AIM OF THE STUDY: To assess the motor and cognitive effects of acute oral administration of CT root methanolic extract and hippocampal long-term plasticity in the CA1 region of the CCH rat model.
MATERIALS AND METHODS: Male Sprague Dawley rats (200-300 g) were subjected to permanent bilateral occlusion of common carotid arteries (PBOCCA) or sham operation. Then, these rats were given oral administration of CT root extract at doses of 100, 200 or 300 mg/kg on day 28 post-surgery and tested using behavioural tests (open-field test, passive avoidance task, and Morris water maze) and electrophysiological recordings (under urethane anaesthesia).
RESULTS: Treatment with CT root extract at the doses of 200 and 300 mg/kg resulted in a significant enhancement in memory performance in CCH rats induced by PBOCCA. Furthermore, CCH resulted in inhibition of long-term potentiation (LTP) formation in the hippocampus, and CT root extract rescued the LTP impairment. The CT root extract was confirmed to improve the glutamate-induced calcium increase via calcium imaging using primary cultured rat neurons. No significance difference was found in the CaMKII expression. These results demonstrated that CT root extract ameliorates synaptic function, which may contribute to its improving effect on cognitive behaviour.
CONCLUSIONS: Our findings demonstrated an improving effect of CT root extract on memory in the CCH rat model suggesting that CT root extract could be a potential therapeutic strategy to prevent the progression of cognitive deterioration in vascular dementia (VaD) and Alzheimer's disease (AD) patients.
OBJECTIVE: This study investigates the chemical constituents, anti-proliferative, and apoptotic properties of C. nutans root extracts.
MATERIALS AND METHODS: The roots were subjected to solvent extraction using methanol and ethyl acetate. The anti-proliferative effects of root extracts were tested at the concentrations of 10 to 50 μg/mL on MCF-7 and HeLa by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay for 72 h. Morphological changes were observed under light microscope. Pro-apoptotic effects of root extracts were examined using flow cytometric analysis and RT-PCR. The chemical compositions of root extracts were detected using GC-MS.
RESULTS: The proliferation of MCF-7 cells was inhibited with the IC50 values of 35 and 30 μg/mL, respectively, for methanol and ethyl acetate root extracts. The average inhibition of HeLa cells was ∼25%. Induction of apoptosis in MCF-7 was supported by chromatin condensation, down-regulation of BCL2 and unaltered expression of BAX. However, only ethyl acetate extract caused the loss of mitochondrial membrane potential. GC-MS analysis revealed the roots extracts were rich with terpenoids and phytosterols.
DISCUSSION AND CONCLUSIONS: The results demonstrated that root extracts promote apoptosis by suppressing BCL2 via mitochondria-dependent or independent manner. The identified compounds might work solely or cooperatively in regulating apoptosis. However, further studies are required to address this.
THE AIM OF THE STUDY: To investigate the effects of the chronic (28 days) oral administration of CT root extract on CCH-induced cognitive impairment, neuronal damage and cholinergic deficit, and its toxicity profile in the CCH rat model.
MATERIALS AND METHODS: The permanent bilateral occlusion of common carotid arteries (PBOCCA) surgery method was employed to develop a CCH model in male Sprague Dawley (SD) rats. Then, these rats were given oral administration of CT root extract at doses of 100, 200, and 300 mg/kg, respectively for 28 days and subjected to behavioural tests. At the end of the experiment, the brain was harvested for histological analysis and cholinesterase activities. Then, blood samples were collected and organs such as liver, kidney, lung, heart, and spleen were procured for toxicity assessment.
RESULTS: Chronic treatment of CT root extract at doses of 200 and 300 mg/kg, restored memory impairments induced by CCH. CT root extract was also found to diminish CCH-induced neuronal damage in the CA1 region of the hippocampus. High dose (300 mg/kg) of the CT root extract was significantly inhibited the increased acetylcholinesterase (AChE) activity in the frontal cortex and hippocampus of the PBOCCA rats. In toxicity study, repeated doses of CT root extract were found to be safe in PBOCCA rats after 28 days of treatment.
CONCLUSIONS: Our findings provided scientific evidence supporting the therapeutic potential of CT root extract in the treatment of vascular dementia (VaD)-related cholinergic abnormalities and subsequent cognitive decline.
OBJECTIVES: GST inhibition activity and characterization of Kanji and methanol extract of D. carota roots, and oral absorption pattern of ferulic acid from Kanji in rats.
MATERIALS AND METHODS: GST inhibition activity of Kanji and methanol extract of D. carota roots in concentration range 0.001-100.00 mg/mL was determined using Sprague Dawley rat liver cytosolic fraction. Methanol extract upon column chromatography gave ferulic acid, which was used to characterize Kanji and determine its oral absorption pattern in Wistar rats.
RESULTS: The GST inhibition activity of Kanji (100.00 μg/mL), methanol extract of D. carota roots (100.00 μg/mL) and tannic acid (10.00 μg/mL, positive control) was found to be 0.162 ± 0.016, 0.106 ± 0.013 and 0.073 ± 0.004 μM/min/mg, respectively. Different Kanji samples and methanol extract contained ferulic acid (0.222-0.316 mg/g) and 0.77 mg/g, respectively. Ferulic acid did not appear in plasma after oral administration of Kanji.
DISCUSSION: Kanji having solid contents 80.0 μg/mL, equivalent to 0.0025 μg/mL ferulic acid, does not inhibit the activity of GST. The oral administration of Kanji, in human equivalent dose (528 mg/kg, 16.67 μg ferulic acid), to rats indicated poor absorption of ferulic acid.
CONCLUSION: Kanji having solid contents 14-36 mg/mL does not inhibit GST activity, hence may not interfere with drugs that are the substrates of GST, if taken concomitantly.