Displaying publications 301 - 320 of 10188 in total

Abstract:
Sort:
  1. Chang KM, Chun YT, Chen SH, Lu L, Su HT, Liang HM, et al.
    Sensors (Basel), 2016 Jul 20;16(7).
    PMID: 27447641 DOI: 10.3390/s16071126
    Chan Ding training is beneficial to health and emotional wellbeing. More and more people have taken up this practice over the past few years. A major training method of Chan Ding is to focus on the ten Mailuns, i.e., energy points, and to maintain physical stillness. In this article, wireless wearable accelerometers were used to detect physical stillness, and the created physical stillness index (PSI) was also shown. Ninety college students participated in this study. Primarily, accelerometers used on the arms and chest were examined. The results showed that the PSI values on the arms were higher than that of the chest, when participants moved their bodies in three different ways, left-right, anterior-posterior, and hand, movements with natural breathing. Then, they were divided into three groups to practice Chan Ding for approximately thirty minutes. Participants without any Chan Ding experience were in Group I. Participants with one year of Chan Ding experience were in Group II, and participants with over three year of experience were in Group III. The Chinese Happiness Inventory (CHI) was also conducted. Results showed that the PSI of the three groups measured during 20-30 min were 0.123 ± 0.155, 0.012 ± 0.013, and 0.001 ± 0.0003, respectively (p < 0.001 ***). The averaged CHI scores of the three groups were 10.13, 17.17, and 25.53, respectively (p < 0.001 ***). Correlation coefficients between PSI and CHI of the three groups were -0.440, -0.369, and -0.537, respectively (p < 0.01 **). PSI value and the wearable accelerometer that are presently available on the market could be used to evaluate the quality of the physical stillness of the participants during Chan Ding practice.
    Matched MeSH terms: Biosensing Techniques/methods*; Monitoring, Ambulatory/methods*; Accelerometry/methods*
  2. Hanipah ZN, Schauer PR
    Gastrointest. Endosc. Clin. N. Am., 2017 Apr;27(2):191-211.
    PMID: 28292400 DOI: 10.1016/j.giec.2016.12.005
    Sleeve gastrectomy, gastric bypass, gastric banding, and duodenal switch are the most common bariatric procedures performed worldwide. Ninety-five percent of bariatric operations are performed with minimally invasive laparoscopic technique. Perioperative morbidities and mortalities average around 5% and 0.2%, respectively. Long-term weight loss averages around 15% to 25% or about 80 to 100 lbs (40-50 kg). Comorbidities, including type 2 diabetes, hypertension, dyslipidemia, sleep apnea, arthritis, gastroesophageal reflux disease, and nonalcoholic fatty liver disease, improve or resolve after bariatric surgery.
    Matched MeSH terms: Gastrectomy/methods*; Laparoscopy/methods*; Bariatric Surgery/methods*
  3. Phong WN, Show PL, Chow YH, Ling TC
    J Biosci Bioeng, 2018 Sep;126(3):273-281.
    PMID: 29673987 DOI: 10.1016/j.jbiosc.2018.03.005
    Aqueous two-phase system (ATPS) has been suggested as a promising separation tool in the biotechnological industry. This liquid-liquid extraction technique represents an interesting advance in downstream processing due to several advantages such as simplicity, rapid separation, efficiency, economy, flexibility and biocompatibility. Up to date, a range of biotechnological products have been successfully recovered from different sources with high yield using ATPS-based strategy. In view of the important potential contribution of the ATPS in downstream processing, this review article aims to provide latest information about the application of ATPS in the recovery of various biotechnological products in the past 7 years (2010-2017). Apart from that, the challenges as well as the possible future work and outlook of the ATPS-based recovery method have also been presented in this review article.
    Matched MeSH terms: Biotechnology/methods*; Green Chemistry Technology/methods; Liquid-Liquid Extraction/methods*
  4. Woon LS, Kanapathy A, Zakaria H, Alfonso CA
    Psychodyn Psychiatry, 2017;45(2):237-257.
