Displaying publications 281 - 300 of 469 in total

Abstract:
Sort:
  1. Abdullah S, Abd Hamid FF, Ismail M, Ahmed AN, Wan Mansor WN
    Data Brief, 2019 Aug;25:103969.
    PMID: 31198825 DOI: 10.1016/j.dib.2019.103969
    The aim of the measurement of this data is to evaluate the Indoor Air Quality (IAQ) in terms of chemical and physical parameters. Data were collected at three different kindergartens having different surrounding activities (industrial, institutional, residential area). The chemical parameters measured were respirable suspended particulates of PM10, PM2.5, PM1, carbon monoxide and carbon dioxide, and the concentrations are within the acceptable limit. Physical parameters of wind speed are within the standard, while temperature and relative humidity exceeded the acceptable limit. A strong correlation was found between the chemical IAQ parameters with thermal comfort parameters (temperature and relative humidity). The concentration of IAQ pollutants is higher in order of residential > institutional > industrial.
    Matched MeSH terms: Air Pollution, Indoor
  2. Chew ST, Gallagher JB
    Sci Rep, 2018 02 07;8(1):2553.
    PMID: 29416101 DOI: 10.1038/s41598-018-20644-2
    The canopies and roots of seagrass, mangrove, and saltmarsh protect a legacy of buried sedimentary organic carbon from resuspension and remineralisation. This legacy's value, in terms of mitigating anthropogenic emissions of CO2, is based on total organic carbon (TOC) inventories to a depth likely to be disturbed. However, failure to subtract allochthonous recalcitrant carbon overvalues the storage service. Simply put, burial of oxidation-resistant organics formed outside of the ecosystem provides no additional protection from remineralisation. Here, we assess whether black carbon (BC), an allochthonous and recalcitrant form of organic carbon, is contributing to a significant overestimation of blue carbon stocks. To test this supposition, BC and TOC contents were measured in different types of seagrass and mangrove sediment cores across tropical and temperate regimes, with different histories of air pollution and fire together with a reanalysis of published data from a subtropical system. The results suggest current carbon stock estimates are positively biased, particularly for low-organic-content sandy seagrass environs, by 18 ± 3% (±95% confidence interval) and 43 ± 21% (±95% CI) for the temperate and tropical regions respectively. The higher BC fractions appear to originate from atmospheric deposition and substantially enrich the relatively low TOC fraction within these environs.
    Matched MeSH terms: Air Pollution
  3. Iberahim N, Sethupathi S, Bashir MJK
    Environ Sci Pollut Res Int, 2018 Sep;25(26):25702-25714.
    PMID: 28550632 DOI: 10.1007/s11356-017-9180-5
    In this study, palm oil mill sludge was used as a precursor to prepare biochar using conventional pyrolysis. Palm oil mill sludge biochar (POSB) was prepared at different preparation variables, i.e., heating temperature (300-800 °C), heating rate (10-20 °C/min) and holding time (60-120 min). The prepared biochars were tested for sulfur dioxide (SO2) adsorption in a fixed bed reactor using 300 ppm of SO2 gas at 300 ml/min (with N2 gas as balance). Response surface central composite experimental design was used to optimize the production of biochar versus SO2 removal. A quadratic model was developed in order to correlate the effect of variable parameters on the optimum adsorption capacity of SO2 gas. The experimental values and the predicted results of the model were found to show satisfactory agreement. The optimum conditions for biochar preparation to yield the best SO2 removal was found to be at 405 °C of heating temperature, 20 °C/min of heating rate and 88 min of holding time. At these conditions, the average yield of biochar and adsorption capacity for SO2 gas was reported as 54.25 g and 9.75 mg/g, respectively. The structure of biochar and their roles in SO2 adsorption were investigated by surface area, morphology images, infrared spectra, and proximate analysis, respectively. The characterization findings suggested that POSB adsorbs SO2 mainly by the functional groups.
    Matched MeSH terms: Air Pollutants
  4. Aminah H, McP Dick J, Grace J
    Tree Physiol, 1997 Jul;17(7):445-52.
