Displaying publications 281 - 300 of 1901 in total

Abstract:
Sort:
  1. Yao M, Guo X, Shao X, Wei Y, Zhang X, Wang H, et al.
    Food Chem Toxicol, 2023 May;175:113725.
    PMID: 36925041 DOI: 10.1016/j.fct.2023.113725
    Lead (Pb) can pollute the environment and food through air, water and other means, resulting in human exposure to lead pollution, and there is no threshold level of lead toxicity, even small doses of lead will have a range of harmful effects in humans. This study demonstrates for the first time that dietary addition of soluble dietary fiber (SDF) from Prunus persica dregs reduces lead bioaccumulation in mice, and eliminates lead through feces. Compared with lead-exposed mice, SDF supplementation effectively prevented lead-induced changes in colon tissue, and increased expression of tight junction proteins (ZO-1 and occludin). We analyzed the effects of SDF on gut microbiota and metabolites by a combination of 16S rRNA high-throughput sequencing and untargeted metabolomics. The results showed that SDF altered lead-induced perturbations in the layout and structure of the gut microbiota, including increased Desulfovibrio and Alistipes abundance and decreased Bacteroidetes abundance. Meanwhile, we also provide evidence that SDF supplementation alters the levels of amino acids, bile acids, and lipids in the gut, and that these metabolites are closely associated with microbiota with good lead binding capacity. Therefore, we speculate that SDF has the potential to provide a protective effect against intestinal damage by promoting lead excretion.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  2. Ma M, Su J, Wang Y, Wang L, Li Y, Ding G, et al.
    Benef Microbes, 2022 Dec 07;13(6):465-472.
    PMID: 36264094 DOI: 10.3920/BM2021.0046
    Body mass index (BMI) and gut microbiota show significant interaction, but most studies on the relationship between BMI and gut microbiota have been done in Western countries. Relationships that are also identified in other cultural backgrounds are likely to have functional importance. Hence here we explore gut microbiota in adults living in Xining city (China P.R.) and relate results to subject BMI. Analysis of bacterial 16s rRNA gene was performed on faecal samples from participants with normal-weight (n=24), overweight (n=24), obesity (n=11) and type 2 diabetes (T2D) (n=8). The results show that unweighted but not weighted Unifrac distance was significantly different when gut microbiota composition was compared between the groups. Importantly, the genus Streptococcus was remarkably decreased in both obese subjects and subjects suffering from T2D, as compared to normal-weight subjects. Accordingly, strong association was identified between the genus Streptococcus and BMI and especially Streptococcus salivarius subsp. thermophiles was a major contributor in this respect. As previous studies have shown that Streptococcus salivarius subsp. thermophiles is also negatively associated with obesity in Western cohorts, our results suggest that this species is a potential probiotic for the prevention of obesity and related disorders.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  3. Samshuri MÁ, Borkhanuddin MH
    Syst Parasitol, 2024 May 11;101(3):39.
    PMID: 38733439 DOI: 10.1007/s11230-024-10162-3
    Myxosporean infection in marine water fishes has drawn less attention than in freshwater fishes, which resulted in a higher taxonomic variety in freshwater in Malaysia. This study aimed to address the gap by conducting a myxosporean survey on two commercially significant marine fish species, Nemipterus furcosus (Valenciennes) (Eupercaria incertae sedis: Nemipteridae) and Selar crumenophthalmus (Bloch) (Carangiformes: Carangidae), collected from the northeastern part of peninsular Malaysia. During the examination of the organs, two distinct Myxobolus Bütschli, 1882 species were discovered in the brain tissue of these fishes, despite the absence of any observable pathological signs. The two Myxobolus species were characterized through morphometry, morphology, and analysis of partial small subunit ribosomal RNA (18S rDNA) gene. As a result, Myxobolus acanthogobii Hoshina, 1952, which infects 2.3% of N. furcosus, is synonymous with a myxobolid species commonly found in Japanese waters, based on its morphological traits, tissue tropism, and molecular diagnostics. Furthermore, a novel species, Myxobolus selari n. sp., was described, infecting the brain of one (11%) individual S. crumenophthalmus. This unique species displayed distinctive features, placing it within a well-supported subclade primarily comprising brain-infecting myxobolids. Maximum likelihood analysis further revealed the close relationships among these brain-infecting myxobolids, underscoring the significance of tissue tropism and host taxonomy for myxobolids. This study represents the initial documentation of Myxobolus species within the southern South China Sea, shedding light on the potential diversity of marine myxosporean in this region. This article was registered in the Official Register of Zoological Nomenclature (ZooBank) as urn:lsid:zoobank.org:pub:7C400E35-7CB8-4DEE-92B7-F75FF3926441.
