One of the targets in oil palm genetic engineering programme is the production of polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-valerate (PHBV) in the oil palm leaf tissues. Production of PHB requires the use of phbA (beta-ketothiolase type A), phbB (acetoacetyl-CoA reductase) and phbC (PHB synthase) genes of Ralstonia eutropha, whereas bktB (beta-ketothiolase type B), phbB, phbC genes of R. eutropha and tdcB (threonine dehydratase) gene of Escherichia coli were used for PHBV production. Each of these genes was fused with a transit peptide (Tp) of oil palm acyl-carrier-protein (ACP) gene, driven by an oil palm leaf-specific promoter (LSP1) to genetically engineer the PHB/PHBV pathway to the plastids of the leaf tissues. In total, four transformation vectors, designated pLSP15 (PHB) and pLSP20 (PHBV), and pLSP13 (PHB) and pLSP23 (PHBV), were constructed for transformation in Arabidopsis thaliana and oil palm, respectively. The phosphinothricin acetyltransferase gene (bar) driven by CaMV35S promoter in pLSP15 and pLSP20, and ubiquitin promoter in pLSP13 and pLSP23 were used as the plant selectable markers. Matrix attachment region of tobacco (RB7MAR) was also included in the vectors to stabilize the transgene expression and to minimize silencing due to positional effect. Restriction digestion, PCR amplification and/or sequencing were carried out to ensure sequence integrity and orientation.
Oil palm trunk (OPT) is one of the most promising lignocellulosic bioresources. To develop effective biodegradation, thermophilic, anaerobic microorganisms were screened from bovine manure compost using fibrillated OPT (f-OPT) pretreated by wet disk milling as the substrate. One thermophilic, anaerobic bacterium, strain CL-2, whose 16S rDNA gene has 98.6% sequence identity with that of Caldicoprobacter faecale DSM 20678T, exhibited high degradation activity (32.7% reduction in total dry solids of f-OPT). Strain CL-2 did not use cellulose as a carbon source, but used hemicelluloses such as xylan, arabinoxylan, starch and pectin at 70 °C. Phylogenetic and morphologic analyses and the polysaccharide use suggest that CL-2 may be classified as a novel species of Caldicoprobacter, named Caldicoprobacter sp. CL-2. To characterize enzymatic activities of CL-2, extracellular enzymes were prepared from culture broth using beechwood xylan as the carbon source. The extracellular enzymes showed high xylanase activity, but low cellulase activity, suggesting that f-OPT degradation may depend on xylanase activity. To understand the xylanase system of CL-2, a major xylanase was cloned and characterized. The xylanase (CalXyn11A) had a modular structure consisting of a glycoside hydrolase (GH) family-11 domain and a family 36 carbohydrate-binding module. CalXyn11A did not show f-OPT degradation activity, but a strong synergistic effect was observed when CalXyn11A was added to the extracellular enzyme preparation. These results indicate that, rather than working alone, CalXyn11A has an important role in enhancing total lignocellulose degradation activity by cooperation with other GHs.
Nitric oxide associated 1 (NOA1) protein is implicated in plant disease resistance and nitric oxide (NO) biosynthesis. A full-length cDNA encoding of NOA1 protein from oil palm (Elaeis guineensis) was isolated and designated as EgNOA1. Sequence analysis suggested that EgNOA1 was a circular permutated GTPase with high similarity to the bacterial YqeH protein of the YawG/YlqF family. The gene expression of EgNOA1 and NO production in oil palm root tissues treated with Ganoderma boninense, the causal agent of basal stem rot (BSR) disease were profiled to investigate the involvement of EgNOA1 during fungal infection and association with NO biosynthesis. Real-time PCR (qPCR) analysis revealed that the transcript abundance of EgNOA1 in root tissues was increased by G. boninense treatment. NO burst in Ganoderma-treated root tissue was detected using Griess reagent, in advance of the up-regulation of the EgNOA1 transcript. This indicates that NO production was independent of EgNOA1. However, the induced expression of EgNOA1 in Ganoderma-treated root tissues implies that it might be involved in plant defense responses against pathogen infection.
