Displaying publications 21 - 40 of 47 in total

Abstract:
Sort:
  1. Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M
    Chemosphere, 2022 Mar;291(Pt 3):132952.
    PMID: 34798103 DOI: 10.1016/j.chemosphere.2021.132952
    Lead (Pb) is one of the toxic heavy metals that pollute the environment as a result of industrial activities. This study aims to optimize Pb removal from water by using horizontal free surface flow constructed wetland (HFSFCW) planted with Scirpus grossus. Optimization was conducted using response surface methodology (RSM) under Box-Behnken design with the operational parameters of initial Pb concentration, retention time, and aeration. Optimization results showed that 37 mg/L of initial Pb concentration, 32 days of retention time, and no aeration were the optimum conditions for Pb removal by using the systems. Validation test was run under two different conditions, namely, non-bioaugmented and bioaugmented with rhizobacteria (Bacillus cereus, B. pumilus, B. subtilis, Brevibacillus choshinensis, and Rhodococcus rhodochrous). Results of the validation test showed that Pb removal in water achieved 99.99% efficiency with 0.2% error from the RSM prediction, while the adsorption of Pb by plants reached 5160.18 mg/kg with 10.6% error from the RSM prediction. The bioaugmentation of the five rhizobacterial species showed a slight improvement in Pb removal from water and Pb adsorption by plants. However, no significant improvement was achieved (p 
  2. Wong TW, Deepak KG, Taib MN, Anuar NK
    Int J Pharm, 2007 Oct 1;343(1-2):122-30.
    PMID: 17597317
    The capacity of microwave non-destructive testing (NDT) technique to characterize the matrix property of binary polymeric films for use as transdermal drug delivery system was investigated. Hydroxypropylmethylcellulose (HPMC) and polyethylene glycol (PEG) 3000 were the choice of polymeric matrix and plasticizer, respectively with loratadine as the model drug. Both blank and drug loaded HPMC-PEG 3000 films were prepared using the solvent-evaporation method. These films were conditioned at the relative humidity of 25, 50 and 75% prior to physicochemical characterization using the established methods of ultra-violet spectrophotometry, differential scanning calorimetry and Fourier transform infrared spectroscopy methods, as well as, novel microwave NDT technique. Blank films exhibited a greater propensity of polymer-polymer interaction at the O-H domain upon storage at a lower level of relative humidity, whereas drug loaded films exhibited a greater propensity of polymer-polymer, polymer-plasticizer and/or drug-polymer interaction via the O-H, C-H and/or aromatic C=C functional groups when they were stored at a lower or moderate level of relative humidity. The absorption and transmission characteristics of both blank and drug loaded films for microwave varied with the state of polymer-polymer, polymer-plasticizer, and/or drug-polymer interaction of the matrix. The measurements of microwave NDT test at 8 and 12 GHz were sensitive to the polar fraction of film involving functional group such as O-H moiety and the less polar environment of matrix consisting of functional groups such as C-H and aromatic C=C moieties. The state of interaction between polymer, plasticizer and/or drug of a binary polymeric film can be elucidated through its absorption and transmission profiles of microwave.
  3. Anuar N, Mohd Adnan AF, Saat N, Aziz N, Mat Taha R
    ScientificWorldJournal, 2013;2013:810547.
    PMID: 24174918 DOI: 10.1155/2013/810547
    Anthocyanins not just have various benefits in food industry but also have been used as natural colourants in cosmetic, coating products and as potential natural photosensitizers in solar cell. Thus, the main purpose of this study was to obtain information on the maximum yield of anthocyanin that can be recovered from Melastoma malabathricum fruit. Factors such as extraction temperature, extraction time, and solid to liquid ratio were identified to be significantly affecting anthocyanin extraction efficiency. By using three-level three-factor Box-Behnken design, the optimized conditions for anthocyanin extraction by acidified methanol (R (2) = 0.972) were temperature of 60°C, time of 86.82 min, and 0.5 : 35 (g/mL) solid to liquid ratio while the optimum extraction conditions by acidified ethanol (R (2) = 0.954) were temperature of 60°C, time of 120 min, and 0.5 : 23.06 (g/mL) solid to liquid ratio. The crude anthocyanin extract was further purified by using Amberlite XAD-7 and Sephadex LH-20 column chromatography. Identification of anthocyanins revealed the presence of cyanidin dihexoside, cyanidin hexoside, and delphinidin hexoside as the main anthocyanins in M. malabathricum fruit.