    Matched MeSH terms: RNA, Ribosomal, 18S/genetics
  4. Rashid SA, Nazakat R, Muhamad Robat R, Ismail R, Suppiah J, Rajendran K, et al.
    Front Public Health, 2023;11:1208348.
    PMID: 37965510 DOI: 10.3389/fpubh.2023.1208348
    Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) may transmit through airborne route particularly when the aerosol particles remain in enclosed spaces with inadequate ventilation. There has been no standard recommended method of determining the virus in air due to limitations in pre-analytical and technical aspects. Furthermore, the presence of low virus loads in air samples could result in false negatives. Our study aims to explore the feasibility of detecting SARS-CoV-2 ribonucleic acid (RNA) in air samples using droplet digital polymerase chain reaction (ddPCR). Active and passive air sampling was conducted between December 2021 and February 2022 with the presence of COVID-19 confirmed cases in two hospitals and a quarantine center in Klang Valley, Malaysia. SARS-CoV-2 RNA in air was detected and quantified using ddPCR and real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The comparability of two different digital PCR platforms (QX200 and QIAcuity) to RT-PCR were also investigated. Additionally negative staining transmission electron microscopy was performed to visualize virus ultrastructure. Detection rates of SARS-CoV-2 in air samples using ddPCR were higher compared to RT-PCR, which were 15.2% (22/145) and 3.4% (5/145), respectively. The sensitivity and specificity of ddPCR was 100 and 87%, respectively. After excluding 17 negative samples (50%) by both QX200 and QIAcuity, 15% samples (5/34) were found to be positive both ddPCR and dPCR. There were 23.5% (8/34) samples that were detected positive by ddPCR but negative by dPCR. In contrast, there were 11.7% (4/34) samples that were detected positive by dPCR but negative by ddPCR. The SARS-CoV-2 detection method by ddPCR is precise and has a high sensitivity for viral RNA detection. It could provide advances in determining low viral titter in air samples to reduce false negative reports, which could complement detection by RT-PCR.
    Matched MeSH terms: RNA, Viral/analysis
  5. Mandary MB, Masomian M, Poh CL
    Int J Mol Sci, 2019 Sep 19;20(18).
    PMID: 31546962 DOI: 10.3390/ijms20184657
    RNA viruses are known to replicate by low fidelity polymerases and have high mutation rates whereby the resulting virus population tends to exist as a distribution of mutants. In this review, we aim to explore how genetic events such as spontaneous mutations could alter the genomic organization of RNA viruses in such a way that they impact virus replications and plaque morphology. The phenomenon of quasispecies within a viral population is also discussed to reflect virulence and its implications for RNA viruses. An understanding of how such events occur will provide further evidence about whether there are molecular determinants for plaque morphology of RNA viruses or whether different plaque phenotypes arise due to the presence of quasispecies within a population. Ultimately this review gives an insight into whether the intrinsically high error rates due to the low fidelity of RNA polymerases is responsible for the variation in plaque morphology and diversity in virulence. This can be a useful tool in characterizing mechanisms that facilitate virus adaptation and evolution.
    Matched MeSH terms: DNA-Directed RNA Polymerases/genetics*
  6. Azaman SNA, Wong DCJ, Tan SW, Yusoff FM, Nagao N, Yeap SK
    Sci Rep, 2020 Oct 15;10(1):17331.
