Displaying publications 241 - 260 of 10173 in total

Abstract:
Sort:
  1. Sahari J, Sapuan SM, Zainudin ES, Maleque MA
    Carbohydr Polym, 2013 Feb 15;92(2):1711-6.
    PMID: 23399210 DOI: 10.1016/j.carbpol.2012.11.031
    In recent years, increasing environmental concerns focused greater attention on the development of biodegradable materials. A thermoplastic starch derived from bioresources, sugar palm tree was successfully developed in the presence of biodegradable glycerol as a plasticizer. Sugar palm starch (SPS) was added with 15-40 w/w% of glycerol to prepare workable bioplastics and coded as SPS/G15, SPS/G20, SPS/G30 and SPS/G40. The samples were characterized for thermal properties, mechanical properties and moisture absorption on exposure to humidity were evaluated. Morphological studies through scanning electron microscopy (SEM) were used to explain the observed mechanical properties. Generally, the addition of glycerol decrease the transition temperature of plasticized SPS. The mechanical properties of plasticized SPS increase with the increasing of glycerol but up to 30 w/w%. Meanwhile, the water absorption of plasticized SPS decrease with increasing of glycerol.
    Matched MeSH terms: Glycerol/chemistry; Plastics/chemistry*; Starch/chemistry*; Water/chemistry; Angiosperms/chemistry*
  2. Maleki-Ghaleh H, Hafezi M, Hadipour M, Nadernezhad A, Aghaie E, Behnamian Y, et al.
    PLoS One, 2015;10(9):e0138454.
    PMID: 26383641 DOI: 10.1371/journal.pone.0138454
    In the current study, a sol-gel-synthesized tricalcium magnesium silicate powder was coated on Ti-6Al-4V alloys using plasma spray method. Composition of feed powder was evaluated by X-ray diffraction technique before and after the coating process. Scanning electron microscopy and atomic force microscopy were used to study the morphology of coated substrates. The corrosion behaviors of bare and coated Ti-6Al-4V alloys were examined using potentiodynamic polarization test and electrochemical impedance spectroscopy in stimulated body fluids. Moreover, bare and coated Ti-6Al-4V alloys were characterized in vitro by culturing osteoblast and mesenchymal stem cells for several days. Results demonstrated a meaningful improvement in the corrosion resistance of Ti-6Al-4V alloys coated with tricalcium magnesium silicate compared with the bare counterparts, by showing a decrease in corrosion current density from 1.84 μA/cm2 to 0.31 μA/cm2. Furthermore, the coating substantially improved the bioactivity of Ti-6Al-4Valloys. Our study on corrosion behavior and biological response of Ti-6Al-4V alloy coated by tricalcium magnesium silicate proved that the coating has considerably enhanced safety and applicability of Ti-6Al-4V alloys, suggesting its potential use in permanent implants and artificial joints.
    Matched MeSH terms: Alloys/chemistry*; Magnesium/chemistry*; Titanium/chemistry*; Calcium Compounds/chemistry*; Silicates/chemistry*
  3. Choo CK, Kong XY, Goh TL, Ngoh GC, Horri BA, Salamatinia B
    Carbohydr Polym, 2016 Mar 15;138:16-26.
    PMID: 26794733 DOI: 10.1016/j.carbpol.2015.11.060
    Development of new materials for different applications especially as bio-composites has received great attention. This study concentrates on development of a biopolymer based on chitosan (CT) and halloysite nanotubes (HNT) and evaluates the copper removal intake as a potential application of this bio-composite. In this study, CT/HNT beads were prepared by ultrasonic-assisted extrusion-dripping method for the first time. Two sources of HNTs (i.e. Dragonite and Matauri Bay) were added into a chitosan solution (2wt.%) at various loading fractions (25, 50, 75wt.%). The effect of ultrasound as a mixing device was also studied by varying the amplitude at constant frequency of 25%, 50% and 75%. Characteristics and physical properties of the prepared CT/HNT beads were also analyzed by SEM, FTIR, TGA and BET the results show that introducing HNT to chitosan increases the adsorption capacity toward copper ions; however HNT loading fraction above 50wt.% resulted in a decrease in adsorption capacity attributed to limited accessibility of the amino groups. The adsorption capacity of the CT/HNT beads prepared from Dragonite source had a larger adsorption capacity of 14.2mg/g as compared to that of Matauri Bay, 10.55mg/g. It was observed that the adsorption capacity of the beads toward copper ions decreased when the loading fraction of HNT is increased at constant ultrasound amplitude. The result of this study helps to understand the links between the characteristics and adsorption abilities of CT/HNT beads.