Metallothioneins (MTs) are cysteine-rich metal-binding proteins that are involved in cell growth regulation, transportation of metal ions and detoxification of heavy metals. A mesocarp-specific metallothionein-like gene (MT3-A) promoter was isolated from the oil palm (Elaeis guineensis Jacq). A vector construct containing the MT3-A promoter fused to the β-glucuronidase (GUS) gene in the pCAMBIA 1304 vector was produced and used in Agrobacterium-mediated transformation of tomato. Histochemical GUS assay of different tissues of transgenic tomato showed that the MT3-A promoter only drove GUS expression in the reproductive tissues and organs, including the anther, fruit and seed coat. Competitive RT-PCR and GUS fluorometric assay showed changes in the level of GUS mRNA and enzyme activity in the transgenic tomato (T(0)). No GUS mRNA was found in roots and leaves of transgenic tomato. In contrast, the leaves of transgenic tomato seedlings (T(1)) produced the highest GUS activity when treated with 150 μM Cu(2+) compared to the control (without Cu(2+)). However, Zn(2+) and Fe(2+) treatments did not show GUS expression in the leaves of the transgenic tomato seedlings. Interestingly, the results showed a breaking-off tissue-specific activity of the oil palm MT3-A promoter in T(1) seedlings of tomato when subjected to Cu(2+) ions.
Glucanases are enzymes that hydrolyze a variety β-d-glucosidic linkages. Plant β-1,3-glucanases are able to degrade fungal cell walls; and promote the release of cell-wall derived fungal elicitors. In this study, three full-length cDNA sequences encoding oil palm (Elaeis guineensis) glucanases were analyzed. Sequence analyses of the cDNA sequences suggested that EgGlc1-1 is a putative β-d-glucan exohydolase belonging to glycosyl hydrolase (GH) family 3 while EgGlc5-1 and EgGlc5-2 are putative glucan endo-1,3-β-glucosidases belonging to GH family 17. The transcript abundance of these genes in the roots and leaves of oil palm seedlings treated with Ganoderma boninense and Trichoderma harzianum was profiled to investigate the involvement of these glucanases in oil palm during fungal infection. The gene expression of EgGlc1-1 in the root of oil palm seedlings was increased by T. harzianum but suppressed by G. boninense; while the gene expression of both EgGlc5-1 and EgGlc5-2 in the roots of oil palm seedlings was suppressed by G. boninense or/and T. harzianum.
To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.
This work examines the impregnated carbon-based sorbents for simultaneous removal of SO(2) and NOx from simulated flue gas. The carbon-based sorbents were prepared using palm shell activated carbon (PSAC) impregnated with several metal oxides (Ni, V, Fe and Ce). The removal of SO(2) and NOx from the simulated flue gas was investigated in a fixed-bed reactor. The results showed that PSAC impregnated with CeO(2) (PSAC-Ce) reported the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NOx. PSAC-Ce showed the longest breakthrough time of 165 and 115 min for SO(2) and NOx, respectively. The properties of the pure and impregnated PSAC were analyzed by BET, FTIR and XRF. The physical-chemical features of the PSAC-Ce sorbent indicated a catalytic activity in both the sorption of SO(2) and NOx. The formation of both sulfate (SO(4)(2-)) and nitrate (NO(3-)) species on spent PSAC-Ce further prove the catalytic role played by CeO(2).
A comparative study on solid substrate fermentation (SSF) of sago 'hampas', oil palm frond parenchyma tissue (OPFPt) and rubberwood sawdust with Pycnoporus sanguineus for laccase production was carried out. Optimal mycelial growth of Pyc. sanguineus was observed on all the substrates studied over a 21 days time-course fermentation. Laccase productivity was highest during degradation of sago 'hampas' and OPFPt and a range from 7.5 to 7.6 U/g substrate on the 11th day of fermentation compared to degradation of rubberwood sawdust with a maximum laccase productivity of 5.7 U/g substrate on day 11 of SSF. Further optimization of laccase production was done by varying the inoculum age, density and nitrogen supplementation. SSF of OPFPt by Pyc. sanguineus gave maximum productivity of laccase of 46.5 U/g substrate on day 6 of fermentation with a 30% (w/w) of 4 weeks old inoculum and 0.92% nitrogen in the form of urea supplemented in the substrate. The extraction of laccase was also optimized in this study. Recovery of laccase was fourfold higher at 30.6 U/g substrate on day 10 of SSF using unadjusted tap water at pH 8.0 as extraction medium at 25+/-2 degrees C compared to laccase recovery of 7.46 U/g substrate using sodium acetate buffer at pH 4.8 at 4 degrees C. Further optimization showed that laccase recovery was increased by 50% with a value of 46.5 U/g substrate on day 10 of SSF when the extraction medium was tap water adjusted to pH 5.0 at 25+/-2 degrees C.