  4. Al-Baldawi IA, Sheikh Abdullah SR, Abu Hasan H, Suja F, Anuar N, Mushrifah I
    J Environ Manage, 2014 Jul 1;140:152-9.
    PMID: 24762527 DOI: 10.1016/j.jenvman.2014.03.007
    This study investigated the optimum conditions for total petroleum hydrocarbon (TPH) removal from diesel-contaminated water using phytoremediation treatment with Scirpus grossus. In addition, TPH removal from sand was adopted as a second response. The optimum conditions for maximum TPH removal were determined through a Box-Behnken Design. Three operational variables, i.e. diesel concentration (0.1, 0.175, 0.25% Vdiesel/Vwater), aeration rate (0, 1 and 2 L/min) and retention time (14, 43 and 72 days), were investigated by setting TPH removal and diesel concentration as the maximum, retention time within the given range, and aeration rate as the minimum. The optimum conditions were found to be a diesel concentration of 0.25% (Vdiesel/Vwater), a retention time of 63 days and no aeration with an estimated maximum TPH removal from water and sand of 76.3 and 56.5%, respectively. From a validation test of the optimum conditions, it was found that the maximum TPH removal from contaminated water and sand was 72.5 and 59%, respectively, which was a 5 and 4.4% deviation from the values given by the Box-Behnken Design, providing evidence that S. grossus is a Malaysian native plant that can be used to remediate wastewater containing hydrocarbons.
  5. Jawahir S, Mohamad Anuar NN, Sheikh Abdullah SF, Silvernayagam S, Tan EH
    Med J Malaysia, 2021 Jan;76(1):73-79.
    PMID: 33510113
    INTRODUCTION: Positive professional practice environments are crucial to safeguard a healthy and safe working conditions for health workforce, including nurses; so as to ensure provision of quality healthcare and safety of patient.

    METHODS: This was a cross-sectional study to assess nurses' perceptions towards nursing practice environment and factors associated with their perceptions. A validated Practice Environment Scale of the Nursing Work Index (PESNWI) questionnaire was administered to nurses working in two Ministry of Health hospitals. The questionnaire comprises of five subscales: Participation, Foundation, Managers Support, Workforce Adequacy and Physician/Nurse Relations. Mean scores of >2.50 were considered as favourable, and ≤2.50 were considered as unfavourable. Simple linear and multiple linear regression analysis were employed to identify factors associated with their perceptions. Analysis was carried out using STATA version 14.0.

    RESULTS: A total of 366 respondents took part in the study, with a response rate of 98.4%. Majority were working shift (89.6%) and working extended hours (62.3%). In general, the nursing practice environments were rated as favourable. Overall mean score was 2.90±0.03 and four out of five subscales' mean scores were >2.50. Foundation for quality nursing care was perceived as the most favourable subscale, while workforce adequacy was perceived as the least favourable. There were statistically significant association between working extended hours, doing double shift and working during day off with perceived unfavourable workforce adequacy.

    CONCLUSION: Nursing practice environment was perceived as favourable in the studied hospitals. Policy makers, service providers, and hospital managers could explore further on human resource planning and management of nursing personnel to tackle the issue of nurse staffing in the country.

  6. Al-Baldawi IA, Sheikh Abdullah SR, Anuar N, Suja F, Idris M
    Water Sci Technol, 2013;68(10):2271-8.
    PMID: 24292478 DOI: 10.2166/wst.2013.484
    One of the appropriate development technology options for the treatment of wastewater contaminated with diesel is constructed wetlands (CWs). Throughout 72 days of exposure, sampling was carried out for monitoring of physical parameters, plant growth and the efficiency of total petroleum hydrocarbon (TPH) removal, as an indication for diesel contamination, to assess the pilot-scale performance. Four pilot CWs with a horizontal sub-surface flow system were applied using the bulrush of Scirpus grossus. The CWs were loaded with different diesel concentrations of 0, 0.1, 0.2 and 0.25% (Vdiesel/Vwater). The TPH removal efficiencies were 82, 71, and 67% at the end of 72 days for diesel concentrations of 0.1, 0.2, and 0.25% respectively. In addition, the high removal efficiency of total suspended solids and chemical oxygen demand (COD) were 100 and 75.4% respectively, for a diesel concentration of 0.1%. It was concluded that S. grossus is a potential plant that can be used in a well-operated CW for restoring 0.1% diesel-contaminated water.