    Matched MeSH terms: Aluminum Silicates/chemistry*; Copper/chemistry*; Ions/chemistry; Nanotubes/chemistry; Chitosan/chemistry*
  4. Arjmandi R, Hassan A, Mohamad Haafiz MK, Zakaria Z
    Int J Biol Macromol, 2015 Nov;81:91-9.
    PMID: 26234577 DOI: 10.1016/j.ijbiomac.2015.07.062
    In this study, hybrid montmorillonite/cellulose nanowhiskers (MMT/CNW) reinforced polylactic acid (PLA) nanocomposites were produced through solution casting. The CNW filler was first isolated from microcrystalline cellulose by chemical swelling technique. The partial replacement of MMT with CNW in order to produce PLA/MMT/CNW hybrid nanocomposites was performed at 5 parts per hundred parts of polymer (phr) fillers content, based on highest tensile strength values as reported in our previous study. MMT were partially replaced with various amounts of CNW (1, 2, 3, 4 and 5phr). The tensile, thermal, morphological and biodegradability properties of PLA hybrid nanocomposites were investigated. The highest tensile strength of hybrid nanocomposites was obtained with the combination of 4phr MMT and 1phr CNW. Interestingly, the ductility of hybrid nanocomposites increased significantly by 79% at this formulation. The Young's modulus increased linearly with increasing CNW content. Thermogravimetric analysis illustrated that the partial replacement of MMT with CNW filler enhanced the thermal stability of the PLA. This is due to the relatively good dispersion of fillers in the hybrid nanocomposites samples as revealed by transmission electron microscopy. Interestingly, partial replacements of MMT with CNW improved the biodegradability of hybrid nanocomposites compared to PLA/MMT and neat PLA.
    Matched MeSH terms: Bentonite/chemistry*; Cellulose/chemistry*; Polymers/chemistry*; Lactic Acid/chemistry*; Nanocomposites/chemistry*
  5. Lamaming J, Hashim R, Sulaiman O, Leh CP, Sugimoto T, Nordin NA
    Carbohydr Polym, 2015;127:202-8.
    PMID: 25965475 DOI: 10.1016/j.carbpol.2015.03.043
    In this study cellulose nanocrystals were isolated from oil palm trunk (Elaeis guineensis) using acid hydrolysis method. The morphology and size of the nanocrystals were characterized using scanning electron microscopy and transmission electron microscopy. The results showed that the nanocrystals isolated from raw oil palm trunk (OPT) fibers and hot water treated OPT fibers had an average diameter of 7.67 nm and 7.97 nm and length of 397.03 nm and 361.70 nm, respectively. Fourier Transform Infrared spectroscopy indicated that lignin and hemicellulose contents decreased. It seems that lignin was completely removed from the samples during chemical treatment. Thermogravimetric analysis demonstrated that cellulose nanocrystals after acid hydrolysis had higher thermal stability compared to the raw and hot water treated OPT fibers. The X-ray diffraction analysis increased crystallinity of the samples due to chemical treatment. The crystalline nature of the isolated nanocrystals from raw and hot water treated OPT ranged from 68 to 70%.
    Matched MeSH terms: Cellulose/chemistry*; Plant Oils/chemistry*; Plant Stems/chemistry; Arecaceae/chemistry*; Nanoparticles/chemistry*
  6. Gannasin SP, Adzahan NM, Hamzah MY, Mustafa S, Muhammad K
    Food Chem, 2015 Sep 1;182:292-301.