In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water.
Basal stem rot disease of oil palm caused by Ganoderma boninense is one of the most devastating diseases in oil palm
plantation resulting in low yield, loss of palm stands and shorter replanting cycle. To-date, there is no effective treatment
for Ganoderma infected palms. Control measures, either chemical or cultural approaches, show varying degrees of
effectiveness. The application of biological control agents which is environmental-friendly could be an attractive solution
to overcome the problem. Earlier, we had isolated a mycoparasite, Scytalidium parasiticum, from the basidiomata of
Ganoderma boninense. In vitro assay and nursery experiment showed that this fungus could suppress Ganoderma infection
and reduce disease severity. However, metabolites which might contribute to the antagonistic or mycoparasitic effect
remain unknown. In the current study, optimization of fungal sample processing, extraction, and analytical procedures
were conducted to obtain metabolites from the maize substrate colonized by mycoparasitic ascomycetous Scytalidium
parasiticum. This technique capable of producing sexual spores in sac-like organs. Untargeted metabolomics profiling
was carried out by using Liquid Chromatography Time of Flight Mass Spectrometry (LC-ToF-MS). We found that
S. parasiticum in both liquid- and solid-state cultivation gave higher metabolite when extracted with 60% methanol with
1% formic acid in combination with homogenisation methods such as ultrasonication and grinding. The findings from
this study are useful for optimisation of metabolite extraction from other fungi-Ganoderma-plant interactions.
Oil palm or Elaeis guineens is a rich natural source of phenolic with flavonoid as the main constituents. These phenolics are potent antioxidants that can be used in the food industry, cosmetics and others. Therefore, the study was aimed to determine the effect of solvents which were methanol, ethyl acetate and hexane also different plant parts which were leaves, frond and fresh fruit bunch toward antioxidant activity (AOA), total phenolic content (TPC) and total flavonoid
content (TFC). The antioxidant was analysed using the DPPH method, TPC by Ciocalteu assay and TFC by aluminium chloride colorimetric assay. The result from ANOVA indicated that there was a difference (P < 0.05) in the extracting ability of each solvent and different plant parts for AOA, TPC and TFC. Generally, the result suggested that methanol give the highest antioxidant
activity, TPC and TFC compared to ethyl acetate and hexane. Therefore, the solvent used should be selected properly to allow for a high level of extraction efficiency.
Chitinase is an enzyme that catalyzes the degradation of chitin, commonly induced upon the attack of pathogens and other stresses. A cDNA (MsChi1) was isolated from Metroxylon sagu and expressed predominantly in the inflorescence tissue of M. sagu, suggesting its role in developmental processes. The chitinase cDNA was detected and isolated via differential display and rapid amplification of cDNA ends (RACE). Primers specific to M. saguchitinase were used as probes to amplify the 3'-end and 5'-end regions of chitinase cDNA. Transcript analysis showed that chitinase is expressed in inflorescence and meristem tissues but was not detected in the leaf tissue. Sequence analysis of amplified cDNA fragments of 3'-end and 5'-end regions indicated that the chitinase cDNA was successfully amplified. The M. saguchitinase cDNA isolated was approximately 1,143 bp long and corresponds to 312 predicted amino acids. Alignments of nucleotide and amino acid have grouped this chitinase to family 19 class I chitinase.