    PMID: 33060668 DOI: 10.1038/s41598-020-74410-4
    Chlorella can produce an unusually wide range of metabolites under various nutrient availability, carbon source, and light availability. Glucose, an essential molecule for the growth of microorganisms, also contributes significantly to the metabolism of various metabolic compounds produced by Chlorella. In addition, manipulation of light intensity also induces the formation of secondary metabolites such as pigments, and carotenoids in Chlorella. This study will focus on the effect of glucose addition, and moderate light on the regulation of carotenoid, lipid, starch, and other key metabolic pathways in Chlorella sorokiniana. To gain knowledge about this, we performed transcriptome profiling on C. sorokiniana strain NIES-2168 in response to moderate light stress supplemented with glucose under mixotrophic conditions. A total of 60,982,352 raw paired-end (PE) reads 100 bp in length was obtained from both normal, and mixotrophic samples of C. sorokiniana. After pre-processing, 93.63% high-quality PE reads were obtained, and 18,310 predicted full-length transcripts were assembled. Differential gene expression showed that a total of 937, and 1124 genes were upregulated, and downregulated in mixotrophic samples, respectively. Transcriptome analysis revealed that the mixotrophic condition caused upregulation of genes involved in carotenoids production (specifically lutein biosynthesis), fatty acid biosynthesis, TAG accumulation, and the majority of the carbon fixation pathways. Conversely, starch biosynthesis, sucrose biosynthesis, and isoprenoid biosynthesis were downregulated. Novel insights into the pathways that link the enhanced production of valuable metabolites (such as carotenoids in C. sorokiniana) grown under mixotrophic conditions is presented.
    Matched MeSH terms: RNA, Plant/genetics
  7. Tan SC, Yiap BC
    J Biomed Biotechnol, 2009;2009:574398.
    PMID: 20011662 DOI: 10.1155/2009/574398
    Extraction of DNA, RNA, and protein is the basic method used in molecular biology. These biomolecules can be isolated from any biological material for subsequent downstream processes, analytical, or preparative purposes. In the past, the process of extraction and purification of nucleic acids used to be complicated, time-consuming, labor-intensive, and limited in terms of overall throughput. Currently, there are many specialized methods that can be used to extract pure biomolecules, such as solution-based and column-based protocols. Manual method has certainly come a long way over time with various commercial offerings which included complete kits containing most of the components needed to isolate nucleic acid, but most of them require repeated centrifugation steps, followed by removal of supernatants depending on the type of specimen and additional mechanical treatment. Automated systems designed for medium-to-large laboratories have grown in demand over recent years. It is an alternative to labor-intensive manual methods. The technology should allow a high throughput of samples; the yield, purity, reproducibility, and scalability of the biomolecules as well as the speed, accuracy, and reliability of the assay should be maximal, while minimizing the risk of cross-contamination.
    Matched MeSH terms: RNA/isolation & purification*
  8. Chong ZX, Ho WY, Yeap SK, Wang ML, Chien Y, Verusingam ND, et al.
    J Chin Med Assoc, 2021 Jun 01;84(6):563-576.
    PMID: 33883467 DOI: 10.1097/JCMA.0000000000000535
    Lung cancer is one of the most prevalent human cancers, and single-cell RNA sequencing (scRNA-seq) has been widely used to study human lung cancer at the cellular, genetic, and molecular level. Even though there are published reviews, which summarized the applications of scRNA-seq in human cancers like breast cancer, there is lack of a comprehensive review, which could effectively highlight the broad use of scRNA-seq in studying lung cancer. This review, therefore, was aimed to summarize the various applications of scRNA-seq in human lung cancer research based on the findings from different published in vitro, in vivo, and clinical studies. The review would first briefly outline the concept and principle of scRNA-seq, followed by the discussion on the applications of scRNA-seq in studying human lung cancer. Finally, the challenges faced when using scRNA-seq to study human lung cancer would be discussed, and the potential applications and challenges of scRNA-seq to facilitate the development of personalized cancer therapy in the future would be explored.