    PMID: 25842340 DOI: 10.1016/j.foodchem.2015.03.010
    Tamarillo (Solanum betaceum Cav.) is an underutilised fruit in Malaysia. The fruit, however, contains good proportions of soluble fibre, protein, starch, anthocyanins and carotenoids. Amongst the fruits, only tamarillo mesocarp contains both polar (anthocyanins) and non-polar (carotenoids) pigments. The ability to retain both polar and non-polar pigments in the mesocarp could be related to the unique properties of its hydrocolloids. To understand the pigment-hydrocolloid interaction in the fruit, information on the physicochemical characteristics of the hydrocolloids is required. Therefore, hydrocolloids from the anthocyanin-rich seed mucilage fraction of the tamarillo and its carotenoid-rich pulp fraction were extracted and characterised. Water and 1% citric acid were used to extract the seed mucilage hydrocolloid while 72% ethanol and 20mM HEPES buffer were used for pulp hydrocolloid extraction. Seed mucilage hydrocolloid was primarily composed of arabinogalactan protein-associated pectin whereas pulp hydrocolloid was composed of hemicellulosic polysaccharides with some naturally interacting proteins and neutral polysaccharides.
    Matched MeSH terms: Carotenoids/chemistry; Colloids/chemistry*; Fruit/chemistry*; Polysaccharides/chemistry*; Solanum/chemistry*
  7. Lau BYC, Othman A
    PLoS One, 2019;14(8):e0221052.
    PMID: 31415606 DOI: 10.1371/journal.pone.0221052
    Protein solubility is a critical prerequisite to any proteomics analysis. Combination of urea/thiourea and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) have been routinely used to enhance protein solubilization for oil palm proteomics studies in recent years. The goals of these proteomics analysis are essentially to complement the knowledge regarding the regulation networks and mechanisms of the oil palm fatty acid biosynthesis. Through omics integration, the information is able to build a regulatory model to support efforts in improving the economic value and sustainability of palm oil in the global oil and vegetable market. Our study evaluated the utilization of sodium deoxycholate as an alternative solubilization buffer/additive to urea/thiourea and CHAPS. Efficiency of urea/thiourea/CHAPS, urea/CHAPS, urea/sodium deoxycholate and sodium deoxycholate buffers in solubilizing the oil palm (Elaeis guineensis var. Tenera) mesocarp proteins were compared. Based on the protein yields and electrophoretic profile, combination of urea/thiourea/CHAPS were shown to remain a better solubilization buffer and additive, but the differences with sodium deoxycholate buffer was insignificant. A deeper mass spectrometric and statistical analyses on the identified proteins and peptides from all the evaluated solubilization buffers revealed that sodium deoxycholate had increased the number of identified proteins from oil palm mesocarps, enriched their gene ontologies and reduced the number of carbamylated lysine residues by more than 67.0%, compared to urea/thiourea/CHAPS buffer. Although only 62.0% of the total identified proteins were shared between the urea/thiourea/CHAPS and sodium deoxycholate buffers, the importance of the remaining 38.0% proteins depends on the applications. The only observed limitations to the application of sodium deoxycholate in protein solubilization were the interference with protein quantitation and but it could be easily rectified through a 4-fold dilution. All the proteomics data are available via ProteomeXchange with identifier PXD013255. In conclusion, sodium deoxycholate is applicable in the solubilization of proteins extracted from oil palm mesocarps with higher efficiency compared to urea/thiourea/CHAPS buffer. The sodium deoxycholate buffer is more favorable for proteomics analysis due to its proven advantages over urea/thiourea/CHAPS buffer.
    Matched MeSH terms: Cholic Acids/chemistry; Deoxycholic Acid/chemistry*; Detergents/chemistry*; Plant Proteins/chemistry; Arecaceae/chemistry*
  8. Irfan M, Irfan M, Shah SM, Baig N, Saleh TA, Ahmed M, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Oct;103:109769.
