METHODS: A total of 90 mice were used and divided into 15 groups, each group comprising of 6 mice. Tumour, body weight and mortality of the mice were determined throughout the experiment, to observe the effect of NDV and NDV + tamoxifen treatments on the mice. In addition, the toxic effect of the treatments was determined through liver function test. In order to elucidate the involvement of cytokine production induced by NDV, a total of six cytokines, i.e. IL-6, IFN-γ, MCP-1, IL-10, IL12p70 and TNF-α were measured using cytometric bead array assay (plasma) and enzyme-linked immunosorbent spot (isolated splenocytes).
RESULTS: The results demonstrated that 4 T1 breast cancer cells in allotransplanted mice treated with AF2240 showed a noticeable inhibition of tumour growth and induce apoptotic-related cytokines.
CONCLUSIONS: NDV AF2240 suppression of breast tumour growth is associated with induction of apoptotic-related cytokines. It would be important to further investigate the molecular mechanism underlaying cytokines production by Newcastle disease virus.
RESULTS: The effect of cAMP and glucocorticoid treatment on Creb3l1 was investigated in both AtT20 cells and hypothalamic organotypic cultures. The expression of Creb3l1 was increased in both mRNA and protein level by treatment with forskolin, which raises intracellular cAMP levels. Activation of cAMP by forskolin also increased Avp promoter activity in AtT20 cells and this effect was blunted by shRNA mediated silencing of Creb3l1. The forskolin induced increase in Creb3l1 expression was diminished by combined treatment with dexamethasone, and, in vivo, intraperitoneal dexamethasone injection blunted the increase in Creb3l1 and Avp expression induced by hyperosmotic stress.
CONCLUSION: Here we shows that cAMP and glucocorticoid positively and negatively regulate Creb3l1 expression in the rat hypothalamus, respectively, and regulation of cAMP on AVP expression is mediated through CREB3L1. This data provides the connection between CREB3L1, a newly identified transcription factor of AVP expression, with the previously proposed mechanism of Avp transcription which extends our understanding in transcription regulation of Avp in the hypothalamus.
METHODS: We conducted a prospective observational cohort study in patients aged 12 years and older with suspected central nervous system infections at Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia between February 2012 and March 2013. Cerebrospinal fluid was sent for microscopy, biochemistry, bacterial and mycobacterial cultures, Mycobacterium tuberculosis polymerase chain reaction (PCR), and multiplex and MassCode PCR for various viral and bacterial pathogens.
RESULTS: A total of 84 patients with clinically suspected meningitis and encephalitis were enrolled. An aetiological agent was confirmed in 37/84 (44 %) of the patients. The most common diagnoses were tuberculous meningitis (TBM) (41/84, 48.8 %) and cryptococcal meningoencephalitis (14/84, 16.6 %). Mycobacterium tuberculosis was confirmed in 13/41 (31.7 %) clinically diagnosed TBM patients by cerebrospinal fluid PCR or culture. The acute case fatality rate during hospital admission was 16/84 (19 %) in all patients, 4/43 (9 %) in non-TBM, and 12/41 (29 %) in TBM patients respectively (p = 0.02).
CONCLUSION: TBM is the most common cause of CNS infection in patients aged 12 years or older in Kota Kinabalu, Sabah, Malaysia and is associated with high mortality and morbidity. Further studies are required to improve the management and outcome of TBM.
OBJECTIVES: This study has aimed to establish optimum conditions to generate and characterize MSC from human umbilical cord (UC-MSC).
MATERIALS AND METHODS: To optimize MSC population growth, basic fibroblast growth factor (bFGF) was utilized in culture media. Effects of bFGF on expansion kinetics, cell cycle, survival of UC-MSC, cytokine secretion, expression of early stem-cell markers and immunomodulation were investigated.
RESULTS: bFGF supplementation profoundly enhanced UC-MSC proliferation by reducing population doubling time without altering immunophenotype and immunomodulatory function of UC-MSC. However, cell cycle studies revealed that bFGF drove the cells into the cell cycle, as a higher proportion of cells resided in S phase and progressed into M phase. Consistent with this, bFGF was shown to promote expression of cyclin D proteins and their relevant kinases to drive UC-MSC to transverse cell cycle check points, thus, committing the cells to DNA synthesis. Furthermore, supplementation with bFGF changed the cytokine profiles of the cells and reduced their apoptotic level.
CONCLUSION: Our study showed that bFGF supplementation of UC-MSC culture enhanced the cells' growth kinetics without compromising their nature.