The bioavailability of a generic preparation of ketoconazole (Zorinax from Xepa-Soul Pattinson, Malaysia) was evaluated in comparison with the innovator product (Nizoral from Janssen Pharmaceutica, Switzerland). Eighteen healthy male volunteers participated in the study conducted according to a two-way crossover design. The bioavailability was compared using the parameters, total area under the plasma concentration-time curve (AUC0-infinity), peak plasma concentration (Cmax) and time to reach peak plasma concentration (Tmax). No statistically significant difference was observed between the values of the two products in all the three parameters. Moreover, the 90% confidence interval for the ratio of the logarithmic transformed AUC0-infinity and Cmax values of Zorinax over Nizoral was found to lie between 0.82-1.04 and 0.83-1.02, respectively, being within the acceptable equivalence limit of 0.80-1.25. These findings indicate that the two preparations are comparable in the extent and rate of absorption. In addition, the elimination rate constant (ke) and apparent volume of distribution (Vd) were calculated. For both parameters, there was no statistically significant difference between the values obtained from the data of the two preparations. Moreover, the values are comparable to those reported in the literature.
The bioavailability of a generic preparation of metformin (Diabetmin from Hovid Sdn Bhd) was evaluated in comparison with a proprietary product (Glucophage from Lipha Pharma Ltd., UK).
Curcumin-loaded chitosan nanoparticles were synthesised and evaluated in vitro for enhanced transdermal delivery. Zetasizer® characterisation of three different formulations of curcumin nanoparticles (Cu-NPs) showed the size ranged from 167.3 ± 3.8 nm to 251.5 ± 5.8 nm, the polydispersity index (PDI) values were between 0.26 and 0.46 and the zeta potential values were positive (+ 18.1 to + 20.2 mV). Scanning electron microscopy (SEM) images supported this size data and confirmed the spherical shape of the nanoparticles. All the formulations showed excellent entrapment efficiency above 80%. FTIR results demonstrate the interaction between chitosan and sodium tripolyphosphate (TPP) and confirm the presence of curcumin in the nanoparticle. Differential scanning calorimetry (DSC) studies of Cu-NPs indicate the presence of curcumin in a disordered crystalline or amorphous state, suggesting the interaction between the drug and the polymer. Drug release studies showed an improved drug release at pH 5.0 than in pH 7.4 and followed a zero order kinetics. The in vitro permeation studies through Strat-M® membrane demonstrated an enhanced permeation of Cu-NPs compared to aqueous curcumin solution (p ˂ 0.05) having a flux of 0.54 ± 0.03 μg cm-2 h-1 and 0.44 ± 0.03 μg cm-2 h-1 corresponding to formulations 5:1 and 3:1, respectively. The cytotoxicity assay on human keratinocyte (HaCat) cells showed enhanced percentage cell viability of Cu-NPs compared to curcumin solution. Cu-NPs developed in this study exhibit superior drug release and enhanced transdermal permeation of curcumin and superior percentage cell viability. Further ex vivo and in vivo evaluations will be conducted to support these findings.
Tocotrienol (TRF) ethosomes were developed and evaluated in vitro for potential transdermal delivery against melanoma. The optimised TRF ethosomal size ranged between 64.9 ± 2.2 nm to 79.6 ± 3.9 nm and zeta potential (ZP) between -53.3 mV to -62.0 ± 2.6 mV. Characterisation of the ethosomes by ATR-FTIR indicated the successful formation of TRF-ethosomes. Scanning electron microscopy (SEM) images demonstrated the spherical shape of ethosomes, and the entrapment efficiencies of all the formulations were above 66%. In vitro permeation studies using full-thickness human skin showed that the permeation of gamma-T3 from the TRF ethosomal formulations was significantly higher (p
Boronic acids have been widely investigated for their potential use as glucose sensors in glucose responsive polymeric insulin delivery systems. Interactions between cyclic diols and boronic acids, anchored to polymeric delivery systems, may result in swelling of the delivery system, releasing the drug. In this study, 4-formylphenylboronic acid conjugated chitosan was formulated into insulin containing nanoparticles via polyelectrolyte complexation. The nanoparticles had an average diameter of 140 ± 12.8 nm, polydispersity index of 0.17 ± 0.1, zeta potential of +19.1 ± 0.69 mV, encapsulation efficiency of 81% ± 1.2%, and an insulin loading capacity of 46% ± 1.8% w/w. Changes in size of the nanoparticles and release of insulin were type of sugar- and concentration-dependent. High concentration of diols resulted in a sustained release of insulin due to crosslink formation with boronic acid moieties within the nanoparticles. The formulation has potential to be developed into a self-regulated insulin delivery system for the treatment of diabetes.