    PMID: 28590207 DOI: 10.1521/pdps.2017.45.2.237
    Obsessive-compulsive disorder (OCD) is a debilitating psychiatric disorder that often runs a chronic unremitting course. Treatment outcomes can be unsatisfactory despite the availability of various somatic and psychological therapies. Psychodynamic psychotherapy in combination with cognitive behavioral therapy (CBT) with exposure and response prevention (ERP) could help patients with treatment-resistant OCD achieve better outcomes. An integrative approach can help patients gain insight, strengthen the therapeutic alliance, improve treatment adherence, and provide symptomatic relief when other treatments seem insufficient or have failed. We describe the treatment process of a person with treatment-resistant OCD who received pharmacotherapy, concurrent CBT/ERP, and a brief course of psychodynamic psychotherapy. Case formulations from cognitive behavioral and psychodynamic perspectives are presented. The authors discuss the advantages of doing a psychodynamic assessment and formulation in treatment refractory cases and the wisdom of integrating psychotherapy interventions for OCD, as well as the unique clinical features of cases that warrant a multimodal treatment approach.
    Matched MeSH terms: Implosive Therapy/methods*; Cognitive Therapy/methods*; Psychotherapy, Psychodynamic/methods*
  5. Ahmad RF, Malik AS, Kamel N, Reza F, Amin HU, Hussain M
    Technol Health Care, 2017;25(3):471-485.
    PMID: 27935575 DOI: 10.3233/THC-161286
    BACKGROUND: Classification of the visual information from the brain activity data is a challenging task. Many studies reported in the literature are based on the brain activity patterns using either fMRI or EEG/MEG only. EEG and fMRI considered as two complementary neuroimaging modalities in terms of their temporal and spatial resolution to map the brain activity. For getting a high spatial and temporal resolution of the brain at the same time, simultaneous EEG-fMRI seems to be fruitful.

    METHODS: In this article, we propose a new method based on simultaneous EEG-fMRI data and machine learning approach to classify the visual brain activity patterns. We acquired EEG-fMRI data simultaneously on the ten healthy human participants by showing them visual stimuli. Data fusion approach is used to merge EEG and fMRI data. Machine learning classifier is used for the classification purposes.

    RESULTS: Results showed that superior classification performance has been achieved with simultaneous EEG-fMRI data as compared to the EEG and fMRI data standalone. This shows that multimodal approach improved the classification accuracy results as compared with other approaches reported in the literature.

    CONCLUSIONS: The proposed simultaneous EEG-fMRI approach for classifying the brain activity patterns can be helpful to predict or fully decode the brain activity patterns.

    Matched MeSH terms: Electroencephalography/methods*; Magnetic Resonance Imaging/methods*; Functional Neuroimaging/methods*
  6. Holzner A, Ruppert N, Swat F, Schmidt M, Weiß BM, Villa G, et al.
    Curr Biol, 2019 10 21;29(20):R1066-R1067.
    PMID: 31639346 DOI: 10.1016/j.cub.2019.09.011
    Conversion of tropical forests into oil palm plantations reduces the habitats of many species, including primates, and frequently leads to human-wildlife conflicts. Contrary to the widespread belief that macaques foraging in the forest-oil palm matrix are detrimental crop pests, we show that the impact of macaques on oil palm yield is minor. More importantly, our data suggest that wild macaques have the potential to act as biological pest control by feeding on plantation rats, the major pest for oil palm crops, with each macaque group estimated to reduce rat populations by about 3,000 individuals per year (mitigating annual losses of 112 USD per hectare). If used for rodent control in place of the conventional method of poison, macaques could provide an important ecosystem service and enhance palm oil sustainability.
    Matched MeSH terms: Agriculture/methods*; Pest Control, Biological/methods*; Forestry/methods*
  7. Fraga MV, Stoller JZ, Glau CL, De Luca D, Rempell RG, Wenger JL, et al.
    Pediatrics, 2019 11;144(5).