Meiotic crossovers in outbred species, such as oil palm (Elaeis guineensis Jacq., 2n = 32) contribute to allelic re-assortment in the genome. Such genetic variation is usually exploited in breeding to combine positive alleles for trait superiority. A good quality reference genome is essential for identifying the genetic factors underlying traits of interest through linkage or association studies. At the moment, an AVROS pisifera genome is publicly available for oil palm. Distribution and frequency of crossovers throughout chromosomes in different origins of oil palm are still unclear. Hence, an ultrahigh-density genomic linkage map of a commercial Deli dura x AVROS pisifera family was constructed using the OP200K SNP array, to evaluate the genetic alignment with the genome assembly. A total of 27,890 linked SNP markers generated a total map length of 1,151.7 cM and an average mapping interval of 0.04 cM. Nineteen linkage groups represented 16 pseudo-chromosomes of oil palm, with 61.7% of the mapped SNPs present in the published genome. Meanwhile, the physical map was also successfully extended from 658 Mb to 969 Mb by assigning unplaced scaffolds to the pseudo-chromosomes. A genic linkage map with major representation of sugar and lipid biosynthesis pathways was subsequently built for future studies on oil related quantitative trait loci (QTL). This study improves the current physical genome of the commercial oil palm, and provides important insights into its recombination landscape, eventually unlocking the full potential genome sequence-enabled biology for oil palm.
We have characterized an oil palm (Elaeis guineensis Jacq.) constitutive promoter that is derived from a translationally control tumor protein (TCTP) gene. The TCTP promoter was fused transcriptionally with the gusA reporter gene and transferred to monocot and dicot systems in order to study its regulatory role in a transient expression study. It was found that the 5' region of TCTP was capable of driving the gusA expression in all the oil palm tissues tested, including immature embryo, embryogenic callus, embryoid, young leaflet from mature palm, green leaf, mesocarp and stem. It could also be used in dicot systems as it was also capable of driving gusA expression in tobacco leaves. The results indicate that the TCTP promoter could be used for the production of recombinant proteins that require constitutive expression in the plant system.
Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian government tax receipts.
Existing Elaeis guineensis cultivars lack sufficient genetic diversity due to extensive breeding. Harnessing variation in wild crop relatives is necessary to expand the breadth of agronomically valuable traits. Using RAD sequencing, we examine the natural diversity of wild American oil palm populations (Elaeis oleifera), a sister species of the cultivated Elaeis guineensis oil palm. We genotyped 192 wild E. oleifera palms collected from seven Latin American countries along with four cultivated E. guineensis palms. Honduras, Costa Rica, Panama and Colombia palms are panmictic and genetically similar. Genomic patterns of diversity suggest that these populations likely originated from the Amazon Basin. Despite evidence of a genetic bottleneck and high inbreeding observed in these populations, there is considerable genetic and phenotypic variation for agronomically valuable traits. Genome-wide association revealed several candidate genes associated with fatty acid composition along with vegetative and yield-related traits. These observations provide valuable insight into the geographic distribution of diversity, phenotypic variation and its genetic architecture that will guide choices of wild genotypes for crop improvement.
Red Palm Weevil (RPW), Rhynchophorus ferrugineus is a lethal pest which has been described as a serious pest that reduces the production of coconut tree and other major cultivated palms. RPW infestation was initially detected by Department of Agriculture (DOA) in 2007 in all eight Terengganu districts. Rhu Tapai plantation area is one of the highly infested areas in Terengganu. Until now, limited reports on population abundance of this lethal pest have been discussed particularly in Rhu Tapai. Therefore, a study on population abundance is a must in order to understand the population dynamic of RPW which will be the first step of its control strategy. A total of 12 traps were installed and synthetic pheromones (P028 Ferrolure+) were used in attracting the RPW adults. Overall, 81 individuals of RPW were successfully collected after 16 weeks of pheromone trapping (3rd September until 28th November 2018). The trend of weekly RPW captured was eventually decreasing from Week 1 to Week 16 but showed a sudden increment in Week 10. Pandan cultivar plot captured the highest number of adult RPW compared with Mawa cultivar plots. Result showed no significant difference between RPW sexes percentage of sexes which was 53% of male and 47% of female (1:1 ratio) (U= 0.143, p > 0.05). Daily rainfall and temperature significantly reduced the trapping efficiency (R²rainfall = 0.142, p = 0.145; R²temperature = 0.0858; p = 0.258). These results will be the baseline information for future study regarding control management strategy using pheromone-based mass trapping system.
