Displaying publications 281 - 300 of 403 in total

Abstract:
Sort:
  1. Mohamad Hanafi Mohamad Rosli, Nurulhuda Amri, Norhusna Mohamad Nor
    ESTEEM Academic Journal, 2019;15(2):35-43.
    MyJurnal
    High concentration of fluoride in wastewater discharge from various industries is threatening the environment due to its hazardous effects and properties. This research work aims to develop an efficient adsorbent for fluoride removal in wastewater. Graphite oxide (GO) was impregnated
    with ZnO nanoparticles as an adsorbent, and the effect of synthesis parameters of GO-ZnO adsorbent for fluoride removal were studied (sonication temperature, synthesis time, and ratio of GO to ZnO). The surface functional groups of these synthesized adsorbents were analyzed by
    using FTIR. The synthesis parameters that contribute to the highest adsorption capacity and percentage removal are 5:1 ratio of GO-ZnO, 45 ºC of sonication temperature and 60 minutes of synthesis time, respectively. The highest value of adsorption capacity obtained from the fluoride
    removal is 55.5 mg/g. The functional groups contained in the GO-ZnO adsorbent are hydroxyl group (O-H), C=O group, aromatics group, carboxyl group (C-O), epoxy group and alkoxy group. These functional groups showed significant impact towards fluoride adsorption due to the bonding of fluoride ion to the functional groups.
    Matched MeSH terms: Oxides
  2. Khalid A, Ahmad P, Alharthi AI, Muhammad S, Khandaker MU, Rehman M, et al.
    Nanomaterials (Basel), 2021 Feb 10;11(2).
    PMID: 33578945 DOI: 10.3390/nano11020451
    Copper oxide and Zinc (Zn)-doped Copper oxide nanostructures (CuO-NSs) are successfully synthesized by using a hydrothermal technique. The as-obtained pure and Zn-doped CuO-NSs were tested to study the effect of doping in CuO on structural, optical, and antibacterial properties. The band gap of the nanostructures is calculated by using the Tauc plot. Our results have shown that the band gap of CuO reduces with the addition of Zinc. Optimization of processing conditions and concentration of precursors leads to the formation of pine needles and sea urchin-like nanostructures. The antibacterial properties of obtained Zn-doped CuO-NSs are observed against Gram-negative (Pseudomonasaeruginosa,Klebsiellapneumonia,Escherichiacoli) and Gram-positive (Staphylococcusaureus) bacteria via the agar well diffusion method. Zn doped s are found to have more effective bacterial resistance than pure CuO. The improved antibacterial activity is attributed to the reactive oxygen species (ROS) generation.
    Matched MeSH terms: Oxides
  3. Anwer AH, Khan N, Umar MF, Rafatullah M, Khan MZ
    Membranes (Basel), 2021 Mar 22;11(3).
    PMID: 33810075 DOI: 10.3390/membranes11030223
    Microbial electrosynthesis is a new approach to converting C1 carbon (CO2) to more complex carbon-based products. In the present study, CO2, a potential greenhouse gas, was used as a sole carbon source and reduced to value-added chemicals (acetate, ethanol) with the help of bioelectrochemical reduction in microbial electrosynthesis systems (MES). The performance of MES was studied with varying electrode materials (carbon felt, stainless steel, and cobalt electrodeposited carbon felt). The MES performance was assessed in terms of acetic acid and ethanol production with the help of gas chromatography (GC). The electrochemical characterization of the system was analyzed with chronoamperometry and cyclic voltammetry. The study revealed that the MES operated with hybrid cobalt electrodeposited carbon felt electrode yielded the highest acetic acid (4.4 g/L) concentration followed by carbon felt/stainless steel (3.7 g/L), plain carbon felt (2.2 g/L), and stainless steel (1.87 g/L). The alcohol concentration was also observed to be highest for the hybrid electrode (carbon felt/stainless steel/cobalt oxide is 0.352 g/L) as compared to the bare electrodes (carbon felt is 0.22 g/L) tested, which was found to be in correspondence with the pH changes in the system. Electrochemical analysis revealed improved electrotrophy in the hybrid electrode, as confirmed by the increased redox current for the hybrid electrode as compared to plain electrodes. Cyclic voltammetry analysis also confirmed the role of the biocatalyst developed on the electrode in CO2 sequestration.
    Matched MeSH terms: Oxides
  4. AbdulKadir WAFW, Ahmad AL, Boon Seng O
    Membranes (Basel), 2021 Mar 23;11(3).
    PMID: 33807017 DOI: 10.3390/membranes11030228
    The hydrophobic membranes have been widely explored to meet the membrane characteristics for the membrane distillation (MD) process. Inorganic metal oxide nanoparticles have been used to improve the membrane hydrophobicity, but limited studies have used nano clay particles. This study introduces halloysite nanotube (HNT) as an alternative material to synthesis a hydrophobic poly(vinylidene fluoride) (PVDF)-HNT membrane. The PVDF membranes were fabricated using functionalized HNTs (e.g., carnauba wax and 1H,1H,2H,2H-perfluorooctyl-trichlorosilane (FOTS)). The results were determined by Fourier transform infrared-attenuated total reflection, scanning electron microscope, goniometer and porometer to determine the desired hydrophobic membrane for direct contact membrane distillation (DCMD). The addition of FOTS-HNT (fs-HNT) and carnauba wax-HNT (fw-HNT) in the PVDF membrane enhanced the water contact angle (CA) to 127° and 137°, respectively. The presence of fw-HNT in the PVDF membrane exhibited higher liquid entry pressure (LEP) (2.64 bar) compared to fs-HNT in the membrane matrix (1.44 bar). The PVDF/fw-HNT membrane (Pfw-HNT) obtained the highest flux of 7.24 L/m2h with 99.9% salt removal. A stable permeability in the Pfw-HNT membrane was obtained throughout 16 h of DCMD. The incorporation of fw-HNT in the PVDF membrane had improved the anti-wetting properties and the membrane performance with the anti-fouling effect.
    Matched MeSH terms: Oxides
  5. Al-Haddad AY, Kacharaju KR, Haw LY, Yee TC, Rajantheran K, Mun CS, et al.
    J Contemp Dent Pract, 2020 Nov 01;21(11):1218-1221.
    PMID: 33850066
    AIM: This study aimed to evaluate the effect of the prior application of intracanal medicaments on the bond strength of OrthoMTA (mineral trioxide aggregate) and iRoot SP to the root dentin.