    PMID: 31615954 DOI: 10.1542/peds.2019-1401
    Point-of-care ultrasound is currently widely used across the landscape of pediatric care. Ultrasound machines are now smaller, are easier to use, and have much improved image quality. They have become common in emergency departments, ICUs, inpatient wards, and outpatient clinics. Recent growth of supportive evidence makes a strong case for using point-of-care ultrasound for pediatric interventions such as vascular access (in particular, central-line placement), lumbar puncture, fluid drainage (paracentesis, thoracentesis, pericardiocentesis), suprapubic aspiration, and soft tissue incision and drainage. Our review of this evidence reveals that point-of-care ultrasound has become a powerful tool for improving procedural success and patient safety. Pediatric patients and clinicians performing procedures stand to benefit greatly from point-of-care ultrasound, because seeing is believing.
    Matched MeSH terms: Catheterization, Central Venous/methods*; Catheterization, Peripheral/methods*; Ultrasonography, Interventional/methods*
  8. Gough N, Brkan L, Subramaniam P, Chiuccariello L, De Petrillo A, Mulsant BH, et al.
    PLoS One, 2020;15(2):e0223029.
    PMID: 32092069 DOI: 10.1371/journal.pone.0223029
    With technological advancements and an aging population, there is growing interest in delivering interventions at home. Transcranial Direct Current Stimulation (tDCS) and Cognitive Remediation (CR) as well as Cognitive Training (CT) have been widely studied, but mainly in laboratories or hospitals. Thus, the objectives of this review are to examine feasibility and the interventions components to support the domiciliary administration of tDCS and CR. We performed a systematic search of electronic databases, websites and reference lists of included articles from the first date available until October 31, 2018. Articles included had to meet the following criteria: original work published in English using human subjects, majority of tDCS or CR intervention administered remotely. A total of 39 studies were identified (16 tDCS, 23 CR/CT, 5 using both tDCS & CT). Four studies were single case studies and two were multiple case studies. The remaining 33 studies had a range of 9-135 participants. Five tDCS and nine CR/CT studies were double blind randomized controlled trials. Most studies focused on schizophrenia (8/39) and multiple sclerosis (8/39). Literature examined suggests the feasibility of delivering tDCS or CR/CT remotely with the support of information and communication technologies.
    Matched MeSH terms: Telerehabilitation/methods*; Transcranial Direct Current Stimulation/methods*; Cognitive Remediation/methods*
  9. Prashanti E, Ramnarayan K
    Adv Physiol Educ, 2019 Jun 01;43(2):99-102.
    PMID: 30835147 DOI: 10.1152/advan.00173.2018
    In an era that is seemingly saturated with standardized tests of all hues and stripes, it is easy to forget that assessments not only measure the performance of students, but also consolidate and enhance their learning. Assessment for learning is best elucidated as a process by which the assessment information can be used by teachers to modify their teaching strategies while students adjust and alter their learning approaches. Effectively implemented, formative assessments can convert classroom culture to one that resonates with the triumph of learning. In this paper, we present 10 maxims that show ways that formative assessments can be better understood, appreciated, and implemented.
    Matched MeSH terms: Education, Medical, Undergraduate/methods*; Educational Measurement/methods*; Problem-Based Learning/methods*
  10. Sundara Rajoo K, Lepun P, Alan R, Singh Karam D, Abdu A, Rosli Z, et al.
    J Ethnopharmacol, 2023 Jan 30;301:115780.
    PMID: 36202163 DOI: 10.1016/j.jep.2022.115780
    ETHNOPHARMACOLOGICAL RELEVANCE: Sarawak is located in one of the world's most biodiverse regions and is home to more than 40 sub-ethnic groups that each have their own distinct culture, language and lifestyle. This has given rise to numerous, unique ethnobotanical systems. However, due to rapid urbanization, this traditional knowledge is at a risk of extinction. Yet, ethnobotanical studies in Sarawak are almost non-existent, especially among Orang Ulu communities like the Kenyah.

    AIM OF STUDY: Therefore, this study was conducted to document the ethnomedicinal knowledge of the Kenyah community. The main objectives of this study are: 1) To determine and document the diversity of medicinal plants used by the Kenyah community, 2) To determine whether the availability of modern medicine has affected Kenyah traditional medicine, and 3) To identify plants which have not been previously cited or used for previously unreported medical uses.

