HYPOTHESIS/PURPOSE: We hypothesized that LPva extracts can modulate the lipid profiles and serum antioxidant status of hypercholesterolemic rats. In the present study, we investigated the effects of aqueous and 80% ethanol extracts of LPva on atherogenic and serum antioxidant parameters as well as changes in abdominal aorta of high-cholesterol diet rats.
METHODS: The major components of the extracts, gallic acid, flavonoids and alkyl resorcinols were analyzed by using a validated reversed phase HPLC method. The rats were induced to hypercholesterolemic status with daily intake of 2% cholesterol for a duration of 8 weeks. Three different doses (100, 200 and 400mg/kg) of the extracts were administered daily on the 4th week onwards. The rats were then sacrificed and the blood was collected via abdominal aorta and serum was separated by centrifugation for biochemical analysis. Part of the aorta tissues were excised immediately for histopathological examination.
RESULTS: The serum of LPva treated rats showed significant reduction in serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) levels and the abdominal aorta showed a significant decrease of atheroma lesions in treated rats. Serum lipid profiles of treated rats showed a decrease in total cholesterol, total triglycerides and low-density lipoprotein (LDL) levels as compared to control group. The atherogenic indices in treated rats were significantly improved along with an increasing level of serum high-density lipoprotein (HDL). The extracts also exhibited significant increase of antioxidant enzymes and decrease of MDA as a product of lipid peroxidation.
CONCLUSION: LPva extracts can reduce the risk of dyslipidemia by improving the serum lipid profiles and modulating serum antioxidants.
OBJECTIVE: To assess acute and chronic effects of exercise performed before versus after nutrient ingestion on whole-body and intramuscular lipid utilization and postprandial glucose metabolism.
DESIGN: (1) Acute, randomized, crossover design (Acute Study); (2) 6-week, randomized, controlled design (Training Study).
SETTING: General community.
PARTICIPANTS: Men with overweight/obesity (mean ± standard deviation, body mass index: 30.2 ± 3.5 kg⋅m-2 for Acute Study, 30.9 ± 4.5 kg⋅m-2 for Training Study).
INTERVENTIONS: Moderate-intensity cycling performed before versus after mixed-macronutrient breakfast (Acute Study) or carbohydrate (Training Study) ingestion.
RESULTS: Acute Study-exercise before versus after breakfast consumption increased net intramuscular lipid utilization in type I (net change: -3.44 ± 2.63% versus 1.44 ± 4.18% area lipid staining, P < 0.01) and type II fibers (-1.89 ± 2.48% versus 1.83 ± 1.92% area lipid staining, P < 0.05). Training Study-postprandial glycemia was not differentially affected by 6 weeks of exercise training performed before versus after carbohydrate intake (P > 0.05). However, postprandial insulinemia was reduced with exercise training performed before but not after carbohydrate ingestion (P = 0.03). This resulted in increased oral glucose insulin sensitivity (25 ± 38 vs -21 ± 32 mL⋅min-1⋅m-2; P = 0.01), associated with increased lipid utilization during exercise (r = 0.50, P = 0.02). Regular exercise before nutrient provision also augmented remodeling of skeletal muscle phospholipids and protein content of the glucose transport protein GLUT4 (P < 0.05).
CONCLUSIONS: Experiments investigating exercise training and metabolic health should consider nutrient-exercise timing, and exercise performed before versus after nutrient intake (ie, in the fasted state) may exert beneficial effects on lipid utilization and reduce postprandial insulinemia.
OBJECTIVE: To investigate the effect of administration of VCO on lipid profile, markers of hepatic and renal dysfunction, and hepatic and renal antioxidant activities of alloxan induced diabetic rats.
METHODS: Twenty-four male albino rats were used, and they were divided into four groups of six rats each. Group 1 (Normal Control, NC) received distilled water (1 mL/kg); Group 2 (VCO Control) received VCO (5 mL/kg); Group 3 (Diabetic Control, DC) received distilled water (1 mL/kg); Group 4 (Test Group, TG) received 5 ml/kg of VCO.
RESULTS: There were no significant differences in blood glucose, body weights, relative liver weights, relative kidney weights, hepatic and renal Superoxide Dismutase (SOD) activities, Malondialdehyde (MDA), albumin, aspartate Amino Transaminase (AST), alanine Amino Transaminase (ALT), Alkaline Phosphatase (ALP), urea, creatinine, uric acid, total cholesterol, triacylglycerol, Very Low Density Lipoprotein cholesterol (VLDL) and Low Density Lipoprotein cholesterol (LDL) concentrations; significant increases in renal Glutathione (GSH), hepatic catalase, Glutathione Peroxidase (GPx) and GSH but significant reduction in renal GPx and catalase activities of VCO control group compared with NC group. There were significant increases in blood glucose, relative liver and kidney weights, hepatic GPx, hepatic and renal MDA concentration, ALP, AST, ALT, urea, creatinine, uric acid, triacylglycerol, total cholesterol, LDL and VLDL concentrations; and significant decreases in body weight, hepatic SOD and GSH activities and albumin concentration but no significant difference in hepatic catalase activity of DC group compared with NC group. Administration of VCO to diabetic rats positively modulated these parameters compared with the diabetic control.
CONCLUSION: The study showed the potentials of VCO in the management of hyperlipidemia, renal and hepatic dysfunctions imposed by hyperglycemia and by oxidative stress in diabetic rats.
METHODS: Data from the first wave Malaysian Elders Longitudinal Research (MELoR) study comprising urban dwellers aged 55 years and above were utilized. Twelve-month fall histories were established during home-based, computer-assisted interviews which physical performance, anthropometric and laboratory measures were obtained during a hospital-based health check. Gait speed, exhaustion, weakness, and weight loss were employed as frailty markers.
RESULTS: Data were available for 1415 participants, mean age of 68.56 ± 7.26 years, 57.2% women. Falls and metabolic syndrome were present in 22.8% and 44.2%, respectively. After adjusting for age, sex, and multiple comorbidities, metabolic syndrome was significantly associated with falls in the sample population [odds ratio (OR): 1.33, 95% confidence interval (CI): 1.03; 1.72]. This relationship was attenuated by the presence of slow gait speed, but not exhaustion, weakness, or weight loss.
CONCLUSION: Metabolic syndrome was independently associated with falls among older adults, and this relationship was accounted for by the presence of slow gait speed. Future studies should determine the value of screening for frailty and falls with gait speed in older adults with metabolic syndrome as a potential fall prevention measure.