    MATERIALS AND METHODS: Thirty single-rooted mandibular premolars were standardized and prepared using ProTaper rotary files. The specimens were divided into a control group and two experimental groups receiving Diapex and Odontopaste medicament, either filled with iRoot SP or OrthoMTA, for 1 week. Each root was sectioned transversally, and the push-out bond strength and failure modes were evaluated. The data were analyzed using Kruskal Wallis and Mann-Whitney U post hoc test.

    RESULTS: There was no significant difference between the bond strength of iRoot SP and OrthoMTA without medicaments and with the prior placement of Diapex (p value > 0.05). However, iRoot SP showed significantly higher bond strength with the prior placement of Odontopaste (p value < 0.05). Also, there was no association between bond strength of OrthoMTA with or without intracanal medicament (p value > 0.05) and between failure mode and root filling materials (p value > 0.05). The prominent failure mode for all groups was cohesive.

    CONCLUSION: Prior application of Diapex has no effect on the bond strength of iRoot SP and OrthoMTA. However, Odontopaste improved the bond strength of iRoot SP.

    CLINICAL SIGNIFICANCE: Dislodgment resistance of root canal filling from root dentin could be an indicator of the durability and prognosis of endodontic treated teeth.

    Matched MeSH terms: Oxides
  6. Zarina Thasneem Zainudeen, Ilie Fadzilah Hashim, Intan Juliana Abd Hamid
    MyJurnal
    Chronic granulomatous disease (CGD) is defined as an inherited phagocyte disorder causing defective superoxide generation and intracellular killing. Reduced or missing burst activity of nicotinamide dinucleotide phosphate (NADPH) oxide complex is observed in this inborn defect that usually manifests itself during the first two years of life. It can be inherited either by X-linked inheritance or autosomal recessive inheritance. Most patients with CGD develop failure to thrive, severe bacterial adenitis, abscesses, osteomyelitis or hyperinflammaory manifestations. (Copied from article).
    Matched MeSH terms: Oxides; Superoxides
  7. Wan Mansor WN, Abdullah S, Jarkoni MNK, Vaughn JS, Olsen DB
    Data Brief, 2020 Dec;33:106580.
    PMID: 33304969 DOI: 10.1016/j.dib.2020.106580
    A diesel engine has been a desirable machine due to its better fuel efficiency, reliability, and higher power output. It is widely used in transportations, locomotives, power generation, and industrial applications. The combustion of diesel fuel emits harmful emissions such as unburned hydrocarbons (HC), particulate matter (PM), nitrogen oxides (NOx), and carbon monoxides (CO). This article presents data on the efficiency, combustion, and emission of a 4-stroke diesel engine. The engine is a 6.8 L turbocharged 6-cylinder Tier II diesel engine fitted with a common rail injection system. The test was carried out at the Powerhouse Energy Campus, Colorado State University Engines and Energy Conversion facility. The ISO Standard 8178:4 Cycle D2 cycle was adopted for this study consists of five test runs at 1800 rpm. During the testing, CO, carbon dioxide (CO2), oxygen (O2), NOx, PM, unburned HC as a total HC (THC), methane (CH4), formaldehyde (CH2O), and volatile organic compound (VOC) emissions were measured. At the same time, the data acquisition system recorded the combustion data. The engine's performance is characterized by the brake specific fuel combustion (BSFC) and thermal efficiency. A dataset of correlations among the parameters was also presented in this article.
    Matched MeSH terms: Nitrogen Oxides
  8. Iqbal J, Ansari MO, Numan A, Wageh S, Al-Ghamdi A, Alam MG, et al.
    Polymers (Basel), 2020 Dec 05;12(12).
    PMID: 33291451 DOI: 10.3390/polym12122918