    MATERIALS AND METHODS: We conducted repeated interviews and field surveys at the Asap-Koyan Resettlement Area, Belaga Sarawak. A total of 24 respondents from four Kenyah longhouses were interviewed in this study. Individuals possessing extensive traditional medicinal knowledge were identified via preliminary interviews or by viva voce. Translators were employed to ensure that there was no miscommunication. The results were evaluated based on the plant's total use-reports and number of respondents citing the plant. The data was also evaluated based on use-reports by ailment category.

    RESULTS: Over 95% of the respondents were 40 years and older (58.21 years old ± 11.21). This was due to the younger members of the community (40 years old and below) admitting that they had almost no knowledge regarding traditional medicine, as they preferred relying on modern medicine. A total of 61 plant species were mentioned by the 24 respondents Seven plants had five or more respondents citing it, which was more than 20% of the respondents. These plants were Piper betle, Homalomena cordata, Senna alata, Annona muricata, Derris elliptica, Blumea balsamifera and Coscinium fenestratum.

    CONCLUSION: Almost all of the cited plants had been previously recorded to be used in either Ayurvedic, Chinese herbal medicine, Malay traditional medicine or other Asian ethnomedicinal systems. However, there were four highly cited species that were used for treatments that were scarcely reported in past literature. These were piper betle (used by Kenyah to treat fever), Sauropus andrognus (used by Kenyah to treat fever), Derris elliptica (used by Kenyah to treat fever and influenza) and Coscinuim fenestratum (used by Kenyah to treat toxic effects from non-medical substances).

    Matched MeSH terms: Phytotherapy/methods; Medicine, Traditional/methods; Ethnobotany/methods
  11. Chen Z, Rajamanickam L, Cao J, Zhao A, Hu X
    PLoS One, 2021;16(12):e0260758.
    PMID: 34879097 DOI: 10.1371/journal.pone.0260758
    This study aims to solve the overfitting problem caused by insufficient labeled images in the automatic image annotation field. We propose a transfer learning model called CNN-2L that incorporates the label localization strategy described in this study. The model consists of an InceptionV3 network pretrained on the ImageNet dataset and a label localization algorithm. First, the pretrained InceptionV3 network extracts features from the target dataset that are used to train a specific classifier and fine-tune the entire network to obtain an optimal model. Then, the obtained model is used to derive the probabilities of the predicted labels. For this purpose, we introduce a squeeze and excitation (SE) module into the network architecture that augments the useful feature information, inhibits useless feature information, and conducts feature reweighting. Next, we perform label localization to obtain the label probabilities and determine the final label set for each image. During this process, the number of labels must be determined. The optimal K value is obtained experimentally and used to determine the number of predicted labels, thereby solving the empty label set problem that occurs when the predicted label values of images are below a fixed threshold. Experiments on the Corel5k multilabel image dataset verify that CNN-2L improves the labeling precision by 18% and 15% compared with the traditional multiple-Bernoulli relevance model (MBRM) and joint equal contribution (JEC) algorithms, respectively, and it improves the recall by 6% compared with JEC. Additionally, it improves the precision by 20% and 11% compared with the deep learning methods Weight-KNN and adaptive hypergraph learning (AHL), respectively. Although CNN-2L fails to improve the recall compared with the semantic extension model (SEM), it improves the comprehensive index of the F1 value by 1%. The experimental results reveal that the proposed transfer learning model based on a label localization strategy is effective for automatic image annotation and substantially boosts the multilabel image annotation performance.
    Matched MeSH terms: Image Processing, Computer-Assisted/methods*; Tomography, X-Ray Computed/methods*; Data Curation/methods*
  12. Siddiqui MF, Reza AW, Shafique A, Omer H, Kanesan J
    Magn Reson Imaging, 2017 12;44:82-91.