    Matched MeSH terms: Sequence Analysis, RNA*
  9. Bharudin I, Caddick MX, Connell SR, Lamaudière MTF, Morozov IY
    Mol Microbiol, 2023 May;119(5):630-639.
    PMID: 37024243 DOI: 10.1111/mmi.15059
    There are multiple RNA degradation mechanisms in eukaryotes, key among these is mRNA decapping, which requires the Dcp1-Dcp2 complex. Decapping is involved in various processes including nonsense-mediated decay (NMD), a process by which aberrant transcripts with a premature termination codon are targeted for translational repression and rapid decay. NMD is ubiquitous throughout eukaryotes and the key factors involved are highly conserved, although many differences have evolved. We investigated the role of Aspergillus nidulans decapping factors in NMD and found that they are not required, unlike Saccharomyces cerevisiae. Intriguingly, we also observed that the disruption of one of the decapping factors, Dcp1, leads to an aberrant ribosome profile. Importantly this was not shared by mutations disrupting Dcp2, the catalytic component of the decapping complex. The aberrant profile is associated with the accumulation of a high proportion of 25S rRNA degradation intermediates. We identified the location of three rRNA cleavage sites and show that a mutation targeted to disrupt the catalytic domain of Dcp2 partially suppresses the aberrant profile of Δdcp1 strains. This suggests that in the absence of Dcp1, cleaved ribosomal components accumulate and Dcp2 may be directly involved in mediating these cleavage events. We discuss the implications of this.
    Matched MeSH terms: RNA, Messenger/metabolism
  10. Hassan MRA, Chan HK, Nordin M, Yahya R, Sulaiman WRW, Merican SAA, et al.
    Harm Reduct J, 2023 Apr 12;20(1):48.
    PMID: 37046294 DOI: 10.1186/s12954-023-00780-3
    BACKGROUND: Despite advancements in hepatitis C virus (HCV) treatment, low uptake among hard-to-reach populations remains a global issue. The current study aimed to assess the feasibility of a modified same-day test-and-treat model in improving HCV care for people who inject drugs (PWID) living in resource-constrained rural areas.

    METHODS: A pilot study was conducted in four primary healthcare (PHC) centers in Malaysia. The model's key features included on-site HCV ribonucleic acid (RNA) testing using a shared GeneXpert® system; noninvasive biomarkers for cirrhosis diagnosis; and extended care to PWID referred from nearby PHC centers and outreach programs. The feasibility assessment focused on three aspects of the model: demand (i.e., uptake of HCV RNA testing and treatment), implementation (i.e., achievement of each step in the HCV care cascade), and practicality (i.e., ability to identify PWID with HCV and expedite treatment initiation despite resource constraints).

    RESULTS: A total of 199 anti-HCV-positive PWID were recruited. They demonstrated high demand for HCV care, with a 100% uptake of HCV RNA testing and 97.4% uptake of direct-acting antiviral treatment. The rates of HCV RNA positivity (78.4%) and sustained virologic response (92.2%) were comparable to standard practice, indicating the successful implementation of the model. The model was also practical, as it covered non-opioid-substitution-therapy-receiving individuals and enabled same-day treatment in 71.1% of the participants.

    CONCLUSIONS: The modified same-day test-and-treat model is feasible in improving HCV care for rural PWID. The study finding suggests its potential for wider adoption in HCV care for hard-to-reach populations.

    Matched MeSH terms: RNA/therapeutic use
  11. Dewayani A, Afrida Fauzia K, Alfaray RI, Waskito LA, Doohan D, Rejeki PS, et al.
    PLoS One, 2023;18(5):e0284958.
    PMID: 37200323 DOI: 10.1371/journal.pone.0284958
    INTRODUCTION: Inadequate antimicrobial treatment has led to multidrug-resistant (MDR) bacteria, including Helicobacter pylori (H. pylori), which one of the notable pathogens in the stomach. Antibiotic-induced changes in the microbiota can negatively affect the host. This study aimed to determine the influence of H. pylori resistance on the diversity and abundance of the stomach microbiome.

