AREAS COVERED: Herein, the authors discuss the various factors that contribute to the quality of studies using animal models based on the evaluation of studies published in 2022. The factors affecting the quality of studies using animal models, such as the animal species, age, and sex, are discussed, along with various methods and outcomes of studies involving different animal models of glaucoma.
EXPERT OPINION: Translating animal research data to clinical applications remains challenging. Our observations in this review clearly indicate that many studies lack scientific robustness not only in their experiment conduct but also in data analysis, interpretation, and presentation. In this context, ensuring the internal validity of animal studies is the first step in quality assurance. External validity, however, is more challenging, and steps should be taken to satisfy external validity at least to some extent.
METHODS: Spheroids were generated in suspension spheroidal culture. The ZNF800 mRNA, pluripotency stem cell markers and circZNF800 levels were determined by quantitative RT-PCR. CircZNF800-miRNA interactions were shown in RNA pulldown assays and the miRNA levels determined by stem-loop qRT-PCR. The effects of circZNF800 on cell proliferation were tested by EdU staining followed by flowcytometry. Expression of stem cell markers CD44/CD133, Lgr5 and SOX9 was demonstrated in immunofluorescence microscopy. To manipulate the cellular levels of circZNF800, circZNF800 over-expression was achieved via transfection of in vitro synthesized and circularized circZNF800, and knockdown attained using a CRISPR-Cas13d-circZNF800 vector system. Xenografted nude mice were used to demonstrate effects of circZNF800 over-expression and knockdown on tumor growth in vivo.
RESULTS: CircZNF800 was shown to be over-expressed in late-stage tumor tissues of CRC patients. Data showed that circZNF800 impeded expression of miR-140-3p, miR-382-5p and miR-579-3p while promoted the mRNA levels of ALK/ACVR1C, FZD3 and WNT5A targeted by the miRNAs, as supported by alignments of seed sequences between the circZNF800-miRNA, and miRNA-mRNA paired interactions. Analysis in CRC cells and biopsied tissues showed that circZNF800 positively regulated the expression of intestinal stem cell, pluripotency and cancer stem cell markers, and promoted CRC cell proliferation, spheroid and colony formation in vitro, all of which are cancer stem cell properties. In xenografted mice, circZNF800 over-expression promoted tumor growth, while circZNF800 knockdown via administration of CRISPR Cas13d-circZNF800 viral particles at the CRC tumor sites impeded tumor growth.
CONCLUSIONS: CircZNF800 is an oncogenic factor that regulate cancer stem cell properties to lead colorectal tumorigenesis, and may be used as a predictive marker for tumor progression and the CRISPR Cas13d-circZNF800 knockdown strategy for therapeutic intervention of colorectal cancer.
OBJECTIVE: This study aimed to determine the potential of ascorbic acid alone in inducing differentially expressed osteoblast-related proteins in dental stem cells via the liquid chromatography-mass spectrometry/ mass spectrometry (LC-MS/MS) approach.
METHODS: The cells were isolated from deciduous (SHED) and permanent teeth (DPSC) and induced with 10 μg/mL of ascorbic acid. Bone mineralisation and osteoblast gene expression were determined using von Kossa staining and reverse transcriptase-polymerase chain reaction. The label-free protein samples were harvested on days 7 and 21, followed by protein identification and quantification using LC-MS/MS. Based on the similar protein expressed throughout treatment and controls for SHED and DPSC, overall biological processes followed by osteoblast-related protein abundance were determined using the PANTHER database. STRING database was performed to determine differentially expressed proteins as candidates for SHED and DPSC during osteoblast development.
RESULTS: Both cells indicated brownish mineral stain and expression of osteoblast-related genes on day 21. Overall, a total of 700 proteins were similar among all treatments on days 7 and 21, with 482 proteins appearing in the PANTHER database. Osteoblast-related protein abundance indicated 31 and 14 proteins related to SHED and DPSC, respectively. Further analysis by the STRING database identified only 22 and 11 proteins from the respective group. Differential expressed analysis of similar proteins from these two groups revealed ACTN4 and ACTN1 as proteins involved in both SHED and DPSC. In addition, three (PSMD11/RPN11, PLS3, and CLIC1) and one (SYNCRIP) protein were differentially expressed specifically for SHED and DPSC, respectively.
CONCLUSION: Proteome differential expression showed that ascorbic acid alone could induce osteoblastrelated proteins in SHED and DPSC and generate specific differentially expressed protein markers.
METHODS: Anti-SARS-CoV-2 potential of the SKF7® was evaluated in SARS-CoV-2-infected Vero E6 cells and SARS-CoV-2-infected A549 cells by cytopathic effect-based assay and RT-qPCR, respectively. Target based assays were performed on the SKF7® against the S1-ACE2 interaction and 3CL protease activities. Anti-inflammatory activity of the SKF7® was evaluated by nitric oxide inhibitory and TLR2/TLR4 receptor blocker assays.
RESULTS: The SKF7® inhibited wild-type Wuhan (EC50 of 21.99 µg/mL) and omicron (EC50 of 16.29 µg/mL) SARS-CoV-2 infections in Vero-E6 cells. The SKF7® also inhibited the wild-type SARS-CoV-2 infection in A549 cells (EC50 value of 6.31 µg/mL). The SKF7® prominently inhibited 3CL protease activity. The SKF7® inhibited the LPS induced-TLR4 response with the EC50 of 16.19 µg/mL.
CONCLUSIONS: In conclusion, our in vitro study highlighted anti-SARS-CoV-2 and anti-inflammatory potentials of the SKF7®. Future pre-clinical in vivo studies focusing on antiviral and immunomodulatory potentials of the SKF7® in affecting the COVID-19 pathogenesis are warranted.
CASE PRESENTATION: Five patients with OCDs of the knee joint are presented. The etiology includes osteochondritis dissecans, traumatic knee injuries, previously failed cartilage repair procedures involving microfractures and OATS (osteochondral allograft transfer systems). PBSC were harvested 1 week after surgery. Patients received intra-articular injections at week 1, 2, 3, 4, and 5 after surgery. Then at 6 months after surgery, intra-articular injections were administered at a weekly interval for 3 consecutive weeks. These 3 weekly injections were repeated at 12, 18 and 24 months after surgery. Each patient received a total of 17 injections. Subjective International Knee Documentation Committee (IKDC) scores and MRI scans were obtained preoperatively and postoperatively at serial visits. At follow-ups of >5 years, the mean preoperative and postoperative IKDC scores were 47.2 and 80.7 respectively (p = 0.005). IKDC scores for all patients exceeded the minimal clinically important difference values of 8.3, indicating clinical significance. Serial MRI scans charted the repair and regeneration of the OCDs with evidence of bone growth filling-in the base of the defects, followed by reformation of the subchondral bone plate and regeneration of the overlying articular cartilage.
CONCLUSION: These case studies showed that this treatment is able to repair and regenerate both the osseous and articular cartilage components of knee OCDs.