  7. Al-Mansoory AF, Idris M, Abdullah SRS, Anuar N
    Environ Sci Pollut Res Int, 2017 May;24(13):11998-12008.
    PMID: 26330312 DOI: 10.1007/s11356-015-5261-5
    Greenhouse experiments were carried out to determine the phytotoxic effects on the plant Ludwigia octovalvis in order to assess its applicability for phytoremediation gasoline-contaminated soils. Using plants to degrade hydrocarbons is a challenging task. In this study, different spiked concentrations of hydrocarbons in soil (1, 2, and 3 g/kg) were tested. The results showed that the mean efficiency of total petroleum hydrocarbon (TPH) removal over a 72-day culture period was rather high. The maximum removal of 79.8 % occurred for the 2 g/kg concentration, while the removal rate by the corresponding unplanted controls was only (48.6 %). The impact of gasoline on plants included visual symptoms of stress, yellowing, growth reduction, and perturbations in the developmental parameters. The dry weight and wet weight of the plant slightly increased upon exposure to gasoline until day 42. Scanning electron microscopy (SEM) indicated change to the root and stem structure in plant tissue due to the direct attachment with gasoline contaminated compared to the control sample. The population of living microorganisms in the contaminated soil was found to be able to adapt to different gasoline concentrations. The results showed that L. octovalvis and rhizobacteria in gasoline-contaminated soil have the potential to degrade organic pollutants.
  8. Tangahu BV, Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M
    Int J Phytoremediation, 2013;15(7):663-76.
    PMID: 23819266
    Phytoremediation is a technology to clean the environment from heavy metals contamination. The objectives of this study are to threat Pb contaminated wastewater by using phytoremediation technology and to determine if the plant can be mention as hyperaccumulator. Fifty plants of Scirpus grossus were grown in sand medium and 600 L spiked water in various Pb concentration (10, 30 and 50 mg/L) was exposed. The experiment was conducted with single exposure method, sampling time on day-1, day-14, day-28, day-42, day-70, and day-98. The analysis of Pb concentration in water, sand medium and inside the plant tissue was conducted by ICP-OES. Water samples were filtered and Pb concentration were directly analyzed, Pb in sand samples were extracted by EDTA method before analyzed, and Pb in plant tissues were extracted by wet digestion method and analyzed. The results showed that on day-28, Pb concentration in water decreased 100%, 99.9%, 99.7%, and the highest Pb uptake by plant were 1343, 4909, 3236 mg/kg for the treatment of 10, 30, and 50 mg/L respectively. The highest BC and TF were 485,261 on day-42 and 2.5295 on day-70 of treatment 30 mg/L, it can be mentioned that Scirpus grossus is a hyperaccumulator.
  9. Tangahu BV, Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M
    Int J Phytoremediation, 2013;15(8):814-26.
    PMID: 23819277
    Phytoremediation is an environment-friendly and cost-effective method to clean the environment of heavy metal contamination. A prolonged phytotoxicity test was conducted in a single exposure. Scirpus grossus plants were grown in sand to which the diluted Pb (NO3)2 was added, with the variation of concentration were 0, 100, 200, 400, 600, and 800 mg/L. It was found that Scirpus grossus plants can tolerate Pb at concentrations of up to 400 mg/L. The withering was observed on day-7 for Pb concentrations of 400 mg/L and above. 100% of the plants withered with a Pb concentration of 600 mg/L on day 65. The Pb concentration in water medium decreased while in plant tissues increased. Adsorption of Pb solution ranged between 2 to 6% for concentrations of 100 to 800 mg/L. The Bioaccumulation Coefficient and Translocation Factor of Scirpus grossus were found greater than 1, indicating that this species is a hyperaccumulator plant.
  10. Wu TY, Mohammad AW, Jahim JM, Anuar N
    J Environ Manage, 2010 Jul;91(7):1467-90.