    METHODS: Bacterial DNA was extracted from biopsy samples of patients presenting dyspepsia symptoms with H. pylori positive from cultures and histology. DNA was amplified from the V3-V4 regions of the 16S rRNA gene. In-vitro E-test was used to detect antibiotic resistance. Microbiome community analysis was conducted through α-diversity, β-diversity, and relative abundance.

    RESULTS: Sixty-nine H. pylori positive samples were eligible after quality filtering. Following resistance status to five antibiotics, samples were classified into 24 sensitive, 24 single resistance, 16 double resistance, 5 triple resistance. Samples were mostly resistant to metronidazole (73.33%; 33/45). Comparation of four groups displayed significantly elevated α-diversity parameters under the multidrug resistance condition (all P <0.05). A notable change was observed in triple-resistant compared to sensitive (P <0.05) and double-resistant (P <0.05) groups. Differences in β-diversity by UniFrac and Jaccard were not significant in terms of the resistance (P = 0.113 and P = 0.275, respectively). In the triple-resistant group, the relative abundance of Helicobacter genera was lower, whereas that of Streptococcus increased. Moreover, the linear discriminant analysis effect size (LEfSe) was associated with the presence of Corynebacterium and Saccharimonadales in the single-resistant group and Pseudomonas and Cloacibacterium in the triple-resistant group.

    CONCLUSION: Our results suggest that the resistant samples showed a higher trend of diversity and evenness than the sensitive samples. The abundance of H. pylori in the triple-resistant samples decreased with increasing cohabitation of pathogenic bacteria, which may support antimicrobial resistance. However, antibiotic susceptibility determined by the E-test may not completely represent the resistance status.

    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  12. Okuma HS, Yoshida H, Kobayashi Y, Arakaki M, Mizoguchi C, Inagaki L, et al.
    Cancer Sci, 2023 Jun;114(6):2664-2673.
    PMID: 36919757 DOI: 10.1111/cas.15790
    Tissue specimen quality assurance is a major issue of precision medicine for rare cancers. However, the laboratory standards and quality of pathological specimens prepared in Asian hospitals remain unknown. To understand the methods in Southeast Asian oncology hospitals and to clarify how pre-analytics affect the quality of formalin-fixed paraffin-embedded (FFPE) specimens, a questionnaire surveying pre-analytical procedures (Part I) was administered, quality assessment of immunohistochemistry (IHC) staining and DNA/RNA extracted from the representative FFPE specimens from each hospital (Part II) was conducted, and the quality of DNA/RNA extracted from FFPE of rare-cancer patients for genomic sequencing (Part III) was examined. Quality measurements for DNA/RNA included ΔΔCt, DV200, and cDNA yield. Six major cancer hospitals from Malaysia, Philippines, and Vietnam participated. One hospital showed unacceptable quality for the DNA/RNA assessment, but improved by revising laboratory procedures. Only 57% (n = 73) of the 128 rare-cancer patients' specimens met both DNA and RNA quality criteria for next-generation sequencing. Median DV200 was 80.7% and 64.3% for qualified and failed RNA, respectively. Median ΔΔCt was 1.25 for qualified and 4.89 for failed DNA. Longer storage period was significantly associated with poor DNA (fail to qualify ratio = 1579:321 days, p RNA (fail to qualify ratio = 1070:280 days, p 
    Matched MeSH terms: RNA/genetics
  13. Radzi R, Muangmai N, Broady P, Wan Omar WM, Lavoue S, Convey P, et al.
    PLoS One, 2019;14(11):e0224395.