    In this study, ternary composites of polyaniline (PANI) with manganese dioxide (MnO2) nanorods and carbon nanotubes (CNTs) were prepared by employing a hydrothermal methodology and in-situ oxidative polymerization of aniline. The morphological analysis by scanning electron microscopy showed that the MnO2 possessed nanorod like structures in its pristine form, while in the ternary PANI@CNT/MnO2 composite, coating of PANI over CNT/MnO2, rods/tubes were evidently seen. The structural analysis by X-ray diffraction and X-ray photoelectron spectroscopy showed peaks corresponding to MnO2, PANI and CNT, which suggested efficacy of the synthesis methodology. The electrochemical performance in contrast to individual components revealed the enhanced performance of PANI@CNT/MnO2 composite due to the synergistic/additional effect of PANI, CNT and MnO2 compared to pure MnO2, PANI and PANI@CNT. The PANI@CNT/MnO2 ternary composite exhibited an excellent specific capacity of 143.26 C g-1 at a scan rate of 3 mV s-1. The cyclic stability of the supercapattery (PANI@CNT/MnO2/activated carbon)-consisting of a battery type electrode-demonstrated a gradual increase in specific capacity with continuous charge-discharge over ~1000 cycles and showed a cyclic stability of 119% compared to its initial value after 3500 cycles.
    Matched MeSH terms: Oxides
  9. MOHAMAD HANIF AKMAL HUSSIN, WAN RAFIZAH WAN ABDULLAH, MOHAMAD AWANG
    MyJurnal
    Semiconductor oxides such as titanium dioxide (TiO2) and zinc oxide (ZnO) are used as the photocatalyst for removing contaminants. In addition, TiO2 and ZnO nanoparticles in the suspension form makes it difficult to be recovered and recycled. This study was conducted to investigate the efficiency of immobilizing TiO2 and ZnO nanoparticles in epoxy beads. The immobilization process using different ratios of photocatalysts TiO2/ZnO (1:0, 3:1, 1:1, 1:3 and 0:1) fixed on epoxy material. These epoxy beads were used for dye removal in photocatalysis using methylene blue (MB) solution at a concentration of 10mg/L. Besides, epoxy beads also characterized using scanning electron microscope (SEM), attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and thermogravimetric analysis (TGA). The results showed that the highly recommended epoxy bead is 3:1 ratio of TiO2/ZnO because it has good performance in dye degradation that proved from reducing concentration of MB to 2.4mg/L (76%). However, TiO2/ZnO characterization of 3:1 by SEM show on the surface the particle are found to be spherical in shape which is relatively high efficiency for the degradation, ATR-FTIR pattern in broad band 4000 cm-1 - 400cm-1 which correspond to hydroxyl stretching to be adsorbed at peak (474.49 cm-1 - 3722.61cm-1) respectively to the optimum for the degradation and TGA rate of change are 5mg to 2.5mg that residue (49.78%) due to decomposition or oxidation from mass loss. These findings are very effective and economical technique to be cost saving and highly efficient photocatalyst.
    Matched MeSH terms: Oxides
  10. Salmiah Jamal Mat Rosid, Susilawati Toemen, Wan Azelee Wan Abu Bakar, Sarina Mat Rosid, Wan Nazwanie Wan Abdullah, Siti Maisarah Aziz
    MyJurnal
    Lanthanide element in the methanation reaction gives an excellent catalytic performance at low reaction temperature. Praseodymium is one of lanthanide element and was chosen due to its properties which are thermally stable and provide excess of oxygen in the oxide lattice. Therefore, a catalyst of Ru/Mn/Pr (5:30:65)/Al2O3 (RMP, 5:30:65/Al2O3) was prepared via wetness impregnation method and the effect of calcination temperature on the catalyst performance was investigated using FTIR analysis. The RMP/Al2O3 catalyst calcined at 800 o C was chosen as an excel catalyst with CO2 conversion of 96.9% and CH4 formation of 45.1% at 350 o C reaction temperature. From the EDX mapping, it can be observed that the distribution of all element is homogeneous at 800 o C and 900 o C except Ru, O and Al at 1000 o C calcination temperature. The image from FESEM also shows the presence of some crystal shape on the catalyst surface. From the FTIR analysis, the peak stretching and bending mode of O-H bond decreased when the calcination temperature increased.