    PMID: 31349444 DOI: 10.1016/j.msec.2019.109769
    Non-covalent electrostatic interaction between amide nitrogen and carbonyl carbon of shorter chain length of polyvinylpyrrolidone (PVP-k25) was developed with in-house carboxylic oxidized multiwall carbon nanotubes (O-MWCNT) and then blended with Polyethersulfone (PES) polymer. FTIR analysis was utilized to confirm bonding nature of nano-composites (NCs) of O-MWCNT/PVP-k25 and casting membranes. Non-solvent induces phase separation process developed regular finger-like channels in composite membranes whereas pristine PES exhibited spongy entities as studied by cross sectional analysis report of FESEM. Further, FESEM instrument was also utilized to observe the dispersion of O-MWCNT/PVP based nanocomposite (NCs) with PES and membranes leaching phenomena analysis. Contact angle experiments described 24% improvement of hydrophilic behaviour, leaching ratio of additives was reduced to 1.89%, whereas water flux enhanced up to 6 times. Bovine serum albumin (BSA) and lysozyme based antifouling analysis shown up to 25% improvement, whereas 84% of water flux was regained after protein fouling than pristine PES. Anticoagulant activity was reported by estimating prothrombin, thrombin, plasma re-calcification times and production of fibrinogen cluster with platelets-adhesions photographs and hemolysis experiments. Composite membranes exhibited 3.4 and 3 times better dialysis clearance ratios of urea and creatinine solutes as compared to the raw PES membrane.
    Matched MeSH terms: Anticoagulants/chemistry*; Polymers/chemistry*; Sulfones/chemistry*; Nanotubes/chemistry*; Nanocomposites/chemistry*
  9. Zulkefeli M, Hisamatsu Y, Suzuki A, Miyazawa Y, Shiro M, Aoki S
    Chem Asian J, 2014 Oct;9(10):2831-41.
    PMID: 25080369 DOI: 10.1002/asia.201402513
    In our previous paper, we reported that a dimeric Zn(2+) complex with a 2,2'-bipyridyl linker (Zn2L(1)), cyanuric acid (CA), and a Cu(2+) ion automatically assemble in aqueous solution to form 4:4:4 complex 3, which selectively catalyzes the hydrolysis of mono(4-nitrophenyl)phosphate (MNP) at neutral pH. Herein, we report that the use of barbital (Bar) instead of CA for the self-assembly with Zn2L(1) and Cu(2+) induces 2:2:2 complexation of these components, and not the 4:4:4 complex, to form supramolecular complex 6 a, the structure and equilibrium characteristics of which were studied by analytical and physical measurements. The finding show that 6 a also accelerates the hydrolysis of MNP, similarly to 3. Moreover, inspired by the crystal structure of 6 a, we prepared barbital units that contain functional groups on their side chains in an attempt to produce supramolecular phosphatases that possess functional groups near the Cu2(μ-OH)2 catalytic core so as to mimic the catalytic center of alkaline phosphatase (AP).
    Matched MeSH terms: Barbital/chemistry*; Copper/chemistry*; Heterocyclic Compounds/chemistry*; Water/chemistry; Zinc/chemistry*
  10. Abdul Hadi N, Marefati A, Matos M, Wiege B, Rayner M
    Carbohydr Polym, 2020 Jul 15;240:116264.
    PMID: 32475554 DOI: 10.1016/j.carbpol.2020.116264
    Acetylated, propionylated and butyrylated rice and quinoa starches at different levels of modification and starch concentrations, were used to stabilize oil-in-water starch Pickering emulsions at 10% oil fraction. Short-chain fatty acid modified starch Pickering emulsions (SPEs) were characterized after emulsification and after 50 days of storage. The particle size distribution, microstructure, emulsion index, and stability were evaluated. An increase in starch concentration led to a decrease of emulsion droplet sizes. Quinoa starch has shown the capability of stabilizing Pickering emulsions in both the native and modified forms. The emulsifying capacity of SPEs was improved by increasing the chain length of SCFA. Modified quinoa starch with higher chain lengths (i.e. propionylated and butyrylated), at higher levels of modification, showed higher emulsion index (>71%) and stability over the entire 50 days storage. At optimized formulation, SCFA-starch particles have the potential in stabilizing emulsions for functional foods, pharmaceutical formulations, or industrial food applications.
