RESULTS: Two fungal isolates (UM 1400 and UM 1020) from human specimens were identified as Daldinia eschscholtzii by morphological features and ITS-based phylogenetic analysis. Both genomes were similar in size with 10,822 predicted genes in UM 1400 (35.8 Mb) and 11,120 predicted genes in UM 1020 (35.5 Mb). A total of 751 gene families were shared among both UM isolates, including gene families associated with fungus-host interactions. In the CAZyme comparative analysis, both genomes were found to contain arrays of CAZyme related to plant cell wall degradation. Genes encoding secreted peptidases were found in the genomes, which encode for the peptidases involved in the degradation of structural proteins in plant cell wall. In addition, arrays of secondary metabolite backbone genes were identified in both genomes, indicating of their potential to produce bioactive secondary metabolites. Both genomes also contained an abundance of gene encoding signaling components, with three proposed MAPK cascades involved in cell wall integrity, osmoregulation, and mating/filamentation. Besides genomic evidence for degrading capability, both isolates also harbored an array of genes encoding stress response proteins that are potentially significant for adaptation to living in the hostile environments.
CONCLUSIONS: Our genomic studies provide further information for the biological understanding of the D. eschscholtzii and suggest that these wood-decaying fungi are also equipped for adaptation to adverse environments in the human host.
MATERIALS AND METHODS: Genomic DNA was isolated from peripheral blood of 71 breast cancer patients and 260 healthy controls and subjected to polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis.
RESULTS: Our study showed that the c1/c2 genotype or subjects with at least one c2 allele in CYP2E1 rs3813867 SNP had significantly increased almost 1.8-fold higher breast cancer risk in Malaysian women overall. In addition, the variant Phe allele in STK15 rs2273535 SNP appeared to protect against breast cancer in Malaysian Chinese. No significance association was found between XRCC1 SNPs and breast cancer risk in the population.
CONCLUSIONS: This study provides additional knowledge on CYP2E1, STK15 and XRCC1 SNP impact of risk of breast cancer, particularly in the Malaysian population. From our findings, we also recommend Malaysian women to perform breast cancer screening before 50 years of age.