    Matched MeSH terms: Oxides
  11. NUR FAZLEEN SYUHADA ROSTAM, NOR AMIRA IZATI NOR AZMAN, NURUL FAZIHA IBRAHIM, SUHAIZAN LOB
    MyJurnal
    Tomatoes have a short shelf life thus they pose a big challenge for growers to maintain the quality of tomatoes to increase customer acceptance. In this study, fungi associated with tomato disease symptoms were isolated and the potential of kaffir lime aqueous extract was evaluated in maintaining post-harvest quality of tomatoes. For this purpose, healthy tomatoes were dipped in 10% aqueous kaffir lime extract before evaluating the post-harvest parameters namely weight loss and firmness. A fungus namely Rhizophus stolonifer was isolated from the symptomatic tomatoes. Subsequently, it was confirmed to be pathogenic on healthy tomato fruits with 100% disease severity. Application of aqueous kaffir lime extract showed that tomato fruits dipped in 10% aqueous kaffir lime extract recorded higher weight loss and higher firmness as compared to untreated tomato fruits. The results showed that treatment with this concentration of plant extract did not help to reduce the weight loss, but it retained the firmness of the tomato fruits stored at room temperature at 27+2oC. Higher transpiration process would lead to shrinkage, weight loss, changes in texture and appearance of the fruits. Therefore, this study suggested an increased concentration of aqueous kaffir lime extract as a treatment agent in order to have a better effect in maintaining the quality of tomato fruits.
    Matched MeSH terms: Oxides
  12. Ikhsan NI, Rameshkumar P, Yusoff N, Huang NM
    J Nanosci Nanotechnol, 2019 Nov 01;19(11):7054-7063.
    PMID: 31039858 DOI: 10.1166/jnn.2019.16630
    Silver-reduced graphene oxide (Ag-rGO) nanohybrid was synthesized by applying a slight modification to the Turkevich method using trisodium citrate as a reducing and stabilizing agent to catalyze the non-enzymatic electrochemical detection of hydrogen peroxide (H₂O₂). Spherical silver nanoparticles (AgNPs) with an average particle size of 2.2 nm surfaced on reduced graphene oxide (rGO) sheets. Cyclic voltammograms (CV) obtained from glassy carbon (GC) electrode coated with Ag-rGO nanohybrid (4 mM) exhibited a peak at an overpotential of -0.52 V, with a larger faradaic current for the reduction of H₂O₂. Using the modified electrode for the linear sweep voltammetry (LSV) detection of H₂O₂, the detection limit and sensitivity were determined to be 4.8 μM (S/N ═ 3) and 0.0262 μA μM-1, respectively. The sensor appeared selective and stable towards H₂O₂ in the presence of possible interference, and it also demonstrated good recoveries of H₂O₂ concentration in real water samples.
    Matched MeSH terms: Oxides
  13. Minhat FI, Yahya K, Talib A, Ahmad O
    Trop Life Sci Res, 2013 Aug;24(1):35-43.
    PMID: 24575240 MyJurnal
    The distribution of benthic Foraminifera throughout the coastal waters of Taman Negara Pulau Pinang (Penang National Park), Malaysia was studied to assess the impact of various anthropogenic activities, such as fishing, ecotourism and floating cage culture. Samples were obtained at 200 m intervals within the subtidal zone, extending up to 1200 m offshore at Teluk Bahang, Teluk Aling, Teluk Ketapang and Pantai Acheh. The depth within coastal waters ranged between 1.5 m and 10.0 m, with predominantly muddy substrate at most stations. Water quality analysis showed little variation in micronutrient (nitrite, NO2; nitrate, NO3; ammonia, NH4 and orthophosphate, PO4) concentrations between sampling stations. Temperature (29.6±0.48°C), salinity (29.4±0.28 ppt), dissolved oxygen content (5.4±0.95 mg/l) and pH (8.5± 0.13) also showed little fluctuation between stations. A total of nine genera of foraminifera were identified in the study (i.e., Ammonia, Elphidium, Ammobaculites, Bigenerina, Quinqueloculina, Reopax, Globigerina, Textularia