    PMID: 20231054 DOI: 10.1016/j.jenvman.2010.02.008
    Palm oil production is one of the major industries in Malaysia and this country ranks one of the largest productions in the world. In Malaysia, the total production of crude palm oil in 2008 was 17,734,441 tonnes. However, the production of this amount of crude palm oil results in even larger amounts of palm oil mill effluent (POME). In the year 2008 alone, at least 44 million tonnes of POME was generated in Malaysia. Currently, the ponding system is the most common treatment method for POME but other processes such as aerobic and anaerobic digestion, physicochemical treatment and membrane filtration may also provide the palm oil industries with possible insights into the improvement of POME treatment processes. Generally, open ponding offers low capital and operating costs but this conventional method is becoming less attractive because the methane produced is wasted to the atmosphere and the system can not be certified for Carbon Emission Reduction trading. On the other hand, anaerobic digestion of POME provides the fastest payback of investment because the treatment enables biogas recovery for heat generation and treated effluent for land application. Lastly, it is proposed herewith that wastewater management based on the promotion of cleaner production and environmentally sound biotechnologies should be prioritized and included as a part of the POME management in Malaysia for attaining sustainable development. This paper thus discusses and compares state-of-the-art POME treatment methods as well as their individual performances.
  11. Mahmod SS, Azahar AM, Luthfi AAI, Abdul PM, Mastar MS, Anuar N, et al.
    Sci Rep, 2020 Jun 08;10(1):9167.
    PMID: 32514030 DOI: 10.1038/s41598-020-65702-w
    Two-stage anaerobic digestion of palm oil mill effluent (POME) is a promising method for converting the waste from the largest agricultural industry in Southeast Asia into a clean and sustainable energy. This study investigates the degradation of acid-rich effluent from the dark fermentation stage for the production of biomethane (BioCH4) in a 30-L continuous stirred-tank reactor (CSTR). The continuous methanogenic process was operated with varied HRTs (10 - 1 day) and OLRs (4.6-40.6 gCOD/L.d-1) under thermophilic conditions. Methanothermobacter sp. was the dominant thermophilic archaea that was responsible for the production rate of 4.3 LCH4/LPOME.d-1 and methane yield of 256.77 LCH4kgCOD at HRT of 2 d, which is the lowest HRT reported in the literature. The process was able to digest 85% and 64% of the initial POME's COD and TSS, respectively. The formation of methane producing granules (MPG) played a pivotal role in sustaining the efficient and productive anaerobic system. We report herein that the anaerobic digestion was not only beneficial in reducing the contaminants in the liquid effluent, but generating BioCH4 gas with a positive net energy gain of 7.6 kJ/gCOD.
  12. Yunrong T, Jin WW, Mahendran HA, Koon YB, Jahit S, Kamaruddin MA, et al.
    Dis Esophagus, 2024 Apr 02;37(4).
    PMID: 38163959 DOI: 10.1093/dote/doad072
    BACKGROUND: Esophagectomy is the standard of care for curative esophageal cancer. However, it is associated with significant morbidity and mortality. Esophageal cancer is known to negatively affect the nutritional status of patients and many manifest cancer sarcopenia. At present, measures of sarcopenia involve complex and often subjective measurements. We assess whether the Psoas Muscle Index (PMI); an inexpensive, simple, validated method used to diagnose sarcopenia, can be used to predict adverse outcomes in patients after curative esophagectomy.

    METHODS: Multi-centre, retrospective cohort between 2010-2020, involving all consecutive patients undergoing curative esophagectomy for esophageal cancer in University Malaya Medical Centre, Sungai Buloh Hospital, and Sultanah Aminah Hospital. The cut-off value differentiating low and normal PMI is defined as 443mm2/m2 in males and 326326 mm2/m2 in females. Complications were recorded using the Clavien-Dindo Scale.

    RESULTS: There was no statistical correlation between PMI and major post-esophagectomy complications (p-value: 0.495). However, complication profile was different, and patients with low PMIs had higher 30-day mortality (21.7%) when compared with patients with normal PMI (8.1%) (p-value: 0.048).

