using standard in vitro assays. The DNA damage of V79B cells was measured using the alkaline comet assay treated at 0.1 mg/mL (IC10) and 0.3 mg/mL (IC25) of FDAE together with positive and negative controls. For in vitro micronucleus assay, the V79B cells were treated with FDAE at five different concentrations (5, 2.5, 1.25, 0.625, and 0.3125 mg/mL) with and without S9 mixture. The bacteria reverse mutation assay of FDAE was performed on Salmonella typhimurium strains TA98, 100, 1535, 1537, and Escherichia coli strain WP2uvrA using pre-incubation method in the presence or in the absence of an extrinsic metabolic system (S9 mixture). FDAE at 0.1 and 0.3 mg/mL significantly increased DNA damage in both comet tail and tail moment (p < 0.05). No significant changes were detected in the number of micronucleated cell when compared to control. Tested at the doses up to 5000 µg/plate, the FDAE did not increase the number of revertant colonies for all strains. In conclusion, further investigation needs to be conducted in animal model to confirm the non-genotoxicity activities of FDAE.
    Matched MeSH terms: Escherichia coli
  14. Nor Hazliana Harun, Mydin, Rabiatul Basria S.M.N., Sreekantan, Srimala, Khairul Arifah Saharudin, Norfatehah Basiron, Fakrul Radhi, et al.
    MyJurnal
    Zinc oxide (ZnO) nanoparticles (NPs) has become as promising candidate for antibacterial agents against Escherichia coli (E.coli), commensal hospital- acquired infections (HAIs). This study investigates the antibacterial action of ZnO NPs in three difference shapes; nanorod, nanoflakes and nanospheres against E.coli ATCC 25922. The antibacterial activity of ZnO NPs was determine through two standard protocols known as Clinical Laboratory Standards Institute (CLSI) MO2-A11 under light conditions of 5.70 w/m2 and American standard test method (ASTM) E-2149. Preliminary screening shows ZnO NPs did not inhibit the growth of E.coli. Further analysis using ASTM E-2149 in dynamic conditions revealed antibacterial activity after 3 hours with 100% reduction for ZnO NPs nanoflakes and 6 hours with 94.63% reduction for ZnO nanospheres, respectively. It demonstrated the ZnO NPs in nanoflakes and nanospheres exerted higher antibacterial activity possibly through release of ios, free radicals, ROS generation and electrostatic collision which contribute to bacterial death. Further analysis is needed to investigate biocompatibility of these samples for future biomedical applications.
    Matched MeSH terms: Escherichia coli
  15. Rahman RN, Geok LP, Wong CF, Basri M, Salleh AB
    J Basic Microbiol, 2010 Apr;50(2):143-9.
    PMID: 20082370 DOI: 10.1002/jobm.200900133
    A gene encoding an organic solvent-stable protease was amplified from Pseudomonas aeruginosa strain K by polymerase chain reaction using consensus primers based on multiple sequence alignment of alkaline and metalloprotease genes from Pseudomonas species. The gene, which consisted of 1440 bp nucleotides and deduced 479 amino acid residues, was successfully expressed in pGEX-4T-1 expression system in the presence of 1.0 mM IPTG, after an incubation of 6 h at 37 degrees C. Under these conditions, the recombinant strain K protease was, subsequently, released into the periplasm of E. coli BL21 (DE3) with an optimum proteolytic activity detected at 1.0112 U/ml. To date, this is the first reported expression of alkaline protease (aprA) with such remarkable property in Escherichia coli.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism; Escherichia coli/chemistry
  16. Abbasi MA, Ijaz M, Aziz-Ur-Rehman -, Siddiqui SZ, Ali Shah SA, Shahid M, et al.
    Pak J Pharm Sci, 2020 Jul;33(4):1609-1616.
    PMID: 33583794
    In the planned research work, the nucleophilic substitution reaction of 1-[(E)-3-phenyl-2-propenyl]piperazine (1) was carried out with different sulfonyl chlorides (2a-g) at pH 9-10 to synthesize its different N-sulfonated derivatives (3a-g). The structures of the synthesized compounds were characterized by their proton-nuclear magnetic resonance (1H-NMR), carbon-nuclear magnetic resonance (13C-NMR) and Infra Red (IR) spectral data, along with CHN analysis. The inhibition potential of the synthesized molecules was ascertained against two bacterial pathogenic strains i.e. Bacillus subtilis and Escherichia coli. It was inferred from the results that some of the compounds were very suitable inhibitors of these bacterial strains. Moreover, their cytotoxicity was also profiled and it was outcome that most of these molecules possessed moderate cytotoxicity.
    Matched MeSH terms: Escherichia coli
  17. Bashir A, Zunita Z, Jesse FFA, Ramanoon SZ, Mohd-Azmi ML
    Microbiol Resour Announc, 2019 Nov 27;8(48).
    PMID: 31776215 DOI: 10.1128/MRA.01057-19
    We report the whole-genome sequence of Escherichia coli sequence type 127 (ST127) strain 1538RHQ, recovered from a mastitic cow in a dairy herd in Selangor, Malaysia. The objective of this study was to identify the antigenic and virulence properties that can be used as suitable targets for vaccine development against bovine mastitis.
    Matched MeSH terms: Escherichia coli
  18. Siti Zaharah, R., Noranizan, M., Son, R., Roselina, K., Yusof, N. L., Koh, P. C., et al.
    MyJurnal
    Pennywort (Centella asiatica) is a herbaceous vegetable commonly consumed raw as ‘ulam’ or salad. Consumption of raw leafy green vegetables is one of the pathogenic mechanisms that could cause foodborne outbreaks. The aim of the present work was therefore to investigate the effect of pulsed light (PL) treatment at fluences of 1.5, 4.2, 6.9, 9.6, and 12.3 J/cm² on the microbiological and physical quality of pennywort stored at 4 ± 1°C. Escherichia coli (E. coli) were inoculated onto the pennywort leaves before being exposed to PL and viewed using scanning electron microscopy (SEM). PL fluences of 6.9, 9.6, and 12.3 J/cm² significantly reduced the microbial count; however, the highest inactivation was obtained by using fluences of 9.6 and 12.3 J/cm². The color of pennywort was not significantly affected by PL treatment applied at lower fluences of 1.5, 4.2, and 6.9 J/cm²; however, at higher fluence, 9.6 and 12.3 J/cm², the color was affected. PL at 1.5, 4.2, 6.9, and 9.6 J/cm² was able to retain the texture appearance of the leaves. To conclude, PL at 6.9 J/cm² showed the best fluence to reduce total aerobic mesophilic count while retaining the physical properties of pennywort leaves and extend the shelf life to about four days. The inactivation of E. coli population was significantly higher at PL fluence of 6.9 J/cm². It was observed that PL caused the destruction to the surface of E. coli’s cell membrane. The reductions of samples inoculated with E. coli were better than those achieved in native microbiota. Furthermore, the present work also demonstrated that PL treatment was able to reduce the microbial count on pennywort leaves.
    Matched MeSH terms: Escherichia coli
  19. Zahedi SN, Hejazi SH, Boshtam M, Amini F, Fazeli H, Sarmadi M, et al.
    Acta Parasitol, 2021 Mar;66(1):53-59.
    PMID: 32676917 DOI: 10.1007/s11686-020-00251-w
    PURPOSE: Leishmaniasis, a widespread parasitic disease, is a public health concern that is endemic in more than 90 countries. Owing to the drug resistance and also undesirable complications, designing new therapeutic methods are essential. C-reactive protein (CRP) is an acute phase protein of plasma with several immune modulatory functions. This study aimed to evaluate the effect of human recombinant CRP (hrCRP) on treating cutaneous leishmaniasis in mice models.