    PMID: 31682631 DOI: 10.1371/journal.pone.0224395
    Terrestrial cyanobacteria are very diverse and widely distributed in Antarctica, where they can form macroscopically visible biofilms on the surfaces of soils and rocks, and on benthic surfaces in fresh waters. We recently isolated several terrestrial cyanobacteria from soils collected on Signy Island, South Orkney Islands, Antarctica. Among them, we found a novel species of Nodosilinea, named here as Nodosilinea signiensis sp. nov. This new species is morphologically and genetically distinct from other described species. Morphological examination indicated that the new species is differentiated from others in the genus by cell size, cell shape, filament attenuation, sheath morphology and granulation. 16S rDNA phylogenetic analyses clearly confirmed that N. signiensis belongs to the genus Nodosilinea, but that it is genetically distinct from other known species of Nodosilinea. The D1-D1´ helix of the 16S-23S ITS region of the new species was also different from previously described Nodosilinea species. This is the first detailed characterization of a member of the genus Nodosilinea from Antarctica as well as being a newly described species.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  14. Noorhidayah M, Azrizal-Wahid N, Low VL, Yusoff NR
    PLoS One, 2024;19(4):e0301392.
    PMID: 38578719 DOI: 10.1371/journal.pone.0301392
    Despite is known to have widespread distribution and the most active species of the family Chlorocyphidae, the molecular data of Rhinocypha fenestrella (Rambur, 1842) are relatively scarce. The present study is the first that examined the genetic diversity and phylogeographic pattern of the peacock jewel-damselfly R. fenestrella by sequencing the cytochrome C oxidase I (cox1) and 16S rRNA gene regions from 147 individuals representing eight populations in Malaysia. A total of 26 and 10 unique haplotypes were revealed by the cox1 and 16S rRNA genes, respectively, and 32 haplotypes were recovered by the concatenated sequences of cox1+16S. Analyses indicated that haplotype AB2 was the most frequent and the most widespread haplotype in Malaysia while haplotype AB1 was suggested as the common ancestor haplotype of the R. fenestrella that may arose from the Negeri Sembilan as discovered from cox1+16S haplotype network analysis. Overall haplotype and nucleotide diversities of the concatenated sequences were Hd = 0.8937 and Pi = 0.0028, respectively, with great genetic differentiation (FST = 0.6387) and low gene flow (Nm = 0.14). Population from Pahang presented the highest genetic diversity (Hd = 0.8889, Pi = 0.0022, Nh = 9), whereas Kedah population demonstrated the lowest diversity (Hd = 0.2842, Pi = 0.0003, Nh = 4). The concatenated sequences of cox1+16S showed genetic divergence ranging from 0.09% to 0.97%, whereas the genetic divergence for cox1 and 16S rRNA genes were 0.16% to 1.63% and 0.01% to 0.75% respectively. This study provides for the first-time insights on the intraspecific genetic diversity, phylogeographic pattern and ancestral haplotype of Rhinocypha fenestrella. The understanding of molecular data especially phylogeographic pattern can enhance the knowledge about insect origin, their diversity, and capability to disperse in particular environments.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  15. Yeong MY, Cheow PS, Abdullah S, Song AA, Lei-Rossmann J, Tan TK, et al.
    J Virol Methods, 2021 05;291:114099.
    PMID: 33592218 DOI: 10.1016/j.jviromet.2021.114099
    The development of a T7 RNA polymerase (T7 RNAP) expressing cell line i.e. BSR T7/5 cells marks an improvement of reverse genetics for the recovery of recombinant Newcastle disease virus (rNDV). BSR T7/5 is developed by transient transfection of plasmid encoding T7 RNAP gene for rNDV rescue. However, the gene expression decreases gradually over multiple passages and eventually hinders the rescue of rNDV. To address this issue, lentiviral vector was used to develop T7 RNAP-expressing HEK293-TA (HEK293-TA-Lv-T7) and SW620 (SW620-Lv-T7) cell lines, evidenced by the expression of T7 RNAP after subsequent 20 passages. rNDV was rescued successfully using HEK293-TA-Lv-T7 clones (R1D3, R1D8, R5B9) and SW620-Lv-T7 clones (R1C11, R3C5) by reverse transfection, yielding comparable virus rescue efficiency and virus titres to that of BSR T7/5. This study provides new tools for rNDV rescue and insights into cell line development and virology by reverse genetics.