    CONCLUSIONS: Although PMI did not significantly predict post-esophagectomy complications, low PMI correlates with higher 30-day mortality, reflecting a lower tolerance for complications among these patients. PMI is a useful, inexpensive tool to identify sarcopenia and aids the patient selection process. This alerts healthcare professionals to institute intensive physiotherapy and nutritional optimization prior to esophagectomy.

  13. Shukor H, Al-Shorgani NK, Abdeshahian P, Hamid AA, Anuar N, Rahman NA, et al.
    Bioresour Technol, 2014 Oct;170:565-73.
    PMID: 25171212 DOI: 10.1016/j.biortech.2014.07.055
    Palm kernel cake (PKC) was used for biobutanol production by Clostridium saccharoperbutylacetonicum N1-4 in acetone-butanol-ethanol (ABE) fermentation. PKC was subjected to acid hydrolysis pretreatment and hydrolysates released were detoxified by XAD-4 resin. The effect of pH, temperature and inoculum size on butanol production was evaluated using an empirical model. Twenty ABE fermentations were run according to an experimental design. Experimental results revealed that XAD-4 resin removed 50% furfural and 77.42% hydroxymethyl furfural. The analysis of the empirical model showed that linear effect of inoculums size with quadratic effect of pH and inoculum size influenced butanol production at 99% probability level (P<0.01). The optimum conditions for butanol production were pH 6.28, temperature of 28°C and inoculum size of 15.9%. ABE fermentation was carried out under optimum conditions which 0.1g/L butanol was obtained. Butanol production was enhanced by diluting PKC hydrolysate up to 70% in which 3.59g/L butanol was produced.
  14. Zulpa AK, Barathan M, Iyadorai T, Chandramathi S, Vellasamy KM, Vadivelu J, et al.
    Trop Biomed, 2021 Jun 01;38(2):180-185.
    PMID: 34172708 DOI: 10.47665/tb.38.2.055
    Acute myeloid leukemia (AML) is a malignant disease progressed from abnormal production of immature myeloid cells, which is often associated with concurrent infections after diagnosis. It was widely established that infections are the major contributors to mortality in this group due to the prevalency of neutropenia. Gram-negative Burkholderia pseudomallei is the causative agent of melioidosis. This disease had been reported in several neutropenic cancer patients undergoing chemotherapy resulting in severe clinical presentations and high mortalities which is in need of critical attention. Studies show that cytokines are important mediators of melioidosis progression and low neutrophil counts are associated with progression of its severity. However, to date, there are no reports on cytokine production in neutropenic cancer patients who are prone to melioidosis. Hence, here we assessed the cytokine production in neutropenic AML patients by introducing B. pseudomallei to their peripheral blood mononuclear cell (PBMC) culture in vitro. We observed that inflammatory response related cytokines namely TNF-α, IFN-γ IL-6 and IL-10 were highly circulated in infected PBMCs suggesting that these cytokines may play important roles in the progression of severity in melioidosis infected neutropenic patients.
  15. Almansoory AF, Idris M, Abdullah SRS, Anuar N, Kurniawan SB
    Chemosphere, 2021 Apr;269:128760.
    PMID: 33162166 DOI: 10.1016/j.chemosphere.2020.128760
    The greenhouse phytotoxicity experiment was conducted to analyse and assess the capability of Scirpus mucronatus (L.) in tolerating and removing petrol in contaminated soil. This research was conducted for 72 days by using 5, 10 and 30 g/kg petrol as soil contaminants. Results showed that the system planted with S. mucronatus (L.) had high potential to treat the 10 g/kg petrol-contaminated soil and had an average Total Petroleum Hydrocarbon (TPH) removal of 82.1%. At 5 and 30 g/kg petrol, the planted system removed 74.9% and 75.8% TPH, respectively. The petrol (10 g/kg) affected the plant growth positively, which was indicated by the increase in dry and wet weights throughout the research period. The removal of the TPH in the system was performed because of the interaction of plants and rhizobacteria. SEM showed that a high concentration of petrol (30 g/kg) affected the plant tissue negatively, as indicated by the altered structures of the root and stem cells. EDX results also confirmed that petrol was absorbed by the plant, as shown by the increased carbon content in the plant's root and stem after the treatment.
  16. Al-Baldawi IA, Abdullah SRS, Almansoory AF, Ismail N', Hasan HA, Anuar N
    Sci Rep, 2020 08 19;10(1):13980.