    PMID: 14759836
    Single-node leafy stem cuttings of Shorea leprosula Miq. were subjected to a high, intermediate or low irradiance treatment for 16 weeks in an enclosed mist propagation system. Before rooting, maximum photosynthesis of the cuttings occurred at an irradiance of 400 micro mol m(-2) s(-1). Although none of the irradiance treatments affected the number of roots produced per cutting, the numbers of cuttings that formed roots were 50 and 30% in the high irradiance (diurnal range of 0-658 micro mol m(-2) s(-1)) and low irradiance (diurnal range of 0-98 micro mol m(-2) s(-1)) treatments, respectively, compared with 62% in the intermediate irradiance treatment (diurnal range of 0-360 micro mol m(-2) s(-1)). Low rooting frequency of cuttings in the high irradiance treatment was associated with water deficits (maximum leaf-to-air vapor pressure deficit (VPD) = 3.6 kPa), whereas cuttings in the low irradiance treatment had a low rooting frequency because they were below the light compensation point most of the time. In the intermediate irradiance treatment, cuttings withstood a daily maximum VPD of 1-2 kPa and recovered overnight from the previous day's deficit, as indicated by higher relative water content (RWC) and stomatal conductance (g(s)) in the morning than in the previous afternoon and evening. Higher RWC and g(s) of cuttings in all treatments on Days 14 and 21 compared with Day 8 probably indicated recovery from water deficit following severance and insertion of the cuttings in rooting medium. There were negative relationships between stem volume of cuttings and both number of cuttings that rooted and number of roots per cutting.
    Matched MeSH terms: Air Pressure
  5. Abubakar MB, Abdullah WZ, Sulaiman SA, Ang BS
    Malays J Med Sci, 2015 Jan-Feb;22(1):23-31.
    PMID: 25892947 MyJurnal
    Petrol is known to be hazardous to human health and is associated with various health effects, such as haematotoxicity and oxidative stress. Although Malaysia has adopted the European fuel quality standards in recent years in order to reduce petroleum pollutants and to improve air quality, gasoline with research octane number 95 (RON95), believed to contain benzene and other toxic substances, is still widely used all over the country. This study assessed the effect of RON95 gasoline on haemtological parameters of rats after 11 weeks of exposure.
    Matched MeSH terms: Air Pollution
  6. Nasir MK, Md Noor R, Kalam MA, Masum BM
    ScientificWorldJournal, 2014;2014:836375.
    PMID: 25032239 DOI: 10.1155/2014/836375
    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NO x ). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.
    Matched MeSH terms: Air Pollution/prevention & control*
  7. Zhou X, Qu Y, Kim BH, Choo PY, Liu J, Du Y, et al.
    Bioresour Technol, 2014 Oct;169:265-70.
    PMID: 25062537 DOI: 10.1016/j.biortech.2014.07.012
    The effects of azide on electron transport of exoelectrogens were investigated using air-cathode MFCs. These MFCs enriched with azide at the concentration higher than 0.5mM generated lower current and coulomb efficiency (CE) than the control reactors, but at the concentration lower than 0.2mM MFCs generated higher current and CE. Power density curves showed overshoot at higher azide concentrations, with power and current density decreasing simultaneously. Electrochemical impedance spectroscopy (EIS) showed that azide at high concentration increased the charge transfer resistance. These analyses might reflect that a part of electrons were consumed by the anode microbial population rather than transferred to the anode. Bacterial population analyses showed azide-enriched anodes were dominated by Deltaproteobacteria compared with the controls. Based on these results it is hypothesized that azide can eliminate the growth of aerobic respiratory bacteria, and at the same time is used as an electron acceptor/sink.
    Matched MeSH terms: Air*
  8. Huang Y, Li J, Xu Y, Xu W, Cheng Z, Liu J, et al.
    Mar Pollut Bull, 2014 Mar 15;80(1-2):194-9.
    PMID: 24462236 DOI: 10.1016/j.marpolbul.2014.01.007
    Nineteen pairs of air and seawater samples collected from the equatorial Indian Ocean onboard the Shiyan I from 4/2011 to 5/2011 were analyzed for PCBs and HCB. Gaseous concentrations of ∑(ICES)PCBs (ICES: International Council for the Exploration of the Seas) and HCB were lower than previous data over the study area. Air samples collected near the coast had higher levels of PCBs relative to those collected in the open ocean, which may be influenced by proximity to source regions and air mass origins. Dissolved concentrations of ∑(ICES)PCBs and HCB were 1.4-14 pg L⁻¹ and 0.94-13 pg L⁻¹, with the highest concentrations in the sample collected from Strait of Malacca. Fugacity fractions suggest volatilization of PCBs and HCB from the seawater to air during the cruise, with fluxes of 0.45-34 ng m⁻² d⁻¹ and 0.36-18 ng m⁻² d⁻¹, respectively.
    Matched MeSH terms: Air Pollutants/analysis*
  9. Huang Y, Xu Y, Li J, Xu W, Zhang G, Cheng Z, et al.
    Environ Sci Technol, 2013;47(23):13395-403.
