Present study was conducted to evaluate current status of trace elements contamination in the surface sediments of the Johor Strait. Iron (2.54 +/- 1.24%) was found as the highest occurring element, followed by those of zinc (210.45 +/- 115.4 microg/g), copper (57.84 +/- 45.54 microg/g), chromium (55.50 +/- 31.24 microg/g), lead (52.52 +/- 28.41 microg/g), vanadium (47.76 +/- 25.76 microg/g), arsenic (27.30 +/- 17.11 microg/g), nickel (18.31 +/- 11.77 microg/g), cobalt (5.13 +/- 3.12 microg/g), uranium (4.72 +/- 2.52 microg/g), and cadmium (0.30 +/- 0.30 microg/g), respectively. Bioavailability of cobalt, nickel, copper, zinc, arsenic and cadmium were higher than 50% of total concentration. Vanadium, copper, zinc, arsenic and cadmium were found significantly different between the eastern and western part of the strait (p < 0.05). Combining with other factors, Johor Strait is suitable as a hotspot for trace elements contamination related studies.
A simple and effective multiresidue method based on precipitation at low temperature followed by matrix solid-phase dispersion-sonication was developed and validated to determine dimethoate, malathion, carbaryl, simazine, terbuthylazine, atrazine and diuron in palm oil using liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS). Liquid-liquid extraction (LLE) followed by low temperature method were optimized by studying the effect of type and volume of organic solvent (acetonitrile, acetonitrile:n-hexane (3:2 v/v) and acetone) and time of freezing to obtain high recovery yield and low co-extract fat residue in the final extract. The optimal conditions for matrix solid-phase dispersion (MSPD) were obtained using 5 g of palm oil, 2 g of primary secondary amine (PSA) as dispersing sorbent, 1 g of graphitized carbon black (GCB) as clean-up sorbent and 15 mL of acetonitrile as eluting solvent under conditions of 15 min ultrasonication at room temperature. Method validation was performed in order to study sensitivity, linearity, precision, and accuracy. Average recoveries at three concentration levels (25, 50 and 100 μg kg(-1)) were found in the range of 72.6-91.3% with relative standard deviations between 5.3% and 14.2%. Detection and quantification limits ranged from 1.5 to 5 μg kg(-1) and from 2.5 to 9 μg kg(-1), respectively.
Various types of vegetable oil-based organic solvents (VOS), i.e. vegetable oils (corn, canola, sunflower and soybean oils) with and without extractants (di-2-ethylhexylphosphoric acid (D2EHPA) and tributylphosphate (TBP)), were investigated into their potentiality as greener substitutes for the conventional petroleum-based organic solvents to extract Cu(II) from aqueous solutions. The pH-extraction isotherms of Cu(II) using various vegetable oils loaded with both D2EHPA and TBP were investigated and the percentage extraction (%E) of Cu(II) achieved by different types of VOS was determined. Vegetable oils without extractants and those loaded with TBP alone showed a poor extractability for Cu(II). Vegetable oils loaded with both D2EHPA and TBP were found to be the most effective VOS for Cu(II) extraction and, thus, are potential greener substitutes for the conventional petroleum-based organic solvents.
Matched MeSH terms: Solvents/chemistry*; Green Chemistry Technology
Six prenylated flavones, including one new compound, were isolated and identified from the stem bark extracts of Artocarpus altilis. The new prenylated flavone hydroxyartocarpin (1) was characterized as 3-(gamma,gamma-dimethylallyl)-6-isopentenyl-5,8,2',4'-tetrahydroxy-7-methoxyflavone and the known compounds were artocarpin (2), morusin (3), cycloartobiloxanthone (4), cycloartocarpin A (5) and artoindonesianin V (6). The structures of the compounds were determined by spectroscopic methods (IR, MS, (1)H-NMR and (13)C-NMR) and comparison with published data for the known compounds.
Determination of physico-chemical (weight, length, diameter, stomatal density, respiration rate, colour, soluble solids concentration, titratable acidity, chlorophyll and betacyanin content) and structural changes of red-fleshed dragon fruit (Hylocereus polyrhizus (Weber) Britton & Rose) was carried out from 5 to 35 days after pollination (DAP) in order to explain their growth, development, maturations and ripening stages.