    PMID: 28855113 DOI: 10.1016/j.mri.2017.08.005
    Sensitivity Encoding (SENSE) is a widely used technique in Parallel Magnetic Resonance Imaging (MRI) to reduce scan time. Reconfigurable hardware based architecture for SENSE can potentially provide image reconstruction with much less computation time. Application specific hardware platform for SENSE may dramatically increase the power efficiency of the system and can decrease the execution time to obtain MR images. A new implementation of SENSE on Field Programmable Gate Array (FPGA) is presented in this study, which provides real-time SENSE reconstruction right on the receiver coil data acquisition system with no need to transfer the raw data to the MRI server, thereby minimizing the transmission noise and memory usage. The proposed SENSE architecture can reconstruct MR images using receiver coil sensitivity maps obtained using pre-scan and eigenvector (E-maps) methods. The results show that the proposed system consumes remarkably less computation time for SENSE reconstruction, i.e., 0.164ms @ 200MHz, while maintaining the quality of the reconstructed images with good mean SNR (29+ dB), less RMSE (<5×10-2) and comparable artefact power (<9×10-4) to conventional SENSE reconstruction. A comparison of the center line profiles of the reconstructed and reference images also indicates a good quality of the reconstructed images. Furthermore, the results indicate that the proposed architectural design can prove to be a significant tool for SENSE reconstruction in modern MRI scanners and its low power consumption feature can be remarkable for portable MRI scanners.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*; Image Processing, Computer-Assisted/methods*; Magnetic Resonance Imaging/methods*
  13. Foo ME, Gopinath SCB
    Biomed Pharmacother, 2017 Oct;94:354-361.
    PMID: 28772213 DOI: 10.1016/j.biopha.2017.07.122
    Nanotechnology is the developing field, bringing the materials in the nanoscale level, has been applied in the interdisciplinary sciences. Different nanomaterials, such as gold, silver, zinc, copper and graphene are shown to have a wide range of applications. Among these, graphene is one of the faster upcoming two-dimensional nanomaterials utilized in various fields due to its positive features including the properties of thermal, electrical, strength and elasticity. Biomedical applications of graphene have been widely attested to be popular among academician and industrial partners for creating next generation medical systems and therapies. In this review, we selectively revealed the current applications of graphene in the interdisciplinary medical sciences.
    Matched MeSH terms: Biosensing Techniques/methods*; Drug Delivery Systems/methods*; Biomedical Research/methods*
  14. Sulaiman A, Farid M, Silva FV
    Food Sci Technol Int, 2017 Jun;23(4):293-309.
    PMID: 28595485 DOI: 10.1177/1082013216685485
    Strawberry puree was processed for 15 min using thermal (65 ℃), high-pressure processing (600 MPa, 48 ℃), and ultrasound (24 kHz, 1.3 W/g, 33 ℃). These conditions were selected based on similar polyphenoloxidase inactivation (11%-18%). The specific energies required for the above-mentioned thermal, high-pressure processing, and power ultrasound processes were 240, 291, and 1233 kJ/kg, respectively. Then, the processed strawberry was stored at 3 ℃ and room temperature for 30 days. The constant pH (3.38±0.03) and soluble solids content (9.03 ± 0.25°Brix) during storage indicated a microbiological stability. Polyphenoloxidase did not reactivate during storage. The high-pressure processing and ultrasound treatments retained the antioxidant activity (70%-74%) better than the thermal process (60%), and high-pressure processing was the best treatment after 30 days of ambient storage to preserve antioxidant activity. Puree treated with ultrasound presented more color retention after processing and after ambient storage than the other preservation methods. For the three treatments, the changes of antioxidant activity and total color difference during storage were described by the fractional conversion model with rate constants k ranging between 0.03-0.09 and 0.06-0.22 day - 1, respectively. In resume, high-pressure processing and thermal processes required much less energy than ultrasound for the same polyphenoloxidase inactivation in strawberry. While high-pressure processing retained better the antioxidant activity of the strawberry puree during storage, the ultrasound treatment was better in terms of color retention.
    Matched MeSH terms: Food Handling/methods*; Food Preservation/methods; Food Storage/methods*
  15. Goh BL
    Contrib Nephrol, 2017;189:79-84.