    Matched MeSH terms: Emulsions/chemistry*; Fatty Acids, Volatile/chemistry*; Oryza/chemistry*; Starch/chemistry*; Chenopodium quinoa/chemistry*
  11. Kimura Y, Yoshiie T, Kit WK, Maeda M, Kimura M, Tan SH
    Biosci Biotechnol Biochem, 2003 Oct;67(10):2232-9.
    PMID: 14586113
    The pollen of oil palm (Elaeis guineensis Jacq.) is a strong allergen and causes severe pollinosis in Malaysia and Singapore. In the previous study (Biosci. Biotechnol. Biochem., 64, 820-827 (2002)), from the oil palm pollens, we purified an antigenic glycoprotein (Ela g Bd 31 K), which is recognized by IgE from palm pollinosis patients. In this report, we describe the structural analysis of sugar chains linked to palm pollen glycoproteins to confirm the ubiquitous occurrence of antigenic N-glycans in the allergenic pollen. N-Glycans liberated from the pollen glycoprotein mixture by hydrazinolysis were labeled with 2-aminopyridine followed by purification with a combination of size-fractionation HPLC and reversed-phase HPLC. The structures of the PA-sugar chains were analyzed by a combination of two-dimensional sugar chain mapping, electrospray ionization mass spectrometry (ESI-MS), and tandem MS analysis, as well as exoglycosidase digestions. The antigenic N-glycan bearing alpha1-3 fucose and/or beta1-2 xylose residues accounts for 36.9% of total N-glycans: GlcNAc2Man3Xyl1Fuc1GlcNAc2 (24.6%), GlcNAc2Man3Xyl1GlcNAc2 (4.4%), Man3Xyl1Fuc1-GlcNAc2 (1.1%), GlcNAc1Man3Xyl1Fuc1GlcNAc2 (5.6%), and GlcNAc1Man3Xyl1GlcNAc2 (1.2%). The remaining 63.1% of the total N-glycans belong to the high-mannose type structure: Man9GlcNAc2 (5.8%), Man8GlcNAc2 (32.1%), Man7GlcNAc2 (19.9%), Man6GlcNAc2 (5.3%).
    Matched MeSH terms: Allergens/chemistry; Glycoproteins/chemistry*; Pollen/chemistry; Polysaccharides/chemistry*; Arecaceae/chemistry*
  12. Iqbal A, Saidu U, Adam F, Sreekantan S, Yahaya N, Ahmad MN, et al.
    Molecules, 2021 Apr 25;26(9).
    PMID: 33923041 DOI: 10.3390/molecules26092509
    In this work, mesoporous TiO2-modified ZnO quantum dots (QDs) were immobilised on a linear low-density polyethylene (LLDPE) polymer using a solution casting method for the photodegradation of tetracycline (TC) antibiotics under fluorescent light irradiation. Various spectroscopic and microscopic techniques were used to investigate the physicochemical properties of the floating hybrid polymer film catalyst (8%-ZT@LLDPE). The highest removal (89.5%) of TC (40 mg/L) was achieved within 90 min at pH 9 due to enhanced water uptake by the LDDPE film and the surface roughness of the hybrid film. The formation of heterojunctions increased the separation of photogenerated electron-hole pairs. The QDs size-dependent quantum confinement effect leads to the displacement of the conduction band potential of ZnO QDs to more negative energy values than TiO2. The displacement generates more reactive species with higher oxidation ability. The highly stable film photocatalyst can be separated easily and can be repeatedly used up to 8 cycles without significant loss in the photocatalytic ability. The scavenging test indicates that the main species responsible for the photodegradation was O2●-. The proposed photodegradation mechanism of TC was demonstrated in further detail based on the intermediates detected by LC-time-of-flight/mass spectrometry (LC/TOF-MS).
    Matched MeSH terms: Polymers/chemistry*; Tetracycline/chemistry*; Titanium/chemistry; Zinc Oxide/chemistry; Polyethylene/chemistry
  13. Oyekanmi AA, Saharudin NI, Hazwan CM, H P S AK, Olaiya NG, Abdullah CK, et al.
    Molecules, 2021 Apr 13;26(8).