A mononuclear of [Eu(NO3)(Pic)(H2O)2(EO3)](Pic)·(0.73)H2O complex, where EO3=trietraethylene glycol and Pic=picrate anion, shows a red emission when used as an active layer in a single layer of ITO/EO3-Eu-Pic/Al configuration. The crystal structure of the complex consists of [Eu(NO3)(Pic)(H2O)2(EO3)]+ cation and [Pic]- anion. The Eu(III) ion is coordinated to the 10 oxygen atoms from one EO3 ligand, one Pic anion, one nitrate anion, and two water molecules. The complex is crystallized in triclinic with space group P-1. The hybrids in thin films I and II were prepared in the respective order solution concentrations of 15 and 20 mg/mL the emissive center. Comparing the photoluminescence (PL) and electroluminescence (EL) spectra, we can find that all emissions come from the characteristic transitions of the Eu(III) ion. The EL spectra of both thin films showed the occurrence of the most intense red-light emission around at 612 nm. Comparison of organic light-emitting device (OLED) current intensity characteristics as a function of voltage (I-V) show that the thin film I is better than those found for the thin film II. The thickness of the emitting layer is an important factor to control the current-voltage curve. The sharp and intense emission of the complex at low voltage indicates that the complex is a suitable and promising candidate for red-emitting materials.
A new alcohol oxidase (AOX) enzyme-based formaldehyde biosensor based on acrylic microspheres has been developed. Hydrophobic poly(n-butyl acrylate-N-acryloxy-succinimide) [poly(nBA-NAS)] microspheres, an enzyme immobilization matrix, was synthesized using photopolymerization in an emulsion form. AOX-poly(nBA-NAS) microspheres were deposited on a pH transducer made from a layer of photocured and self-plasticized polyacrylate membrane with an entrapped pH ionophore coated on a Ag/AgCl screen printed electrode (SPE). Oxidation of formaldehyde by the immobilized AOX resulted in the production of protons, which can be determined via the pH transducer. Effects of buffer concentrations, pH and different amount of immobilization matrix towards the biosensor's analytical performance were investigated. The formaldehyde biosensor exhibited a dynamic linear response range to formaldehyde from 0.3-316.2 mM and a sensitivity of 59.41 ± 0.66 mV/decade (R(2) = 0.9776, n = 3). The lower detection limit of the biosensor was 0.3 mM, while reproducibility and repeatability were 3.16% RSD (relative standard deviation) and 1.11% RSD, respectively (n = 3). The use of acrylic microspheres in the potentiometric formaldehyde biosensor improved the biosensor's performance in terms of response time, linear response range and long term stability when compared with thick film immobilization methods.
Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness) that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6) with Response Ant Colony Optimization (RACO). The approach is based on Response Surface Method (RSM) and Ant Colony Optimization (ACO). The main objectives to find the optimized parameters and the most dominant variables (cutting speed, feedrate, axial depth and radial depth). The first order model indicates that the feedrate is the most significant factor affecting surface roughness.
This work examines the impregnated carbon-based sorbents for simultaneous removal of SO(2) and NOx from simulated flue gas. The carbon-based sorbents were prepared using palm shell activated carbon (PSAC) impregnated with several metal oxides (Ni, V, Fe and Ce). The removal of SO(2) and NOx from the simulated flue gas was investigated in a fixed-bed reactor. The results showed that PSAC impregnated with CeO(2) (PSAC-Ce) reported the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NOx. PSAC-Ce showed the longest breakthrough time of 165 and 115 min for SO(2) and NOx, respectively. The properties of the pure and impregnated PSAC were analyzed by BET, FTIR and XRF. The physical-chemical features of the PSAC-Ce sorbent indicated a catalytic activity in both the sorption of SO(2) and NOx. The formation of both sulfate (SO(4)(2-)) and nitrate (NO(3-)) species on spent PSAC-Ce further prove the catalytic role played by CeO(2).
Response surface methodology (RSM) was carried out to study the effect of temperature, pH, and heating time as input variables on the yield and degree of esterification (DE) as the output (responses). The results showed that yield and DE of extracted pectin ranged from 2.27% to 9.35% (w/w, based on dry weight of durian rind) and 47.66% to 68.6%, respectively. The results also showed that a 2nd-order model adequately fitted the experimental data for the yield and DE. Optimum condition for maximum yield and DE was achieved at 85 degrees C, a time of either 4 or 1 h, and a pH of 2 or 2.5.