    PMID: 27951553
    BACKGROUND: The success rate of peritoneal dialysis (PD) catheter insertion is known to vary among different operators and may be influenced by many factors such as patient and various situational factors. Traditionally, surgeons have inserted Tenckhoff catheters by mini-laparotomy or an open technique. However, with recent advances in endoscopic instrumentation and video capabilities, peritoneoscope Tenckhoff catheter insertion has become a viable approach in interventional nephrologist-initiated PD access programmes.

    SUMMARY: Nephrologist-initiated peritoneoscopic PD access programs have had a positive impact on PD penetration. The technique has been associated with a better primary success rate, superior catheter survival, less postoperative pain, shorter hospital stay, and shorter catheter break-in time compared with the conventional surgical technique. The role of interventional nephrologists in peritoneoscope Tenckhoff catheter placement is still perceived to be a relatively new advance, investigational by some, and many nephrologists and surgeons alike remain sceptical of the value of this recent option. Crucial questions often raised are how many procedures one needs to perform before being considered competent and who should be credentialed to perform the procedure or supervise trainees performing it. The evaluation of technical proficiency in a specific operation is difficult and complex. Cumulative summation (CUSUM) analysis is one option for tracking the success and failure of technical skill and examining trends over time. Key Messages: The author's facility has had good outcomes with a nephrologist-initiated peritoneoscopic PD access programme. Quality control of PD catheter insertion can be performed using CUSUM charting to monitor for primary catheter dysfunction, primary leak, and primary peritonitis.

    Matched MeSH terms: Catheterization/methods*; Peritoneal Dialysis/methods*; Laparoscopy/methods*
  16. Gandhamal A, Talbar S, Gajre S, Hani AF, Kumar D
    Comput Biol Med, 2017 04 01;83:120-133.
    PMID: 28279861 DOI: 10.1016/j.compbiomed.2017.03.001
    Most medical images suffer from inadequate contrast and brightness, which leads to blurred or weak edges (low contrast) between adjacent tissues resulting in poor segmentation and errors in classification of tissues. Thus, contrast enhancement to improve visual information is extremely important in the development of computational approaches for obtaining quantitative measurements from medical images. In this research, a contrast enhancement algorithm that applies gray-level S-curve transformation technique locally in medical images obtained from various modalities is investigated. The S-curve transformation is an extended gray level transformation technique that results into a curve similar to a sigmoid function through a pixel to pixel transformation. This curve essentially increases the difference between minimum and maximum gray values and the image gradient, locally thereby, strengthening edges between adjacent tissues. The performance of the proposed technique is determined by measuring several parameters namely, edge content (improvement in image gradient), enhancement measure (degree of contrast enhancement), absolute mean brightness error (luminance distortion caused by the enhancement), and feature similarity index measure (preservation of the original image features). Based on medical image datasets comprising 1937 images from various modalities such as ultrasound, mammograms, fluorescent images, fundus, X-ray radiographs and MR images, it is found that the local gray-level S-curve transformation outperforms existing techniques in terms of improved contrast and brightness, resulting in clear and strong edges between adjacent tissues. The proposed technique can be used as a preprocessing tool for effective segmentation and classification of tissue structures in medical images.
    Matched MeSH terms: Image Enhancement/methods*; Image Interpretation, Computer-Assisted/methods*; Pattern Recognition, Automated/methods*
  17. Sanchez Bornot JM, Wong-Lin K, Ahmad AL, Prasad G
    Brain Topogr, 2018 11;31(6):895-916.