An amphotericin B-containing (AmB) solid lipid nanoparticulate drug delivery system intended for oral administration, comprised of bee's wax and theobroma oil as lipid components was formulated with the aim to ascertain the location of AmB within the lipid matrix: (a) a homogenous matrix; (b) a drug-enriched shell; or (c) a drug enriched core. Both the drug-loaded and drug-free nanoparticles were spherical with AmB contributing to an increase in both the z-average diameter (169 ± 1 to 222 ± 2 nm) and zeta potential (40.8 ± 0.9 to 50.3 ± 1.0 mV) of the nanoparticles. A maximum encapsulation efficiency of 21.4% ± 3.0%, corresponding to 10.7 ± 0.4 mg encapsulated AmB within the lipid matrix was observed. Surface analysis and electron microscopic imaging indicated that AmB was dispersed uniformly within the lipid matrix (option (a) above) and, therefore, this is the most suitable of the three models with regard to modeling the propensity for uptake by epithelia and release of AmB in lymph.
The bioavailability of a generic preparation of acyclovir (Avorax) was compared with the innovator product, Zovirax. Twelve healthy volunteers participated in the study, conducted according to a randomized, two-way crossover design. The preparations were compared using the parameters area under the plasma concentration time curve (AUC(0-infinity), peak plasma concentration (Cmax), and time to reach peak plasma concentration (Tmax). No statistically significant difference was observed between the Tmax or the logarithmic transformed AUC(0-infinity) and C(max) values of the two preparations. In addition, the 90% confidence interval for the ratio of the logarithmic transformed AUC(0-infinity) values of Avorax over those of Zovirax was found to lie between 0.85 and 1.06, while that of the logarithmic transformed Cmax values was between 0.95 and 1.25, being within the bioequivalence limit of 0.80-1.25. Moreover, the elimination rate constant (k(e)), elimination half-life (t(1/2)), and apparent volume of distribution (Vd) values obtained with the two preparations were comparable and not significantly different statistically.
This study aimed at developing curcumin nanoethosomes (Cur-Ets) with superior skin permeation intended for melanoma treatment. Although curcumin is active against many types of skin cancers, a suitable topical formulation is still lacking due to its hydrophobicity and poor skin permeation. The formulation was characterized using Scanning Transmission Electron Microscopy (STEM), atomic force microscopy (AFM), ATR-FTIR, DSC and XRD. In vitro skin permeation was carried out using human skin, and the cytotoxicity of the formulation was evaluated on human melanoma cells (SK-MEL28). The vesicle size and zeta potential of the Cur-Ets were determined as 67 ± 1.6 nm and -87.3 ± 3.3 mV, respectively. STEM and AFM analysis further support the size and morphology of the formulation. Curcumin's compatibility with formulation additives was confirmed by ATR-FTIR analysis. In addition, DSC and XRD analyses showed successful drug encapsulation in nanoethosomes. The drug encapsulation efficiency was determined as 87 ± 0.9%. The skin permeation of curcumin from Cur-Ets showed a superior flux (0.14 ± 0.03 µg cm-2 h-1) compared to the control (p
Phenyl boronic acid (PBA), which is known to interact with glucose, was covalently bonded to chitosan by direct reductive N-alkylation of chitosan with 4-formylphenylboronic acid (4-FPBA). Evidence of PBA bonding on chitosan was assessed by FTIR, ToF-SIMS, SEM, DSC and glucose adsorption sensitivity measurements. FTIR spectra showed strong signals at 1560 and 630 cm-1 indicating the formation of p-substituted benzene. Similarly, ToF-SIMS analyses on the conjugates registered fragments of boron ion (B-) at 11.0 m/z whose intensity increased in proportion to 4-FPBA loading. The degree to which PBA was bonded to chitosan was related to the 4-FPBA load used in the reaction (termed F1 through to F6 with increasing 4-FPBA load). Glucose adsorption sensitivity to PBA-bonded chitosan was directly related to the amount of PBA functionality within the conjugates and the physical nature of the matrices (porous or crystalline). Topographic analysis by SEM revealed that PBA-chitosan conjugates F1, F2 and F3 have porous matrices and their sensitivity to glucose adsorption was directly proportional to the degree of PBA substitution onto chitosan. Conversely, conjugates F4, F5 and F6 appeared crystalline under SEM and glucose adsorption sensitivity decreased in proportion to amount of PBA bonded to chitosan. The crystalline nature of the conjugates was confirmed by DSC, where the exothermic event related to the melting of the bonded PBA moiety, occurred at 338 °C. Thus, decreased sensitivity to glucose adsorption by the conjugates can be ascribed to the crystallinity imparted by increased content of the bonded PBA moiety, providing an optimal loading of PBA in terms of maximizing response to glucose.