    PMID: 32814793 DOI: 10.1038/s41598-020-70740-5
    In the present study, the potential of Salvinia molesta for biodecolorization of methyl orange (MO) dye from water was examined. Six glass vessels were filled with 4 L of water contaminated with MO with three concentrations (5, 15, and 25 mg/L), three with plants and another three without plant as contaminant control. The influence of operational parameters, including initial dye concentration, pH, temperature, and plant growth, on the efficacy of the biodecolorization process by S. molesta was determined. Temperature and pH was in the range of 25-26 °C and 6.3 to 7.3, respectively. Phytotransformation was monitored after 10 days through Fourier transform infrared (FTIR) spectroscopy, and a significant variation in the peak positions was demonstrated when compared to the control plant spectrum, indicating the adsorption of MO. The highest biodecolorization was 42% in a 5 mg/L MO dye concentration at pH 7.3 and at 27 °C. According to the FTIR results, a potential method for the biodecolourization of MO dye by S. molesta was proven. Salvinia molesta can be successfully used for upcoming eco-friendly phytoremediation purposes for dye removal.
  17. Izhar Ariff Mohd Kashim M, Abdul Haris AA, Abd Mutalib S, Anuar N, Shahimi S
    Saudi J Biol Sci, 2023 Jan;30(1):103501.
    PMID: 36466219 DOI: 10.1016/j.sjbs.2022.103501
    Cultured meat is meat produced from stem cell biopsies of cattle. Stem cells were cultured in a bioreactor in the presence of serum to grow the flesh to maturity. Cultured meat technology originated from regenerative medical technology; however, it has been given a new lease of life to produce cultured meat as an innovative food source in the future without involving cattle breeding. This technology can reduce the negative environmental impacts of global warming, water use, soil, and unethical handling of animals. In the excitement of accepting this new technology, the halal status of cultured meat is in question, as it can be produced from embryonic stem cells and myosatellite cells, each of which can be disputed for their halal status. Additionally, the process of culturing and maturation of stem cells involves the use of an impure medium derived from animal blood. Thus, cultured meat is acceptable to Muslims only if the stem cells, medium and scaffold biomaterials used to manufacture it are from Halal sources and shall be in line with the six principles discussed in this study. The discussion is based on Halal and haram animals; Animal slaughtering; Not derived from a source of najs (impurity); Istihalah tammah (perfect substance change); Maslahah (public interest or benefit) and mafsadah (damage); and Darurat (exigency) of cultured meat)).
  18. Mohd Kashim MIA, Abdul Haris AA, Hasim NA, Abd Mutalib S, Anuar N
    Foods, 2022 Oct 17;11(20).
    PMID: 37430984 DOI: 10.3390/foods11203235
    Meat culturing technology goes beyond laboratory research and materialises in the market. Nonetheless, this technology has raised concerns among Muslim consumers worldwide due to its medium, especially foetal bovine serum (FBS), which originates from blood. Thus, the aim of this research was to determine the halal status of cultured meat by detecting species-specific DNA of bovine serum as one of the media used during meat production. Polymerase chain reaction (PCR) analysis was conducted by targeting mitochondrial cytochrome oxidase II (COII) gene sequences, producing a 165 bp amplicon. The sequences of the primers used were Bovine-F, 5'-CAT CAT AGC AAT TGC CAT AGT CC-3' and Bovine-R, 5'-GTA CTA GTA GTA TTA GAG CTA GAA TTA G-3'. DNA extraction was conducted using a QIAGEN Blood and Tissue™ commercial kit. The presence study also included a literature review on the Istihalah (transformation) concept in order to determine the halal status of cultured meat. The results revealed that bovine DNA was detected in all samples tested using PCR analysis. Therefore, Istihalah tammah (perfect transformation) does not occur due to the ability of PCR analysis to detect bovine DNA in FBS and is prohibited according to Shariah law.
  19. Titah HS, Halmi MIEB, Abdullah SRS, Hasan HA, Idris M, Anuar N
    Int J Phytoremediation, 2018 Jun 07;20(7):721-729.
    PMID: 29723047 DOI: 10.1080/15226514.2017.1413337
    In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg-1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links