    Matched MeSH terms: DNA-Directed RNA Polymerases/genetics
  16. Anand K, Vadivalagan C, Joseph JS, Singh SK, Gulati M, Shahbaaz M, et al.
    Chem Biol Interact, 2021 Aug 01;344:109497.
    PMID: 33991505 DOI: 10.1016/j.cbi.2021.109497
    Extracellular vesicles like exosomes are important therapeutic tactics for treating COVID -19. By utilizing convalescent plasma derived exosomes (CPExo) from COVID-19 recovered persistence could accelerate the treatment strategies in the current state of affairs. Adequate literature has shown that administering the exosome to the in vivo system could be beneficial and could target the pathogens in an effective and precise manner. In this hypothesis we highlight the CPExo instead of convalescent plasma (CP), perhaps to dispense of exosomes are gratified and it's more effectively acquired immune response conferral through antibodies. COVID-19 convalescent plasma has billions of exosomes and it has aptitudes to carry molecular constituents like proteins, lipids, RNA and DNA, etc. Moreover, exosomes are capable of recognizing antigens with adequate sensitivity and specificity. Many of these derivatives could trigger an immune modulation into the cells and act as an epigenetic inheritor response to target pathogens through RNAs. COIVID-19 resistance activated plasma-derived exosomes are either responsible for the effects of plasma beyond the contained immune antibodies or could be inhibitory. The proposed hypothesis suggests that preselecting the plasma-derived antibodies and RNAs merged exosomes would be an optimized therapeutic tactic for COVID-19 patients. We suggest that, the CPExo has a multi-potential effect for treatment efficacy by acting as immunotherapeutic, drug carrier, and diagnostic target with noncoding genetic materials as a biomarker.
    Matched MeSH terms: RNA/immunology
  17. Muralitharan RR, Snelson M, Meric G, Coughlan MT, Marques FZ
    Am J Physiol Renal Physiol, 2023 Sep 01;325(3):F345-F362.
    PMID: 37440367 DOI: 10.1152/ajprenal.00072.2023
    Gut microbiome research has increased dramatically in the last decade, including in renal health and disease. The field is moving from experiments showing mere association to causation using both forward and reverse microbiome approaches, leveraging tools such as germ-free animals, treatment with antibiotics, and fecal microbiota transplantations. However, we are still seeing a gap between discovery and translation that needs to be addressed, so that patients can benefit from microbiome-based therapies. In this guideline paper, we discuss the key considerations that affect the gut microbiome of animals and clinical studies assessing renal function, many of which are often overlooked, resulting in false-positive results. For animal studies, these include suppliers, acclimatization, baseline microbiota and its normalization, littermates and cohort/cage effects, diet, sex differences, age, circadian differences, antibiotics and sweeteners, and models used. Clinical studies have some unique considerations, which include sampling, gut transit time, dietary records, medication, and renal phenotypes. We provide best-practice guidance on sampling, storage, DNA extraction, and methods for microbial DNA sequencing (both 16S rRNA and shotgun metagenome). Finally, we discuss follow-up analyses, including tools available, metrics, and their interpretation, and the key challenges ahead in the microbiome field. By standardizing study designs, methods, and reporting, we will accelerate the findings from discovery to translation and result in new microbiome-based therapies that may improve renal health.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  18. Hanim A, Mohamed IN, Mohamed RMP, Mokhtar MH, Makpol S, Naomi R, et al.
    Nutrients, 2023 Jul 05;15(13).