In the present study, we investigate the mucoadhesive characteristics and release of the anticancer agent curcumin, contained in chitosan nanoparticles (CS-NPs). Such a system has potential therapeutic benefits in the treatment of colon cancer through prolonged retention and delivery. The CS-NPs were ionically gelled with tripolyphosphate (TPP) and registered an isoelectric pH of 6.2 (z-average diameter of 214 nm ± 1.0 nm). pH variations around the isoelectric point caused a reduction in CS-NPs electrical charge which correspondingly increased the z-average due to agglomeration. Curcumin release from CS-NPs was slowest at chitosan to TPP weight ratio of 3:1, with a significant retention (36%) at the end of 6 h. Adsorption isotherms of mucin on CS-NPs fitted both the Freundlich and Langmuir models, suggesting a monolayer-limited adsorption on heterogeneous sites with varied affinities. Encapsulated curcumin exerted an influence on the adsorption of mucin due to H-bonding as well as π-π interactions between the phenolic moieties of curcumin and mucin.
The microencapsulation of three model drugs; metronidazole, paracetamol and sulphapyridine into Poly (dl-Lactide-Co-Glycolide) (PLGA) scaffolds were probed using X-ray Powder Diffraction (XRPD). Changes in the diffraction patterns of the PLGA scaffolds after encapsulation was suggestive of a chemical interaction between the pure drugs and the scaffolds and not a physical intermixture.
An injectable poly(DL-lactic-co-glycolic acid) (PLGA) system comprising both porous and protein-loaded microspheres capable of forming porous scaffolds at body temperature was developed for tissue regeneration purposes. Porous and non-porous (lysozyme loaded) PLGA microspheres were formulated to represent 'low molecular weight' 22-34 kDa, 'intermediate molecular weight' (IMW) 53 kDa and 'high molecular weight' 84-109 kDa PLGA microspheres. The respective average size of the microspheres was directly related to the polymer molecular weight. An initial burst release of lysozyme was observed from both microspheres and scaffolds on day 1. In the case of the lysozyme-loaded microspheres, this burst release was inversely related to the polymer molecular weight. Similarly, scaffolds loaded with 1 mg lysozyme/g of scaffold exhibited an inverse release relationship with polymer molecular weight. The burst release was highest amongst IMW scaffolds loaded with 2 and 3 mg/g. Sustained lysozyme release was observed after day 1 over 50 days (microspheres) and 30 days (scaffolds). The compressive strengths of the scaffolds were found to be inversely proportional to PLGA molecular weight at each lysozyme loading. Surface analysis indicated that some of the loaded lysozyme was distributed on the surfaces of the microspheres and thus responsible for the burst release observed. Overall the data demonstrates the potential of the scaffolds for use in tissue regeneration.
Poly(lactic-co-glycolic acid) (PLGA) is a well-studied biodegradable polymer used in drug delivery and other medical applications such as in tissue regeneration. It is often necessary to impart porosity within the scaffold (microparticles) in order to promote the growth of tissue during the regeneration process. Sodium chloride and ammonium bicarbonate have been extensively used as porogens in the generation of porous microstructure. In this study, we compared the effect of volumes (250 μl, 500 μl and 750 μl) of two porogens, sodium chloride (1.71 M) and ammonium bicarbonate (1.71 M), on the porosity of PLGA microparticles.