The mass attenuation coefficients (mu/rho) of Rhizophora spp. were determined for photons in the energy range of 15.77-25.27 keV. This was carried out by studying the attenuation of X-ray fluorescent photons from zirconium, molybdenum, palladium, silver, indium and tin targets. The results were compared with theoretical values for average breast tissues in young-age, middle-age and old-age groups calculated using photon cross section database (XCOM), the well-known code for calculating attenuation coefficients and interaction cross-sections. The measured mass attenuation coefficients were found to be very close to the calculated XCOM values in breasts of young-age group.
Dunaliine A (1), a new amino diketone, has been isolated from the leaves of Desmos dunalii together with four known dihydrochalcones: 2',4-dihydroxy-4',6'-dimethoxy-3',5'-dimethyldihydrochalcone (2), 2',4-dihydroxy-4',6'-dimethoxydihydrochalcone (3), 2',4-dihydroxy-4',5',6'-trimethoxydihydrochalcone (4) and 2',4-dihydroxy-5'-methyl-4',6'-dimethoxydihydrochalcone (5). The structures of these compounds were established notably by spectral analysis (1D- and 2D- (1)H, (13)C NMR), UV, IR and HRMS.
Separation of carbon dioxide (CO(2)) from gaseous mixture is an important issue for the removal of CO(2) in natural gas processing and power plants. The ordered mesoporous silicas (OMS) with uniform pore structure and high density of silanol groups, have attracted the interest of researchers for separation of carbon dioxide (CO(2)) using adsorption process. These mesoporous silicas after functionalization with amino groups have been studied for the removal of CO(2). The potential of functionalized ordered mesoporous silica membrane for separation of CO(2) is also recognized. The present paper reviews the synthesis of mesoporous silicas and important issues related to the development of mesoporous silicas. Recent studies on the CO(2) separation using ordered mesoporous silicas (OMS) as adsorbent and membrane are highlighted. The future prospectives of mesoporous silica membrane for CO(2) adsorption and separation are also presented and discussed.
Concern about environmental protection has aroused over the years from a global viewpoint. To date, the ever-increasing importance of biomass as the energy and material resources has lately been accounted by the rising prices for the crude petroleum oil. Rice husk ash, the most appropriate representative of the high ash biomass waste, is currently obtaining sufficient attraction, owning to its wide usefulness and potentiality in environmental conservation. Confirming the assertion, this paper presents a state of the art review of the rice milling industry, its background studies, fundamental properties and industrial applications. Moreover, the key advance on the preparation of novel adsorbents, its major challenges together with the future expectation has been highlighted and discussed. Conclusively, the expanding of rice husk ash in the field of adsorption science represents a viable and powerful tool, leading to the superior improvement of pollution control and environmental preservation.
Today, virgin coconut oil (VCO) is becoming valuable oil and is receiving an attractive topic for researchers because of its several biological activities. In cosmetics industry, VCO is excellent material which functions as a skin moisturizer and softener. Therefore, it is important to develop a quantitative analytical method offering a fast and reliable technique. Fourier transform infrared (FTIR) spectroscopy with sample handling technique of attenuated total reflectance (ATR) can be successfully used to analyze VCO quantitatively in cream cosmetic preparations. A multivariate analysis using calibration of partial least square (PLS) model revealed the good relationship between actual value and FTIR-predicted value of VCO with coefficient of determination (R2) of 0.998.
This paper presents the review of the effects of operating parameters on the photocatalytic degradation of textile dyes using TiO2-based photocatalysts. It further examines various methods used in the preparations of the considered photocatalysts. The findings revealed that various parameters, such as the initial pH of the solution to be degraded, oxidizing agents, temperature at which the catalysts must be calcined, dopant(s) content and catalyst loading exert their individual influence on the photocatalytic degradation of any dye in wastewaters. It was also found out that sol-gel method is widely used in the production of TiO2-based photocatalysts because of the advantage derived from its ability to synthesize nanosized crystallized powder of the photocatalysts of high purity at relatively low temperature.