and Nonion). The distribution of benthic foraminifera was dominated by opportunistic groups that have a high tolerance to anthropogenic stressors. Ammonia had the highest frequency of occurrence (84.7%), followed by Bigenerina (50%), Ammobaculites (44.2%) and Elphidium (38.9%). The Ammonia-Elphidium Index (AEI) was used to describe the hypoxic condition of benthic communities at all sites. Teluk Bahang had the highest AEI value. The foraminiferal assemblages and distribution in Teluk Bahang, Teluk Aling, Teluk Ketapang and Pantai Acheh showed no correlation with physical or chemical environmental parameters.
    Matched MeSH terms: Nitrogen Oxides
  14. Fatema K, Wan Maznah WO, Isa MM
    Trop Life Sci Res, 2014 Dec;25(2):1-19.
    PMID: 27073596 MyJurnal
    In this study, factor analysis (FA) was applied to extract the hidden factors responsible for water quality variations during both wet and dry seasons. Water samples were collected from six sampling stations (St. 1 Lalang River, St. 2 Semeling River, St. 3 Jagung River, St. 4 Teluk Wang River, St. 5 Gelam River and St. 6 Derhaka River) in the Merbok estuary, Malaysia from January to December 2011; the samples were further analysed in the laboratory. Correlation analysis of the data sets showed strong correlations between the parameters. Nutrients such as nitrate (NO3 (-)), nitrite (NO2 (-)), ammonia (NH3) and phosphate (PO4 (3-)) were determined to be critical indicators of water quality throughout the year. Influential water quality parameters during the wet season were conductivity, salinity, biochemical oxygen demand (BOD), dissolved oxygen (DO) and chlorophyll a (Chla), whereas total suspended solid (TSS) and pH were critical water quality indicators during the dry season. The Kruskal-Wallis H test showed that water quality parameters were significantly different among the sampling months and stations (p<0.05), and Mann-Whitney U tests further revealed that the significantly different parameters were temperature, pH, DO, TSS, NO2 (-) and BOD (p<0.01), whereas salinity, conductivity, NO3 (-), PO4 (3-), NH3 and Chla were not significantly different (p>0.05). Water quality parameters in the estuary varied on both temporal and spatial scales and these results may serve as baseline information for estuary management, specifically for the Merbok estuary.
    Matched MeSH terms: Nitrogen Oxides
  15. Asma Liyana Shaari, Misni Surif, Faazaz Abd. Latiff, Wan Maznah Wan Omar, Mohd Noor Ahmad
    Trop Life Sci Res, 2011;22(1):-.
    MyJurnal
    Many reports have revealed that the abundance of microalgae in shrimp ponds vary with changes in environmental factors such as light, temperature, pH, salinity and nutrient level throughout a shrimp culture period. In this study, shrimp cultivation period was divided into three stages (initial = week 0–5, mid = week 6–10 and final = week 11–15). Physical and chemical parameters throughout the cultivation period were studied and species composition of microalgae was monitored. Physical parameters were found to
    fluctuate widely with light intensity ranging between 182.23–1278 µmol photon m–2s–1, temperature between 29.56ºC –31.59ºC, dissolved oxygen (DO) between 4.56–8.21 mg/l, pH between 7.65–8.49 and salinity between 20‰–30‰. Ammonium (NH4+-N), nitrite (NO2– -N), nitrate (NO3– -N), and orthophosphate (PO43– -P) concentrations in the pond at all cultivation stages ranged from 0.017 to 0.38 mg/l, 0.24 to 2.12 mg/l, 0.06 to 0.98 mg/l and 0.16 to 1.93 mg/l respectively. Statistical test (ANOVA) showed that there were no significant difference (p
    Matched MeSH terms: Nitrogen Oxides
  16. Islam R, Toida Y, Chen F, Tanaka T, Inoue S, Kitamura T, et al.
    Int Endod J, 2021 Oct;54(10):1902-1914.
    PMID: 34096634 DOI: 10.1111/iej.13587
    AIM: To evaluate the dental pulp response to a novel mineral trioxide aggregate containing phosphorylated pullulan (MTAPPL) in rats after direct pulp capping.

