Displaying publications 21 - 40 of 73 in total

Abstract:
Sort:
  1. Pandey M, Choudhury H, D/O Segar Singh SK, Chetty Annan N, Bhattamisra SK, Gorain B, et al.
    Molecules, 2021 May 05;26(9).
    PMID: 34062995 DOI: 10.3390/molecules26092704
    A single ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that causes inflammation of the colonic mucosa at the distal colon and rectum. The mainstay therapy involves anti-inflammatory immunosuppression based on the disease location and severity. The disadvantages of using systemic corticosteroids for UC treatment is the amplified risk of malignancies and infections. Therefore, topical treatments are safer as they have fewer systemic side effects due to less systemic exposure. In this context, pH sensitive and enzymatically triggered hydrogel of pectin (PC) and polyacrylamide (PAM) has been developed to facilitate colon-targeted delivery of budesonide (BUD) for the treatment of UC. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), swelling ratio, and drug release. FT-IR spectroscopy confirmed the grafting as well loading of BUD in hydrogel. XRD showed the amorphous nature of hydrogel and increment in crystallinity after drug loading. On the other hand, SEM showed that the hydrogels exhibited a highly porous morphology, which is suitable for drug loading and also demonstrated a pH-responsive swelling behaviour, with decreased swelling in acidic media. The in-vitro release of BUD from the hydrogel exhibited a sustained release behaviour with non-ficken diffusion mechanism. The model that fitted best for BUD released was the Higuchi kinetic model. It was concluded that enzyme/pH dual-sensitive hydrogels are an effective colon-targeted delivery system for UC.
  2. Kumar Dubey S, Pradhan R, Hejmady S, Singhvi G, Choudhury H, Gorain B, et al.
    Int J Pharm, 2021 May 01;600:120499.
    PMID: 33753164 DOI: 10.1016/j.ijpharm.2021.120499
    Age-related macular degeneration (AMD), a degenerative eye disease, is the major cause of irreversible loss of vision among individuals aged 50 and older. Both genetic and environmental factors are responsible for the progressive damage to central vision. It is a multifactorial retinal disease with features such as drusen, hypopigmentation and/or hyperpigmentation of the retinal pigment epithelium, and even choroidal neovascularization in certain patients. AMD is of two major forms: exudative (wet) and atrophic (dry) with changes affecting the macula leading to impaired vision. Although the retina remains an accessible portion for delivering drugs, there are no current options to cure or treat AMD. The existing expensive therapeutics are unable to treat the underlying pathology but display several side effects. However, recent innovations in nanotherapeutics provide an optimal alternative of drug delivery to treat the neovascular condition. These new-age technologies in the nanometer scale would enhance bioactivity and improve the bioavailability of drugs at the site of action to treat AMD. The nanomedicine also provides sustained release of the drug with prolonged retention after penetrating across the ocular tissues. In this review, the insights into the cellular and molecular mechanisms associated with the pathophysiology of AMD are provided. It also serves to review the current progress in nanoparticle-based drug delivery systems that offer feasible treatments in AMD.
  3. Shah R, Soni T, Shah U, Suhagia BN, Patel MN, Patel T, et al.
    J Biomater Sci Polym Ed, 2021 05;32(7):833-857.
    PMID: 33380264 DOI: 10.1080/09205063.2020.1870378
    Variable and low oral bioavailability (4-11%) of lumefantrine (LUF), an anti-malarial agent, is characterized by very low solubility in aqueous vehicle. Thus, the present study was intended to formulate lyophilized nanosuspensions of LUF to resolve its solubility issues for the improvement of oral bioavailability. A three level 32 factorial design was applied to analyze the influence of independent variables, concentration of polysorbate 80 (X1) and sonication time (X2) on the responses for dependent variables, particle size (Y1) and time to 90% release of LUF (t90) (Y2). Optimized formulation (F3) has shown to possess lowest particle size (95.34 nm) with minimum t90 value (⁓3 mins), which was lyophilized to obtain the dry powder form of the nanosuspension. The characterization parameters confirmed the amorphous form of LUF with good stability and no chemical interactions of the drug with the incorporated components. Further, saturation solubility study revealed increased solubility of the LUF nanosuspension (1670 µg/mL) when compared to the pure drug (212.33 µg/mL). Further, rate of dissolution of LUF from the nanosuspension formulations were found to be significantly (p 
  4. Pandey M, Choudhury H, Binti Abd Aziz A, Bhattamisra SK, Gorain B, Su JST, et al.
    Polymers (Basel), 2021 Apr 20;13(8).