utan Lipur Jeram Linang in Kelantan was carried out within 0.1 ha plot. All vascular plants (except lianas and epiphytes) were enumerated and identified. A total of 255 taxa representing 121 species belonging to 87 genera in 47 families were identified. Among these were 24 species endemic to Peninsular Malaysia and 47 species with medicinal values. Plants were categorized according to growth forms as follows: 67% trees, 17% shrubs, 7% palms, 6% herbs, and 3% ferns. Based on Important value index (IVI), Elateriospermum tapos, Goniothalamus umbrosus, and Monocarpia marginalis were the most dominant species whilst Rubiaceae, Arecaceae and Fabaceae were the three most diverse families. Species diversity was high based on the Shannon-Weiner index with the value of 4.38. In this study, two species from Dipterocarpaceae, which were Dipterocarpus grandiflorus and Shorea collina, were listed as Endangered (E) and Critically Endangered (CE) species respectively according to IUCN Red List. Information gained from this study showed that the forest harbored high plant diversity and endemism, so proper management is needed to protect and conserve this forest for sustainability and development.
Basal stem rot (BSR) is a devastating disease to Malaysian oil palm. Current techniques employed for BSR disease detection on oil palm are laborious, time consuming, costly, and subjected to accuracy limitations. An ergosterol detection method was developed, whereby it correlated well with the degree of infection in oil palm. This current study was designed to study the relationship between Ganoderma biomass, ergosterol concentration, BSR disease progress and to validate the efficiency of microwave assisted extraction (MAE) method for extraction of ergosterol compound. In addition, testing on the sensitivity of thin layer chromatography (TLC) analysis for detection of ergosterol was also the aim of this study. The optimised procedure involved extracting a small amount of Ganoderma-infected oil palm root tissues suspended in low volumes of solvent followed by irradiation in a conventional microwave oven at 70°C and medium high power for 30 s, resulting in simultaneous extraction and saponification. Based on the results obtained, MAE method may be effective in extracting low to high yields of ergosterol from infected oil palm roots demonstrating disease scale 2, 3 and 4. Positive relationship was observed between ergosterol content and inoculation period starting day 3 in the inoculated oil palm seedlings and hour 6 in germinated seeds. TLC analysis demonstrated a good correlation with high performance liquid chromatography (HPLC) quantification. Therefore, a semi-quantitative TLC analysis may be applied for handling a large amount of samples during onset field survey.
Nipa sap or air nira is a sweet natural beverage obtained from a type of palm tree, Nypa fruticans.
It is readily and spontaneously fermented resulting in the development of alcoholic fermentation products. Objective of this study is to determine the volatile compounds (VOCs) responsible for the aroma in fresh and fermented nipa sap. The sap was left for natural fermentation at 30ºC for 63 days. VOCs of the sap were analysed using static headspace gas chromatography-mass spectrometry (GC-MS). Fresh nipa sap contained ethanol (83.43%), diacetyl (0.59%), and esters
(15.97%). Fermented nipa sap contained alcohols (91.16 – 98.29%), esters (1.18 – 8.14%), acetoin (0.02 – 0.7%), diacetyl (0.04 – 0.06%), and acetic acid (0.13 – 0.68%). Concentration of ethanol in fresh nipa sap increased from 0.11% (v/v) to 6.63% (v/v) during the fermentation, and slightly decreased to 5.73% (v/v) at day 63. No higher alcohols were detected in the fresh nipa sap. Concentration of 1-propanol and 2-methylpropanol were constant throughout the fermentation with average of 0.004 to 0.006% (v/v) and 0.0001 to 0.0009% (v/v), respectively. 3-methylbutanol increased during the fermentation process. The highest concentration (0.001% v/v) was recorded at day 35. This study has shown differences in VOCs types between fresh and fermented nipa sap.