    PMID: 33924692 DOI: 10.3390/molecules26082254
    Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films' modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.
    Matched MeSH terms: Biopolymers/chemistry*; Cellulose/chemistry*; Silanes/chemistry*; Hibiscus/chemistry; Nanocomposites/chemistry
  14. Almoustafa HA, Alshawsh MA, Chik Z
    Int J Pharm, 2017 Nov 25;533(1):275-284.
    PMID: 28943210 DOI: 10.1016/j.ijpharm.2017.09.054
    Nanoprecipitation is a simple and increasingly trending method for nanoparticles preparation. The self-assembly feature of poly (ethylene glycol)-poly (lactide-co-glycolic acid) (PEG-PLGA) amphiphilic copolymer into a nanoparticle and its versatile structure makes nanoprecipitation one of the best methods for its preparation. The aim of this study is to review currently available literature for standard preparation of PEG-PLGA nanoparticles using nanoprecipitation technique in order to draw conclusive evidenceto draw conclusive evidence that can guide researchers during formulation development. To achieve this, three databases (Web of Science, Scopus and PubMed) were searched using relevant keywords and the extracted articles were reviewed based on defined inclusion and exclusion criteria. Data extraction and narrative analysis of the obtained literature was performed when appropriate, along with our laboratory observations to support those claims wherever necessary. As a result of this analysis, reports that matched our criteria conformed to the general facts about nanoprecipitation techniques such as simplicity in procedure, low surfactants requirement, narrow size distribution, and low resulting concentrations. However, these reports showed interesting advantages for using PEG-PLGA as they are frequently reported to be freeze-dried and active pharmaceutical ingredients (APIs) with low hydrophobicity were reported to successfully be encapsulated in the particles.
    Matched MeSH terms: Antineoplastic Agents/chemistry*; Drug Carriers/chemistry*; Polyesters/chemistry*; Polyethylene Glycols/chemistry*; Nanoparticles/chemistry*
  15. Ramlli MA, Isa MI
    J Phys Chem B, 2016 11 10;120(44):11567-11573.
    PMID: 27723333
    Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transference number measurement (TNM) techniques were applied to investigate the complexation, structural, and ionic transport properties of and the dominant charge-carrier species in a solid biopolymer electrolyte (SBE) system based on carboxymethyl cellulose (CMC) doped with ammonium fluoride (NH4F), which was prepared via a solution casting technique. The SBEs were partially opaque in appearance, with no phase separation. The presence of interactions between the host polymer (CMC) and the ionic dopant (NH4F) was proven by FT-IR analysis at the C-O band. XRD spectra analyzed using Origin 8 software disclose that the degree of crystallinity (χc%) of the SBEs decreased with the addition of NH4F, indicating an increase in the amorphous nature of the SBEs. Analysis of the ionic transport properties reveals that the ionic conductivity of the SBEs is dependent on the ionic mobility (μ) and diffusion of ions (D). TNM analysis confirms that the SBEs are proton conductors.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry*; Biopolymers/chemistry*; Carboxymethylcellulose Sodium/chemistry*; Electrolytes/chemistry; Fluorides/chemistry*
  16. Ayumi NS, Sahudin S, Hussain Z, Hussain M, Samah NHA
    Drug Deliv Transl Res, 2019 04;9(2):482-496.