    PMID: 24251554 DOI: 10.1021/es403138p
    Nineteen pairs of gaseous and surface seawater samples were collected along the cruise from Malaysia to the south of Bay of Bengal passing by Sri Lanka between April 12 and May 4, 2011 on the Chinese research vessel Shiyan I to investigate the latest OCP pollution status over the equatorial Indian Ocean. Significant decrease of α-HCH and γ-HCH was found in the air and dissolved water phase owing to global restriction for decades. Substantially high levels of p,p'-DDT, o,p'-DDT, trans-chlordane (TC), and cis-chlordane (CC) were observed in the water samples collected near Sri Lanka, indicating fresh continental riverine input of these compounds. Fugacity fractions suggest equilibrium of α-HCH at most sampling sites, while net volatilization for DDT isomers, TC and CC in most cases. Enantiomer fractions (EFs) of α-HCH and o,p'-DDT in the air and water samples were determined to trace the source of these compounds in the air. Racemic or close to racemic composition was found for atmospheric α-HCH and o,p'-DDT, while significant depletion of (+) enantiomer was found in the water phase, especially for o,p'-DDT (EFs = 0.310 ± 0.178). 24% of α-HCH in the lower air over the open sea of the equatorial Indian Ocean is estimated to be volatilized from local seawater, indicating that long-range transport is the main source.
    Matched MeSH terms: Air Pollutants/analysis*
  10. Mahmudur Rahman M, Kim KH
    J Hazard Mater, 2012 May 15;215-216:233-42.
    PMID: 22424818 DOI: 10.1016/j.jhazmat.2012.02.055
    A number of offensive odorants including volatile organic compounds (VOCs), reduced sulfur compounds (RSCs), carbonyls, and ammonia were measured along with several reference pollutants (like benzene (B), CS(2), SO(2), CO, and total hydrocarbon (THC)) from combusted fumes of barbecue charcoals produced from five different countries (Korea, China, Indonesia, Malaysia, and the US). Although the emission concentrations of most odorants were generally below the reference guideline set by the malodor prevention law in Korea, the mean concentration of some aldehydes (acetaldehyde, propionaldehyde, and isovaleraldehyde) and ammonia exceeded those guidelines. As such, aldehydes were the most dominant odorant released from charcoal combustion followed by VOC and ammonia. If odorant levels of charcoal products are compared, there are great distinctions between the products of different countries. If comparison is made using the concept of the sum of odor intensity (SOI), the magnitude of SOI for the charcoal products from the five different countries varied in the order of 4.30 (Korea), 3.10 (Indonesia), 2.97 (China), 2.76 (Malaysia), and 2.76 (the US).
    Matched MeSH terms: Air Pollutants/analysis*
  11. Guangul FM, Sulaiman SA, Ramli A
    Bioresour Technol, 2012 Dec;126:224-32.
    PMID: 23073112 DOI: 10.1016/j.biortech.2012.09.018
    Oil palm frond biomass is abundantly available in Malaysia, but underutilized. In this study, gasifiers were evaluated based on the available literature data and downdraft gasifiers were found to be the best option for the study of oil palm fronds gasification. A downdraft gasifier was constructed with a novel height adjustment mechanism for changing the position of gasifying air and steam inlet. The oil palm fronds gasification results showed that preheating the gasifying air improved the volumetric percentage of H(2) from 8.47% to 10.53%, CO from 22.87% to 24.94%, CH(4) from 2.02% to 2.03%, and higher heating value from 4.66 to 5.31 MJ/Nm(3) of the syngas. In general, the results of the current study demonstrated that oil palm fronds can be used as an alternative energy source in the energy diversification plan of Malaysia through gasification, along with, the resulting syngas quality can be improved by preheating the gasifying air.
    Matched MeSH terms: Air/analysis*
  12. Chuen OC, Yusoff S
    J Air Waste Manag Assoc, 2012 Mar;62(3):299-306.
    PMID: 22482288
    This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill.
    Matched MeSH terms: Air Pollutants/chemistry
  13. Sreeramareddy CT, Shidhaye RR, Sathiakumar N
    BMC Public Health, 2011;11:403.
    PMID: 21619613 DOI: 10.1186/1471-2458-11-403
    BACKGROUND: Observational epidemiological studies and a systematic review have consistently shown an association between maternal exposure to biomass smoke and reduced birth weight. Our aim was to further test this hypothesis.