Curcumin, the active ingredient of the rhizome curcuma longa has been extensively studied as an anticancer agent for various types of tumours. However, its efficacy as an anticancer agent is restricted due to poor absorption from the gastrointestinal tract, rapid metabolism and degradation in acidic medium. In the present study, we encapsulated curcumin in chitosan-pectinate nanoparticulate system (CUR-CS-PEC-NPs) for deployment of curcumin to the colon, whereby curcumin is protected against degradative effects in the upper digestive tract, and hence, maintaining its anticancer properties until colon arrival. The CUR-CS-PEC-NPs was taken up by HT-29 colorectal cancer cells which ultimately resulted in a significant reduction in cancer cell propagation. The anti-proliferative effect of the encapsulated curcumin was similar to that of free curcumin at equivalent doses which confirms that the encapsulation process did not impede the anticancer activity of curcumin. The oral bioavailability (Cmax, and AUC) of curcumin in CUR-CS-PEC-NPs was enhanced significantly by 4-folds after 6 hours of treatment compared to free curcumin. Furthermore, the clearance of curcumin from the CUR-CS-PEC-NPs was lower compared to free curcumin. These findings point to the potential application of the CUR-CS-PEC-NPs in the oral delivery of curcumin in the treatment of colon cancer.
The development of patient-friendly alternatives to bone-graft procedures is the driving force for new frontiers in bone tissue engineering. Poly (dl-lactic-co-glycolic acid) (PLGA) and chitosan are well-studied and easy-to-process polymers from which scaffolds can be fabricated. In this study, a novel dual-application scaffold system was formulated from porous PLGA and protein-loaded PLGA/chitosan microspheres. Physicochemical and in vitro protein release attributes were established. The therapeutic relevance, cytocompatibility with primary human mesenchymal stem cells (hMSCs) and osteogenic properties were tested. There was a significant reduction in burst release from the composite PLGA/chitosan microspheres compared with PLGA alone. Scaffolds sintered from porous microspheres at 37 °C were significantly stronger than the PLGA control, with compressive strengths of 0.846 ± 0.272 MPa and 0.406 ± 0.265 MPa, respectively (p
Arthrospira platensis (A. platensis) aqueous extract has massive amounts of natural products that can be used as future drugs, such as C-phycocyanin, allophycocyanin, etc. This extract was chosen because of its high adaptability, which reflects its resolute genetic composition. The proactive roles of cyanobacteria, particularly in the medical field, have been discussed in this review, including the history, previous food and drug administration (FDA) reports, health benefits and the various dose-dependent therapeutic functions that A. platensis possesses, including its role in fighting against lethal diseases such as cancer, SARS-CoV-2/COVID-19, etc. However, the remedy will not present its maximal effect without the proper delivery to the targeted place for deposition. The goal of this research is to maximize the bioavailability and delivery efficiency of A. platensis constituents through selected sites for effective therapeutic outcomes. The solutions reviewed are mainly on parenteral and tablet formulations. Moreover, suggested enteric polymers were discussed with minor composition variations applied for better storage in high humid countries alongside minor variations in the polymer design were suggested to enhance the premature release hindrance of basic drugs in low pH environments. In addition, it will open doors for research in delivering active pharmaceutical ingredients (APIs) in femtoscale with the use of various existing and new formulations.Abbrevations: SDGs; Sustainable Development Goals, IL-4; Interleukin-4, HDL; High-Density Lipoprotein, LDL; Low-Density Lipoprotein, VLDL; Very Low-Density Lipoprotein, C-PC; C-Phycocyanin, APC; Allophycocyanin, PE; Phycoerythrin, COX-2; Cyclooxygenase-2, RCTs; Randomized Control Trials, TNF-α; Tumour Necrosis Factor-alpha, γ-LFA; Gamma-Linolenic Fatty Acid, PGs; Polyglycans, PUFAs: Polyunsaturated Fatty Acids, NK-cell; Natural Killer Cell, FDA; Food and Drug Administration, GRAS; Generally Recognized as Safe, SD; Standard Deviation, API; Active Pharmaceutical Ingredient, DW; Dry Weight, IM; Intramuscular, IV; Intravenous, ID; Intradermal, SC; Subcutaneous, AERs; Adverse Event