    PMID: 29569027 DOI: 10.1007/s13346-018-0508-6
    To investigate the use of chitosan nanoparticles (CS-TPP-NPs) as carriers for α- and β-arbutin. In this study, CS-TPP-NPs containing α- and β-arbutin were prepared via the ionic cross-linking of CS and TPP and characterized for particle size, zeta potential, and dispersity index. The entrapment efficiency and loading capacity of various β-arbutin concentrations (0.1, 0.2, 0.4, 0.5, and 0.6%) were also investigated. SEM, TEM FTIR, DSC and TGA analyses of the nanoparticles were performed to further characterize the nanoparticles. Finally, stability and release studies were undertaken to ascertain further the suitability of the nanoparticles as a carrier system for α- and β-arbutin. Data obtained clearly indicates the potential for use of CS-TPP-NPs as a carrier for the delivery of α- and β-arbutin. The size obtained for the alpha nanoparticles (α-arbutin CSNPs) ranges from 147 to 274 d.nm, with an increase in size with increasing alpha arbutin concentration. β-arbutin nanoparticles (β-arbutin CSNPs) size range was from 211.1 to 284 dn.m. PdI for all nanoparticles remained between 0.2-0.3 while the zeta potential was between 41.6-52.1 mV. The optimum encapsulation efficiency and loading capacity for 0.4% α-arbutin CSNPs were 71 and 77%, respectively. As for β-arbutin, CSNP optimum encapsulation efficiency and loading capacity for 0.4% concentration were 68 and 74%, respectively. Scanning electron microscopy for α-arbutin CSNPs showed a more spherical shape compared to β-arbutin CSNPs where rod-shaped particles were observed. However, under transmission electron microscopy, the shapes of both α- and β-arbutin CSNP nanoparticles were spherical. The crystal phase identification of the studied samples was carried out using X-ray diffraction (XRD), and the XRD of both α and β-arbutin CSNPs showed to be more crystalline in comparison to their free form. FTIR spectra showed intense characteristic peaks of chitosan appearing at 3438.3 cm-1 (-OH stretching), 2912 cm-1 (-CH stretching), represented 1598.01 cm-1 (-NH2) for both nanoparticles. Stability studies conducted for 90 days revealed that both α- and β-arbutin CSNPs were stable in solution. Finally, release studies of both α- and β-arbutin CSNPs showed a significantly higher percentage release in comparison to α- and β-arbutin in their free form. Chitosan nanoparticles demonstrate considerable promise as a carrier system for α- and β-arbutin, the use of which is anticipated to improve delivery of arbutin through the skin, in order to improve its efficacy as a whitening agent.
    Matched MeSH terms: Arbutin/chemistry*; Drug Carriers/chemistry*; Chitosan/chemistry*; Nanoparticles/chemistry*; Skin Lightening Preparations/chemistry*
  17. Alayan HM, Alsaadi MA, Das R, Abo-Hamad A, Ibrahim RK, AlOmar MK, et al.
    Water Sci Technol, 2018 Mar;77(5-6):1714-1723.
    PMID: 29595174 DOI: 10.2166/wst.2018.057
    In this study, carbon species were grown on the surface of Ni-impregnated powder activated carbon to form a novel hybrid carbon nanomaterial by chemical vapor deposition. The carbon nanomaterial was obtained by the precipitation of the methane elemental carbon atoms on the surface of the Ni catalyst. The physiochemical properties of the hybrid material were characterized to illustrate the successful growth of carbon species on the carbon substrate. The response surface methodology was used for the evaluation of adsorption parameters effect such as pH, adsorbent dose and contact time on the percentage removal of MB dye from aqueous solution. The optimum conditions were found to be pH = 11, adsorbent dose = 15 mg and contact time of 120 min. The material we prepared showed excellent removal efficiency of 96% for initial MB concentration of 50 mg/L. The adsorption of MB was described accurately by the pseudo-second-order model with R2 of 0.998 and qe of 163.93 (mg/g). The adsorption system showed the best agreement with Langmuir model with R2 of 0.989 and maximum adsorption capacity (Qm) of 250 mg/g.
    Matched MeSH terms: Carbon/chemistry*; Charcoal/chemistry; Methylene Blue/chemistry*; Water Pollutants, Chemical/chemistry*; Nanostructures/chemistry*
  18. Sa'don NA, Rahim AA, Ibrahim MNM, Brosse N, Hussin MH
    Int J Biol Macromol, 2017 Nov;104(Pt A):251-260.