    METHODS: We analysed the data from 47,139 most recent singleton births during preceding five years of 2005-06 India Demographic Health Survey (DHS). Information about birth weight from child health card and/or mothers' recall) was analysed. Since birth weight was not recorded for nearly 60% of the reported births, maternal self-report of child's size at birth was used as a proxy. Fuel type was classified as high pollution fuels (wood, straw, animal dung, and crop residues kerosene, coal and charcoal), and low pollution fuels (electricity, liquid petroleum gas (LPG), natural gas and biogas). Univariate and multivariable logistic regression models were developed using SURVEYLOGISTIC procedure in SAS system. We used three logistic regression models in which child factors, maternal factors and demographic factors were added step-by-step to the main exposure variable. Adjusted Odds Ratios (AORs) and their 95% CI were calculated. A p-value less than 0.05 was considered as significant.
    RESULTS: Child's birth weight was available for only 19,270 (41%) births; 3113 from health card and 16,157 from mothers' recall. For available data, mean birth weight was 2846.5 grams (SD = 684.6). Children born in households using high pollution fuels were 73 grams lighter than those born in households using low pollution fuels (mean birth weight 2883.8 grams versus 2810.7 grams, p < 0.001). Use of biomass fuels was associated with size at birth. Unadjusted OR was 1.41 (95% CI, 1.27 1.55). Adjusted OR after controlling for child factors was 1.41 (95% CI 1.29, 1.57). AOR after controlling for both child and maternal factors was 1.21 (95% CI 1.06, 1.32). In final model AOR was 1.07 (95% 0.94, 1.22) after controlling for child, maternal and demographic factors. Gender, birth order, mother's BMI, haemoglobin level and education were significant in all three models.
    CONCLUSIONS: Use of biomass fuels is associated with child size at birth. Future studies should investigate this association using more direct methods for measurement of exposure to smoke emitted from biomass fuels and birth weight.
    Matched MeSH terms: Air Pollution/adverse effects*
  14. Hansen SB, Olsen SI, Ujang Z
    Bioresour Technol, 2012 Jan;104:358-66.
    PMID: 22137753 DOI: 10.1016/j.biortech.2011.10.069
    This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, energy extraction from shells was found to constitute the biggest GHG savings per ton of residue, whereas energy extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production of palm oil derived biodiesel can be almost carbon neutral.
    Matched MeSH terms: Air Pollution/prevention & control*
  15. Jie Y, Ismail NH, Jie X, Isa ZM
    J Formos Med Assoc, 2011 Sep;110(9):555-63.
    PMID: 21930065 DOI: 10.1016/j.jfma.2011.07.003
    This review summarizes the results of epidemiological studies focusing on the detrimental effects of home environmental factors on asthma morbidity in adults. We reviewed the literature on indoor air quality (IAQ), physical and sociodemographic factors, and asthma morbidity in homes, and identified commonly reported asthma, allergic, and respiratory symptoms involving the home environment. Reported IAQ and asthma morbidity data strongly indicated positive associations between indoor air pollution and adverse health effects in most studies. Indoor factors most consistently associated with asthma and asthma-related symptoms in adults included fuel combustion, mold growth, and environmental tobacco smoke. Environmental exposure may increase an adult's risk of developing asthma and also may increase the risk of asthma exacerbations. Evaluation of present IAQ levels, exposure characteristics, and the role of exposure to these factors in relation to asthma morbidity is important for improving our understanding, identifying the burden, and for developing and implementing interventions aimed at reducing asthma morbidity.
    Matched MeSH terms: Air Pollution, Indoor/adverse effects*
  16. Latif MT, Wanfi L, Hanif NM, Roslan RN, Ali MM, Mushrifah I
    Environ Monit Assess, 2012 Mar;184(3):1325-34.
    PMID: 21472384 DOI: 10.1007/s10661-011-2043-5
    This study aims to determine the composition of surfactants in the lake surface microlayer, rainwater, and atmospheric aerosols in the area surrounding Lake Chini, Pahang. Surfactants in the lake surface microlayer were taken from seven different stations around the lake, while samples of rainwater were taken from five different sampling stations. The samples of atmospheric aerosols were collected from the Lake Chini Research Centre which is in close proximity to the lake. The colorimetric analysis method was used to determine the composition and concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The concentration of anionic surfactants, as MBAS, in the surface microlayer ranged between 0.08 to 0.23 μmol L(-1), while the range of concentration of cationic surfactants as DBAS ranged from 0.09 to 0.11 μmol L(-1). The concentration of MBAS was higher in rainwater when compared to surfactants in the lake surface microlayer. The high concentration of surfactants in the fine mode of atmospheric aerosols suggests that natural and anthropogenic sources of surfactants contribute to the atmospheric surfactants.