    PMID: 33923900 DOI: 10.3390/polym13081340
    Eyesight is one of the most well-deserved blessings, amid all the five senses in the human body. It captures the raw signals from the outside world to create detailed visual images, granting the ability to witness and gain knowledge about the world. Eyes are exposed directly to the external environment; they are susceptible to the vicissitudes of diseases. The World Health Organization has predicted that the number of individuals affected by eye diseases will rise enormously in the next decades. However, the physical barriers of the eyes and the problems associated with conventional ocular formulations are significant challenges in ophthalmic drug development. This has generated the demand for a sustained ocular drug delivery system, which serves to deliver effective drug concentration at a reduced frequency for consistent therapeutic effect and better patient treatment adherence. Recent advancement in pharmaceutical dosage design has demonstrated that a stimuli-responsive in situ gel system exhibits the favorable characteristics for providing sustained ocular drug delivery and enhanced ocular bioavailability. Stimuli-responsive in situ gels undergo a phase transition (solution-gelation) in response to the ocular environmental temperature, pH, and ions. These stimuli transform the formulation into a gel at the cul de sac to overcome the shortcomings of conventional eye drops, such as rapid nasolacrimal drainage and short contact time with the ocular surface This review highlights the recent successful research outcomes of stimuli-responsive in situ gelling systems in treating in vivo models with glaucoma and various ocular infections. Additionally, it also presents the mechanism, recent development, and safety considerations of stimuli-sensitive in situ gel as the potential sustained ocular delivery system for treating common eye disorders.
  5. Chaudhary S, Nair AB, Shah J, Gorain B, Jacob S, Shah H, et al.
    AAPS PharmSciTech, 2021 Apr 09;22(3):127.
    PMID: 33835317 DOI: 10.1208/s12249-021-01995-y
    Being a candidate of BCS class II, dolutegravir (DTG), a recently approved antiretroviral drug, possesses solubility issues. The current research was aimed to improve the solubility of the DTG and thereby enhance its efficacy using the solid dispersion technique. In due course, the miscibility study of the drug was performed with different polymers, where Poloxamer 407 (P407) was found suitable to move forward. The solid dispersion of DTG and P407 was formulated using solvent evaporation technique with a 1:1 proportion of drug and polymer, where the solid-state characterization was performed using differential scanning calorimetry, Fourier transform infrared spectroscopy and X-ray diffraction. No physicochemical interaction was found between the DTG and P407 in the fabricated solid dispersion; however, crystalline state of the drug was changed to amorphous as evident from the X-ray diffractogram. A rapid release of DTG was observed from the solid dispersion (>95%), which is highly significant (p<0.05) as compared to pure drug (11.40%), physical mixture (20.07%) and marketed preparation of DTG (35.30%). The drug release from the formulated solid dispersion followed Weibull model kinetics. Finally, the rapid drug release from the solid dispersion formulation revealed increased Cmax (14.56 μg/mL) when compared to the physical mixture (4.12 μg/mL) and pure drug (3.45 μg/mL). This was further reflected by improved bioavailability of DTG (AUC: 105.99±10.07 μg/h/mL) in the experimental Wistar rats when compared to the AUC of animals administered with physical mixture (54.45±6.58 μg/h/mL) and pure drug (49.27±6.16 μg/h/mL). Therefore, it could be concluded that the dissolution profile and simultaneously the bioavailability of DTG could be enhanced by means of the solid dispersion platform using the hydrophilic polymer, P407, which could be projected towards improved efficacy of the drug in HIV/AIDS.
  6. Kumbhar SA, Kokare CR, Shrivastava B, Gorain B, Choudhury H
    J Pharm Sci, 2021 04;110(4):1761-1778.
    PMID: 33515583 DOI: 10.1016/j.xphs.2021.01.021
    Delivering therapeutics to the brain using conventional dosage forms is always a challenge, thus the present study was aimed to formulate mucoadhesive nanoemulsion (MNE) of aripiprazole (ARP) for intranasal delivery to transport the drug directly to the brain. Therefore, a TPGS based ARP-MNE was formulated and optimized using the Box-Behnken statistical design. The improved in vitro release profile of the formulation was in agreement to enhanced ex vivo permeation through sheep mucous membranes with a maximum rate of permeation co-efficient (62.87  cm h-1 × 103) and flux (31.43  μg cm-2.h-1). The pharmacokinetic profile following single-dose administration showed the maximum concentration of drug in the brain (Cmax) of 15.19 ± 2.51  μg mL-1 and Tmax of 1 h in animals with ARP-MNE as compared to 10.57 ± 1.88  μg mL-1 and 1 h, and 2.52 ± 0.38  μg mL-1 and 3 h upon intranasal and intravenous administration of ARP-NE, respectively. Further, higher values of % drug targeting efficiency (96.9%) and % drug targeting potential (89.73%) of ARP-MNE through intranasal administration were investigated. The studies in Wistar rats showed no existence of extrapyramidal symptoms through the catalepsy test and forelimb retraction results. No ex vivo ciliotoxicity on nasal mucosa reflects the safety of the components and delivery tool. Further, findings on locomotor activity and hind-limb retraction test in ARP-MNE treated animals established its antipsychotic efficacy. Thus, it can be inferred that the developed ARP-MNE could effectively be explored as brain delivery cargo in the effective treatment of schizophrenia without producing any toxic manifestation.