    METHODS: hrCRP was expressed in E. coli Rosetta-gami and extracted from the SDS-PAGE gel. Male BALB/c mice were inoculated subcutaneously at the base of their tails by 1 × 105 stationary-phase of Leishmania major promastigotes (MHRO/IR/75/ER) suspended in sterile phosphate buffered saline (PBS). Nodules and subsequently, ulcers developed 14 days post-injection. 1.5 µg of the purified protein was administered on lesions of pre-infected mice by Leishmania major in the intervention group for five consecutive days.

    RESULTS: The mean area of the lesions was decreased by about seven folds in the intervention group as compared to the control group after two weeks of the treatment (p = 0.024). The results were verified by the real-time polymerase chain reaction so that the parasite burden was determined 27 times in the control group as compared to the intervention group (p = 0.02). Two weeks after treatment, the conversion of the lesions to scars in the intervention group was observed.

    CONCLUSION: The results indicate a potential therapeutic role for hrCRP in improving cutaneous leishmaniasis due to Leishmania major in mice models. The healing was in a stage-dependent manner.

    Matched MeSH terms: Escherichia coli
  20. Chong HY, Leow CY, Leow CH
    Int J Biol Macromol, 2021 Aug 31;185:485-493.
    PMID: 34174313 DOI: 10.1016/j.ijbiomac.2021.06.146
    Co-existence of Japanese Encephalitis virus (JEV) with highly homologous antigenic epitopes results in antibody-based serodiagnosis being inaccurate at detecting and distinguishing JEV from other flaviviruses. This often causes misdiagnosis and inefficient treatments of flavivirus infection. Generation of JEV NS1 protein remains a challenge as it is notably expressed in the form of inactive aggregates known as inclusion bodies using bacterial expression systems. This study evaluated two trxB and gor E. coli strains in producing soluble JEV NS1 via a cold-shock expression system. High yield of JEV NS1 inclusion bodies was produced using cold-shocked expression system. Subsequently, a simplified yet successful approach in generating soluble, active JEV NS1 protein through solubilization, purification and in vitro refolding of JEV NS1 protein from inclusion bodies was developed. A step-wise dialysis refolding approach was used to facilitate JEV NS1 refolding. The authenticity of the refolded JEV NS1 was confirmed by specific antibody binding on indirect ELISA commercial anti-NS1 antibodies which showed that the refolded JEV NS1 was highly immunoreactive. This presented approach is cost-effective, and negates the need for mammalian or insect cell expression systems in order to synthesize this JEV NS1 protein of important diagnostic and therapeutic relevance in Japanese Encephalitis disease.
    Matched MeSH terms: Escherichia coli/classification; Escherichia coli/genetics; Escherichia coli/growth & development*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links