    Matched MeSH terms: Air Pollutants/analysis
  17. Show KY, Ng CA, Faiza AR, Wong LP, Wong LY
    Water Sci Technol, 2011;64(12):2439-44.
    PMID: 22170839 DOI: 10.2166/wst.2011.824
    Conventional aerobic and low-rate anaerobic processes such as pond and open-tank systems have been widely used in wastewater treatment. In order to improve treatment efficacy and to avoid greenhouse gas emissions, conventional treatment can be upgraded to a high performance anaerobic granular-sludge system. The anaerobic granular-sludge systems are designed to capture the biogas produced, rendering a potential for claims of carbon credits under the Kyoto Protocol for reducing emissions of greenhouse gases. Certified Emission Reductions (CERs) would be issued, which can be exchanged between businesses or bought and sold in international markets at the prevailing market prices. As the advanced anaerobic granular systems are capable of handling high organic loadings concomitant with high strength wastewater and short hydraulic retention time, they render more carbon credits than other conventional anaerobic systems. In addition to efficient waste degradation, the carbon credits can be used to generate revenue and to finance the project. This paper presents a scenario on emission avoidance based on a methane recovery and utilization project. An example analysis on emission reduction and an overview of the global emission market are also outlined.
    Matched MeSH terms: Air Pollutants/chemistry
  18. Hamdan R, Mara DD
    Water Sci Technol, 2011;63(5):841-4.
    PMID: 21411931 DOI: 10.2166/wst.2011.102
    Rock filters are an established technology for polishing waste stabilization pond effluents. However, they rapidly become anoxic and consequently do not remove ammonium-nitrogen. Horizontal-flow aerated rock filters (HFARF), developed to permit nitrification and hence ammonium-N removal, were compared with a novel vertical-flow aerated rock filter (VFARF). There were no differences in the removals of BOD5, TSS and TKN, but the VFARF consistently produced effluents with lower ammonium-N concentrations (<0.3 mg N/L) than the HFARF (0.8-1.5 mg N/L) and higher nitrate-N concentrations (24-29 mg N/L vs. 17-24 mg N/L).
    Matched MeSH terms: Air*
  19. Lau LC, Lee KT, Mohamed AR
    J Hazard Mater, 2010 Nov 15;183(1-3):738-45.
    PMID: 20724075 DOI: 10.1016/j.jhazmat.2010.07.088
    In order to reduce the negative impact of coal utilization for energy generation, the pollutants present in the flue gas of coal combustion such as sulfur dioxide (SO(2)) and nitrogen oxide (NO) must be effectively removed before releasing to the atmosphere. Thus in this study, sorbent prepared from rice husk ash that is impregnated with copper is tested for simultaneous removal of SO(2) and NO from simulated flue gas. The effect of various sorbent preparation parameters; copper loading, RHA/CaO ratio, hydration period and NaOH concentration on the sorbent desulfurization/denitrification capacity was studied using Design-Expert Version 6.0.6 software. Specifically, Central Composite Design (CCD) coupled with Response Surface Method (RSM) was used. Significant individual parameters that affect the sorbent capacity are copper loading and NaOH concentration. Apart from that, interaction between the following parameters was also found to have significant effect; copper loading, RHA/CaO ratio and NaOH concentration. The optimum sorbent preparation condition for this study was found to be 3.06% CuO loading, RHA/CaO ratio of 1.41, 8.05 h of hydration period and NaOH concentration of 0.80 M. Sorbent characterization using SEM, XRD and surface area analysis were used to describe the effect of sorbent preparation parameters on the desulfurization/denitrification activity.
    Matched MeSH terms: Air Pollutants/isolation & purification*
  20. Noorddin Y, Raha AR, Jaafar MZ, Rozaidi SH, Muraly S, Marlizan MY
    Med J Malaysia, 2007 Jun;62(2):127-9.
    PMID: 18705444 MyJurnal
    The use of laryngeal mask airway (LMA) as an alternative to the endotracheal tube (ETT) is becoming more popular in the practice of anesthesia. It is undeniable that this device has numerous advantages over endotracheal tube, however it does not provide an airtight seal between the airway and atmospheric gases. This may lead to pollution of the operating room environment with nitrous oxide. One hundreds adult patients undergoing general anaesthesia were divided into two groups. The airway in Group I was maintained with LMA with spontaneous ventilation and ETT with intermittent positive pressure ventilation (IPPV) was used for Group II. The result demonstrated that the ETT group recorded concentrations of nitrous oxide that were well above the NIOSH recommended eight hour time weighted average of 25ppm throughout the duration of surgery when compared to patients using LMA.
    Matched MeSH terms: Air Pollutants, Occupational/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links