    PMID: 37447362 DOI: 10.3390/nu15133036
    Multiple alcohol use disorder (AUD)-related behavioral alterations are governed by protein kinase C epsilon (PKCε), particularly in the amygdala. Protein kinase C (PKC) is readily phosphorylated at Ser729 before activation by the mTORC2 protein complex. In keeping with this, the current study was conducted to assess the variations in mTORC2 and PKCε during different ethanol exposure stages. The following groups of rats were employed: control, acute, chronic, ethanol withdrawal (EW), and EW + ethanol (EtOH). Ethanol-containing and non-ethanol-containing modified liquid diets (MLDs) were administered for 27 days. On day 28, either saline or ethanol (2.5 g/kg, 20% v/v) was intraperitoneally administered, followed by bilateral amygdala extraction. PKCε mRNA levels were noticeably increased in the amygdala of the EW + EtOH and EW groups. Following chronic ethanol consumption, the stress-activated map kinase-interacting protein 1 (Sin1) gene expression was markedly decreased. In the EW, EW + EtOH, and chronic ethanol groups, there was a profound increase in the protein expression of mTOR, Sin1, PKCε, and phosphorylated PKCε (Ser729). The PKCε gene and protein expressions showed a statistically significant moderate association, according to a correlation analysis. Our results suggest that an elevated PKCε protein expression in the amygdala during EW and EW + EtOH occurred at the transcriptional level. However, an elevation in the PKCε protein expression, but not its mRNA, after chronic ethanol intake warrants further investigation to fully understand the signaling pathways during different episodes of AUD.
    Matched MeSH terms: RNA, Messenger/metabolism
  19. Chaibun T, Puenpa J, Ngamdee T, Boonapatcharoen N, Athamanolap P, O'Mullane AP, et al.
    Nat Commun, 2021 02 05;12(1):802.
    PMID: 33547323 DOI: 10.1038/s41467-021-21121-7
    Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnosis of COVID-19 depends on quantitative reverse transcription PCR (qRT-PCR), which is time-consuming and requires expensive instrumentation. Here, we report an ultrasensitive electrochemical biosensor based on isothermal rolling circle amplification (RCA) for rapid detection of SARS-CoV-2. The assay involves the hybridization of the RCA amplicons with probes that were functionalized with redox active labels that are detectable by an electrochemical biosensor. The one-step sandwich hybridization assay could detect as low as 1 copy/μL of N and S genes, in less than 2 h. Sensor evaluation with 106 clinical samples, including 41 SARS-CoV-2 positive and 9 samples positive for other respiratory viruses, gave a 100% concordance result with qRT-PCR, with complete correlation between the biosensor current signals and quantitation cycle (Cq) values. In summary, this biosensor could be used as an on-site, real-time diagnostic test for COVID-19.
    Matched MeSH terms: RNA, Viral/genetics
  20. Tan K, Dong Y, Tan K, Lim LS, Waiho K, Chen J, et al.
    Mar Biotechnol (NY), 2023 Dec;25(6):1176-1190.
    PMID: 38010485 DOI: 10.1007/s10126-023-10269-6
    Inadequate gonadal maturation and poor spawning performance increasingly threaten the sustainability of shrimp aquaculture. Unraveling the mechanisms regulating ovarian development and maturation hence is critical to address industry challenges. Vitellogenin (Vtg), a precursor of yolk protein found in the hepatopancreas and ovary of shrimp, plays a key role in facilitating shrimp's oocyte maturation and embryonic development after oviposition. This study found that FpVtg was specifically expressed in F. penicillatus hepatopancreas and ovary. FpVtg was localized predominantly in the oocyte cytoplasm and distributed uniformly in the hepatopancreas tissue. Silencing FpVtg led to apoptosis in both hepatopancreas and ovary tissues. Furthermore, FpVtg depletion upregulated the expression of ovarian peritrophin 1, ovarian peritrophin 2, serine proteinase inhibitor 6, and juvenile hormone esterase-like carboxylesterase 1, while downregulated that of vitellogenin, delta-9 desaturase, and insulin-like receptor. KEGG pathway analysis implicated such as PI3K-AKT signaling, RNA transport, ECM-receptor interaction, hippo signaling, oocyte meiosis, and apoptosis were enriched and involved in ovarian development. These findings have provided insights into the FpVtg's reproductive role and the associated regulatory genes and pathways in F. penicillatus. This knowledge can contribute to establishing strategies to improve the breeding and aquaculture production of F. penicillatus by elucidating its vitellogenesis regulation in redtail prawn and other penaeid species. Further characterization of the implicated pathways and genes will clarify the intricacies underlying ovarian maturation.
    Matched MeSH terms: RNA, Small Interfering/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links