    METHODS: Ninety-six cavities were prepared in the maxillary first molars of 56 male Wistar rats. The dental pulps were intentionally exposed and randomly divided into four groups according to the application of pulp capping materials: MTAPPL; phosphorylated pullulan (PPL); a conventional MTA (Nex-Cem MTA, NCMTA; positive control); and Super-Bond (SB; negative control). All cavities were restored with SB and observed for pulpal responses at 1-, 3-, 7- and 28-day intervals using a histological scoring system. Statistical analysis was performed using Kruskal-Wallis and Mann-Whitney U-test with Bonferroni's correction, and the level of significance was set at 0.05. DMP1 and CD34 antigen were used to evaluate odontoblast differentiation and pulpal vascularization, respectively.

    RESULTS: On day 1, mild inflammatory cells were present in MTAPPL and NCMTA groups; fewer inflammatory cells were present in the PPL, whereas SB was associated with a mild-to-moderate inflammatory response. A significant difference was observed between PPL and SB (p  .05). SB exhibited incomplete mineralized tissue barriers, significantly different from NCMTA, MTAPPL and PPL (p 

    Matched MeSH terms: Oxides
  17. Yusof MYPM, Rahman NLA, Asri AAA, Othman NI, Wan Mokhtar I
    Imaging Sci Dent, 2017 Dec;47(4):233-239.
    PMID: 29279822 DOI: 10.5624/isd.2017.47.4.233
    Purpose: This study was performed to quantify the repeat rate of imaging acquisitions based on different clinical examinations, and to assess the prevalence of error types in intraoral bitewing and periapical imaging using a digital complementary metal-oxide-semiconductor (CMOS) intraoral sensor.

    Materials and Methods: A total of 8,030 intraoral images were retrospectively collected from 3 groups of undergraduate clinical dental students. The type of examination, stage of the procedure, and reasons for repetition were analysed and recorded. The repeat rate was calculated as the total number of repeated images divided by the total number of examinations. The weighted Cohen's kappa for inter- and intra-observer agreement was used after calibration and prior to image analysis.