    PMID: 29546509 DOI: 10.1007/s10548-018-0640-0
    The brain's functional connectivity (FC) estimated at sensor level from electromagnetic (EEG/MEG) signals can provide quick and useful information towards understanding cognition and brain disorders. Volume conduction (VC) is a fundamental issue in FC analysis due to the effects of instantaneous correlations. FC methods based on the imaginary part of the coherence (iCOH) of any two signals are readily robust to VC effects, but neglecting the real part of the coherence leads to negligible FC when the processes are truly connected but with zero or π-phase (modulus 2π) interaction. We ameliorate this issue by proposing a novel method that implements an envelope of the imaginary coherence (EIC) to approximate the coherence estimate of supposedly active underlying sources. We compare EIC with state-of-the-art FC measures that included lagged coherence, iCOH, phase lag index (PLI) and weighted PLI (wPLI), using bivariate autoregressive and stochastic neural mass models. Additionally, we create realistic simulations where three and five regions were mapped on a template cortical surface and synthetic MEG signals were obtained after computing the electromagnetic leadfield. With this simulation and comparison study, we also demonstrate the feasibility of sensor FC analysis using receiver operating curve analysis whilst varying the signal's noise level. However, these results should be interpreted with caution given the known limitations of the sensor-based FC approach. Overall, we found that EIC and iCOH demonstrate superior results with most accurate FC maps. As they complement each other in different scenarios, that will be important to study normal and diseased brain activity.
    Matched MeSH terms: Brain Mapping/methods; Electroencephalography/methods*; Magnetoencephalography/methods*
  18. Asaithambi P, Aziz ARA, Sajjadi B, Daud WMABW
    Environ Sci Pollut Res Int, 2017 Feb;24(6):5168-5178.
    PMID: 27221586 DOI: 10.1007/s11356-016-6909-5
    In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm(2)), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm(2), electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.
    Matched MeSH terms: Electrocoagulation/methods*; Waste Disposal, Fluid/methods; Water Purification/methods*
  19. Low TY, Syafruddin SE, Mohtar MA, Vellaichamy A, A Rahman NS, Pung YF, et al.
    Cell Mol Life Sci, 2021 Jul;78(13):5325-5339.
    PMID: 34046695 DOI: 10.1007/s00018-021-03856-0
    Protein-protein interactions are fundamental to various aspects of cell biology with many protein complexes participating in numerous fundamental biological processes such as transcription, translation and cell cycle. MS-based proteomics techniques are routinely applied for characterising the interactome, such as affinity purification coupled to mass spectrometry that has been used to selectively enrich and identify interacting partners of a bait protein. In recent years, many orthogonal MS-based techniques and approaches have surfaced including proximity-dependent labelling of neighbouring proteins, chemical cross-linking of two interacting proteins, as well as inferring PPIs from the co-behaviour of proteins such as the co-fractionating profiles and the thermal solubility profiles of proteins. This review discusses the underlying principles, advantages, limitations and experimental considerations of these emerging techniques. In addition, a brief account on how MS-based techniques are used to investigate the structural and functional properties of protein complexes, including their topology, stoichiometry, copy number and dynamics, are discussed.
    Matched MeSH terms: Chromatography, Affinity/methods*; Mass Spectrometry/methods*; Protein Interaction Mapping/methods*
  20. Schönbach C, Li J, Ma L, Horton P, Sjaugi MF, Ranganathan S
    BMC Genomics, 2018 01 19;19(Suppl 1):920.
    PMID: 29363432 DOI: 10.1186/s12864-017-4326-x
    The 16th International Conference on Bioinformatics (InCoB) was held at Tsinghua University, Shenzhen from September 20 to 22, 2017. The annual conference of the Asia-Pacific Bioinformatics Network featured six keynotes, two invited talks, a panel discussion on big data driven bioinformatics and precision medicine, and 66 oral presentations of accepted research articles or posters. Fifty-seven articles comprising a topic assortment of algorithms, biomolecular networks, cancer and disease informatics, drug-target interactions and drug efficacy, gene regulation and expression, imaging, immunoinformatics, metagenomics, next generation sequencing for genomics and transcriptomics, ontologies, post-translational modification, and structural bioinformatics are the subject of this editorial for the InCoB2017 supplement issues in BMC Genomics, BMC Bioinformatics, BMC Systems Biology and BMC Medical Genomics. New Delhi will be the location of InCoB2018, scheduled for September 26-28, 2018.
    Matched MeSH terms: Genomics/methods*; Systems Biology/methods*; High-Throughput Nucleotide Sequencing/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links