Reports, DSI-EC; Dietary Supplement Information Executive Committee, cGMP; Current Good Manufacturing Process, A. platensis; Arthrospira platensis, A. maxima; Arthrospira maxima, Spirulina sp.; Spirulina species, Arthrospira; Spirulina, Tecuitlatl; Spirulina, CRC; Colorectal Cancer, HDI; Human Development Index, Tf; Transferrin, TfR; Transferrin Receptor, FR; Flow Rate, CPP; Cell Penetrating Peptide, SUV; Small Unilamenar Vesicle, LUV; Large Unilamenar Vesicle, GUV; Giant Unilamenar Vesicle, MLV; Multilamenar Vesicle, COVID-19; Coronavirus-19, PEGylated; Stealth, PEG; Polyethylene Glycol, OSCEs; Objective Structured Clinical Examinations, GI; Gastrointestinal Tract, CAP; Cellulose Acetate Phthalate, HPMCP, Hydroxypropyl Methyl-Cellulose Phthalate, SR; Sustained Release, DR; Delay Release, Poly(MA-EA); Polymethyl Acrylic Co-Ethyl Acrylate, f-DR L-30 D-55; Femto-Delay Release Methyl Acrylic Acid Co-Ethyl Acrylate Polymer, MW; Molecular Weight, Tg; Glass Transition Temperature, SN2; Nucleophilic Substitution 2, EPR; Enhance Permeability and Retention, VEGF; Vascular Endothelial Growth Factor, RGD; Arginine-Glycine-Aspartic Acid, VCAM-1; Vascular Cell Adhesion Molecule-1, P; Coefficient of Permeability, PES; Polyether Sulfone, pHe; Extracellular pH, ζ-potential; Zeta potential, NTA; Nanoparticle Tracking Analysis, PB; Phosphate Buffer, DLS; Dynamic Light Scattering, AFM; Atomic Force Microscope, Log P; Partition Coefficient, MR; Molar Refractivity, tPSA; Topological Polar Surface Area, C log P; Calculated Partition Coefficient, CMR; Calculated Molar Refractivity, Log S; Solubility Coefficient, pka; Acid Dissociation Constant, DDAB; Dimethyl Dioctadecyl Ammonium Bromide, DOPE; Dioleoylphosphatidylethanolamine, GDP; Good Distribution Practice, RES; Reticuloendothelial System, PKU; Phenylketonuria, MS; Multiple Sclerosis, SLE; Systemic Lupus Erythematous, NASA; National Aeronautics and Space Administration, DOX; Doxorubicin, ADRs; Adverse Drug Reactions, SVM; Support Vector Machine, MDA; Malondialdehyde, TBARS; Thiobarbituric Acid Reactive Substances, CRP; C-Reactive Protein, CK; Creatine Kinase, LDH; Lactated Dehydrogenase, T2D; Type 2 Diabetes, PCB; Phycocyanobilin, PBP; Phycobiliproteins, PEB; Phycoerythrobilin, DPP-4; Dipeptidyl Peptidase-4, MTT; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, IL-2; Interleukin-2, IL-6; Interleukin-6, PRISMA; Preferred Reporting Items for Systematic Reviews and Meta-Analyses, STATA; Statistics, HepG2; Hepatoblastoma, HCT116; Colon Cancer Carcinoma, Kasumi-1; Acute Leukaemia, K562; Chronic Leukaemia, Se-PC; Selenium-Phycocyanin, MCF-7; Breast Cancer Adenocarcinoma, A375; Human Melanoma, RAS; Renin-Angiotensin System, IQP; Ile-Gln-Pro, VEP; Val-Glu-Pro, Mpro; Main Protease, PLpro; Papin-Like Protease, BMI; Body Mass Index, IC50; Inhibitory Concentration by 50%, LD50; Lethal Dose by 50%, PC12 Adh; Rat Pheochromocytoma Cells, RNS; Reactive Nitrogen Species, Hb1Ac; hemoglobin A1c.
Alzheimer's disease (AD) is a neurodegenerative disease with high prevalence in the rapidly growing elderly population in the developing world. The currently FDA approved drugs for the management of symptomatology of AD are marketed mainly as conventional oral medications. Due to their gastrointestinal side effects and lack of brain targeting, these drugs and dosage regiments hinder patient compliance and lead to treatment discontinuation. Nanotechnology-based drug delivery systems (NTDDS) administered by different routes can be considered as promising tools to improve patient compliance and achieve better therapeutic outcomes. Despite extensive research, literature screening revealed that clinical activities involving NTDDS application in research for AD are lagging compared to NTDDS for other diseases such as cancers. The industrial perspectives, processability, and cost/benefit ratio of using NTDDS for AD treatment are usually overlooked. Moreover, active and passive immunization against AD are by far the mostly studied alternative AD therapies because conventional oral drug therapy is not yielding satisfactorily results. NTDDS of approved drugs appear promising to transform this research from 'paper to clinic' and raise hope for AD sufferers and their caretakers. This review summarizes the recent studies conducted on NTDDS for AD treatment, with a primary focus on the industrial perspectives and processability. Additionally, it highlights the ongoing clinical trials for AD management.