    Results: The overall repeat rate on intraoral periapical images was 34.4%. A total of 1,978 repeated periapical images were from endodontic assessment, which included working length estimation (WLE), trial gutta-percha (tGP), obturation, and removal of gutta-percha (rGP). In the endodontic imaging, the highest repeat rate was from WLE (51.9%) followed by tGP (48.5%), obturation (42.2%), and rGP (35.6%). In bitewing images, the repeat rate was 15.1% and poor angulation was identified as the most common cause of error. A substantial level of intra- and interobserver agreement was achieved.

    Conclusion: The repeat rates in this study were relatively high, especially for certain clinical procedures, warranting training in optimization techniques and radiation protection. Repeat analysis should be performed from time to time to enhance quality assurance and hence deliver high-quality health services to patients.

    Matched MeSH terms: Oxides
  18. Farah Anis Jasni, Kuan, Yew Cheong, Lockman, Zainovia, Zainuriah Hassan
    MyJurnal
    Thin films of cerium oxide (CeO2) were prepared on silicon (Si) substrate by metal organic decomposition route. 0.25 M of cerium (III) acetylacetonate (acac) was used as starting materials with the addition of methanol and acetic acid as solvents. Oxide conversion of the film by thermal treatment was conducted at temperature ranging from 400 o C to 1000 o C for 15 min in argon ambient. X-ray diffraction (XRD) analysis utilizing Cukα radiation (Model Brukker’s Diffrac Plus ), Filmetrics system measurement, field emission scanning electron microscope (FE-SEM) (Model Zeiss Supra 35VP FE-SEM) and atomic force microscopy (AFM) (Model SII Nanonavi) were employed to characterize the phase formed and morphologies of the film produced.
    Matched MeSH terms: Oxides
  19. Mohd Al Amin Muhamad Nor, Maryam Mohd Ridzuan, Zainal Arifin Ahmad
    MyJurnal
    Ceramic materials play key role in several biomedical applications. One of them is bone graft which is use in treating bone defect which caused by injury or osteoporosis. Calcium phosphates based ceramic are preferred as bone grafts in hard tissue engineering because of their chemical compositions are similar to the composition of human bone, superior bioresorbable and bioactivity. In this study, β-tricalcium phosphate (β-TCP) ceramic was synthesized by using sol-gel method. Phosphorous pentoxide (P2O5) and calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) were used as calcium and phosphate precursors. The effects of calcination temperature on the synthesis powder were studied using the XRD, SEM-EDS and FTIR techniques. It was found that calcination temperature greatly influence the purity of the synthesized powders. The β-TCP was the dominant phase with the formation of α-TCP at calcination temperature from 600 to 800°C. Pure β-TCP was obtained at calcination of 900°C. As the temperature increased to 1000°C, the β-TCP was decomposed to for calcium phosphate oxide (CPO). The sol-gel method has some advantages over other methods, mainly its simplicity and ability to produce pure β-TCP at lower calcination temperature.
    Matched MeSH terms: Oxides
  20. Velu, S., Abu Bakar, F., Saari, N., Zaman, M.Z., Mahyudin, N.A.
    MyJurnal
    The demand for novel antimicrobial agents from natural resources has been increased worldwide for food conservation purpose. In this study antimicrobial activity of musk lime, key lime and lemon were evaluated against various food borne pathogens and spoilage bacteria using disc diffusion test. Type of extraction solvent and concentration level significantly influenced the antibacterial activity of all the extracts. Ethanol extracts of musk lime, key lime and lemon exhibited significant broadest inhibitory activity at 100% concentration level (pure extract) compared to water and juice extracts. 100% ethanol extracts of musk lime (39.7 mm), key lime (26.7 mm) and lemon (32.0 mm) exhibited the largest diameter of inhibition zone (DIZ) against Aeromonas veronii. 100% water extracts of musk lime (25.3 mm), key lime juice extract (23.3 mm) and water extracts of lemon (23.7 mm) was most effective against food spoilage bacteria, A. veronii. The prominent results of the antimicrobial activity from lime, key lime and lemon extracts may attribute them as potential natural food preservatives and could be used in pharmaceuticals field.
    Matched MeSH terms: Oxides
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links