In the present study, we investigated the physicochemical and functional properties of lotus seed flour exposed to low and high doses of gamma-radiation (0-30 kGy; the dose recommended for quarantine and hygienic purposes). The results indicated raw seed flour to be rich in nutrients with minimal quantities of antinutritional factors. Irradiation resulted in a dose-dependent increase in some of the proximal constituents. The raw and gamma-irradiated seeds meet the Food and Agricultural Organization-World Health Organization recommended pattern of essential amino acids. Some of the antinutritional factors (phytic acid, total phenolics, and tannins) were lowered with gamma-irradiation, while the seed flours were devoid of lectins, L-3,4-dihydroxyphenylalanine, and polonium-210. The functional properties of the seed flour were significantly improved with gamma-radiation. gamma-radiation selectively preserved or improved the desired nutritional and functional traits of lotus seeds, thus ensuring a safe production of appropriate nutraceutically valued products.
The sorption of basic dye from aqueous solutions by banana stalk waste (BSW), an abundant agricultural waste in Malaysia, was studied in a batch system with respect to pH and initial dye concentration. Sorption isotherm of methylene blue (MB) onto the BSW was determined at 30 degrees C with the initial concentrations of MB in the range of 50-500 mg/L. At pH 2.0, the sorption of dye was not favorable, while the sorption at other pHs (4.0-12.0) was remarkable. Equilibrium data were fitted to the Langmuir, Freundlich and Temkin isotherm models. The equilibrium data were best represented by the Langmuir isotherm model, with maximum monolayer adsorption capacity of 243.90 mg/g. The sorption kinetic data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion models. It was found that the pseudo-second-order kinetic model was the best applicable model to describe the sorption kinetics. The results showed that BSW sorbent was a promising for the removal of MB from aqueous solutions.
Concentrations of Cd, Cu, Pb, Zn, Ni and Fe were determined in the surface sediments to investigate the distributions, concentrations and the pollution status of heavy metals in Dumai coastal waters. Sediment samples from 23 stations, representing 5 different site groups of eastern, central and western Dumai and southern and northern Rupat Island, were collected in May 2005. The results showed that heavy metal concentrations (in microg/g dry weight; Fe in %) were 0.88 (0.46-1.89); 6.08 (1.61-13.84); 32.34 (14.63-84.90); 53.89 (31.49-87.11); 11.48 (7.26-19.97) and 3.01 (2.10-3.92) for Cd, Cu, Pb, Zn, Ni and Fe, respectively. Generally, metal concentrations in the coastal sediments near Dumai city center (eastern and central Dumai) which have more anthropogenic activities were higher than those at other stations. Average concentration of Cd in the eastern Dumai was slightly higher than effective range low (ERL) but still below effective range medium (ERM) value established by Long et al. (Environmental Management 19(1):81-97, 1995; Environmental Toxicology Chemistry 17(4):714-727, 1997). All other metals were still below ERL and ERM. Calculated enrichment factor (EF), especially for Cd and Pb, and the Pollution load index (PLI) value in the eastern Dumai were also higher than other sites. Cd showed higher EF when compared to other metals. Geo-accumulation indices (I(geo)) in most of the stations (all site groups) were categorized as class 1 (unpolluted to moderately polluted environment) and only Cd in Cargo Port was in class 2 (moderately polluted). Heavy metal concentrations found in the present study were comparable to other regions of the world and based on the calculated indices it can be classified as unpolluted to moderately polluted coastal environment.
Catalytic cracking of crude palm oil (CPO) and used palm oil (UPO) were studied in a transport riser reactor for the production of biofuels at a reaction temperature of 450 degrees C, with residence time of 20s and catalyst-to-oil ratio (CTO) of 5 gg(-1). The effect of HZSM-5 (different Si/Al ratios), beta zeolite, SBA-15 and AlSBA-15 were studied as physically mixed additives with cracking catalyst Rare earth-Y (REY). REY catalyst alone gave 75.8 wt% conversion with 34.5 wt% of gasoline fraction yield using CPO, whereas with UPO, the conversion was 70.9 wt% with gasoline fraction yield of 33.0 wt%. HZSM-5, beta zeolite, SBA-15 and AlSBA-15 as additives with REY increased the conversion and the yield of organic liquid product. The transport riser reactor can be used for the continuous production of biofuels from cracking of CPO and UPO over REY catalyst.