    PMID: 28602987 DOI: 10.1016/j.ijbiomac.2017.06.038
    Lignin extracted from oil palm fronds (OPF) underwent chemical modification by incorporating m-cresol into the lignin matrix. This study reports on the physicochemical properties and antioxidant activity of unmodified autohydrolyzed ethanol organosolv lignin (AH EOL) and the modified autohydrolyzed ethanol organosolv lignin (AHC EOL). The lignin samples were analyzed by FTIR, 1H and 13C NMR spectroscopy, 2D NMR: HSQC spectroscopy, CHN analysis, molecular weight distribution analysis; GPC and thermal analysis; DSC and TGA. The lignin modification has reduced the hydrophobicity of its complex structure by providing better quality lignin with smaller fragments and higher solubility rate in water (DAHCEOL: 42%>DAHEOL: 25%). It was revealed that the modification of lignin has improved their structural and antioxidant properties, thus venture their possible applications.
    Matched MeSH terms: Antioxidants/chemistry*; Cresols/chemistry*; Lignin/chemistry*; Water/chemistry; Arecaceae/chemistry*
  19. Mohtor NH, Othman MHD, Bakar SA, Kurniawan TA, Dzinun H, Norddin MNAM, et al.
    Chemosphere, 2018 Oct;208:595-605.
    PMID: 29890498 DOI: 10.1016/j.chemosphere.2018.05.159
    Hydrothermal method has been proven to be an effective method to synthesise the nanostructured titanium dioxide (TiO2) with good morphology and uniform distribution at low temperature. Despite of employing a well-known and commonly used glass substrate as the support to hydrothermally synthesise the nanostructured TiO2, this study emphasised on the application of kaolin hollow fibre membrane as the support for the fabrication of kaolin/TiO2 nanorods (TNR) membrane. By varying the hydrothermal reaction times (2 h, 6 h, and 10 h), the different morphology, distribution, and properties of TiO2 nanorods on kaolin support were observed by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscope (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). It was found that the well-dispersed of TiO2 nanorods have improved the surface affinity of kaolin/TNR membrane towards water, allowing kaolin/TNR membrane prepared from 10 h of hydrothermal reaction to exhibit the highest water permeation of 165 L/h.m2.bar. In addition, this prepared membrane also showed the highest photocatalytic activity of 80.3% in the decolourisation of reactive black 5 (RB5) under UV irradiation. On top of that, the kaolin/TNR membrane prepared from 10 h of hydrothermal reaction also exhibited a good resistance towards photocorrosion, enabling the reuse of this membrane for three consecutive cycles of photocatalytic degradation of RB5 without showing significant reduction in photocatalytic efficiency towards the decolourisation of RB5.
    Matched MeSH terms: Chemistry Techniques, Analytical; Kaolin/chemistry*; Naphthalenesulfonates/chemistry*; Titanium/chemistry*; Nanostructures/chemistry
  20. Sampath Udeni Gunathilake TM, Ching YC, Chuah CH, Illias HA, Ching KY, Singh R, et al.
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):1055-1064.
    PMID: 30001596 DOI: 10.1016/j.ijbiomac.2018.06.147
    Nanocellulose reinforced chitosan hydrogel was synthesized using chemical crosslinking method for the delivery of curcumin which is a poorly water-soluble drug. Curcumin extracted from the dried rhizomes of Curcuma longa was incorporated to the hydrogel via in situ loading method. A nonionic surfactant (Tween 20) was incorporated into the hydrogel to improve the solubility of curcumin. After the gas foaming process, hydrogel showed large interconnected pore structures. The release studies in gastric medium showed that the cumulative release of curcumin increased from 0.21% ± 0.02% to 54.85% ± 0.77% with the increasing of Tween 20 concentration from 0% to 30% (w/v) after 7.5 h. However, the entrapment efficiency percentage decreased with the addition of Tween 20. The gas foamed hydrogel showed higher initial burst release within the first 120 min compared to hydrogel formed at atmospheric condition. The solubility of curcumin would increase to 3.014 ± 0.041 mg/mL when the Tween 20 concentration increased to 3.2% (w/v) in simulated gastric medium. UV-visible spectra revealed that the drug retained its chemical activity after in vitro release. From these findings, it is believed that the nonionic surfactant incorporated chitosan/nanocellulose hydrogel can provide a platform to overcome current problems associated with curcumin delivery.
    Matched MeSH terms: Cellulose/chemistry*; Polysorbates/chemistry*; Surface-Active Agents/chemistry*; Hydrogels/chemistry*; Chitosan/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links