  7. Patnaik S, Gorain B, Padhi S, Choudhury H, Gabr GA, Md S, et al.
    Eur J Pharm Biopharm, 2021 Apr;161:100-119.
    PMID: 33639254 DOI: 10.1016/j.ejpb.2021.02.010
    Potential research outcomes on nanotechnology-based novel drug delivery systems since the past few decades attracted the attention of the researchers to overcome the limitations of conventional deliveries. Apart from possessing enhanced solubility of poorly water-soluble drugs, the targeting potential of the carriers facilitates longer circulation and site-specific delivery of the entrapped therapeutics. The practice of these delivery systems, therefore, helps in maximizing bioavailability, improving pharmacokinetics profile, pharmacodynamics activity and biodistribution of the entrapped drug(s). In addition to focusing on the positive side, evaluation of nanoparticulate systems for toxicity is a crucial parameter for its biomedical applications. Due to the size of nanoparticles, they easily traverse through biological barriers and may be accumulated in the body, where the ingredients incorporated in the formulation development might accumulate and/or produce toxic manifestation, leading to cause severe health hazards. Therefore, the toxic profile of these delivery systems needs to be evaluated at the molecular, cellular, tissue and organ level. This review offers a comprehensive presentation of toxicity aspects of the constituents of nanoparticular based drug delivery systems, which would be beneficial for future researchers to develop nanoparticulate delivery vehicles for the improvement of delivery approaches in a safer way.
  8. Jeckson TA, Neo YP, Sisinthy SP, Gorain B
    J Pharm Sci, 2021 02;110(2):635-653.
    PMID: 33039441 DOI: 10.1016/j.xphs.2020.10.003
    Increasing incidences of chronic wounds urge the development of effective therapeutic wound treatment. As the conventional wound dressings are found not to comply with all the requirements of an ideal wound dressing, the development of alternative and effective dressings is demanded. Over the past few years, electrospun nanofiber has been recognized as a better system for wound dressing and hence has been studied extensively. Most of the electrospun nanofiber dressings were fabricated as single-layer structure mats. However, this design is less favorable for the effective healing of wounds mainly due to its burst release effect. To address this problem and to simulate the organized skin layer's structure and function, a multilayer structure of wound dressing had been proposed. This design enables a sustained release of the therapeutic agent(s), and more resembles the natural skin extracellular matrix. Multilayer structure is also referred to layer-by-layer (LbL), which has been established as an innovative method of drug incorporation and delivery, combines a high surface area of electrospun nanofibers with the multilayer structure mat. This review focuses on LbL multilayer electrospun nanofiber as a superior strategy in designing an optimal wound dressing.
  9. Gorain B, Al-Dhubiab BE, Nair A, Kesharwani P, Pandey M, Choudhury H
    Curr Pharm Des, 2021;27(43):4404-4415.
    PMID: 34459377 DOI: 10.2174/1381612827666210830095941
    The advancement of delivery tools for therapeutic agents has brought several novel formulations with increased drug loading, sustained release, targeted delivery, and prolonged efficacy. Amongst the several novel delivery approaches, multivesicular liposome has gained potential interest because this delivery system possesses the above advantages. In addition, this multivesicular liposomal delivery prevents degradation of the entrapped drug within the physiological environment while administered. The special structure of the vesicles allowed successful entrapment of hydrophobic and hydrophilic therapeutic agents, including proteins and peptides. Furthermore, this novel formulation could maintain the desired drug concentration in the plasma for a prolonged period, which helps to reduce the dosing frequencies, improve bioavailability, and safety. This tool could also provide stability of the formulation, and finally gaining patient compliance. Several multivesicular liposomes received approval for clinical research, while others are at different stages of laboratory research. In this review, we have focused on the preparation of multivesicular liposomes along with their application in different ailments for the improvement of the performance of the entrapped drug. Moreover, the challenges of delivering multivesicular vesicles have also been emphasized. Overall, it could be inferred that multivesicular liposomal delivery is a platform of advanced drug delivery with improved efficacy and safety.
  10. Yeo E, Yew Chieng CJ, Choudhury H, Pandey M, Gorain B
    PMID: 34909654 DOI: 10.1016/j.crphar.2021.100019
    The present research had been attempted to formulate and characterize tocotrienols-rich naringenin nanoemulgel for topical application in chronic wound conditions associated with diabetes. In due course, different phases of the nanoemulsion were chosen based on the solubility study, where combination of Capryol 90 and tocotrienols, Solutol HS15, and Transcutol P were selected as oil, surfactant, and cosurfactant, respectively. The nanoemulsions were formulated using the spontaneous emulsification method. Subsequently, Carbopols were incorporated to develop corresponding nanoemulgels of the optimized nanoemulsions. Thermodynamically stable optimized nanoemulgels were evaluated for their globule size, polydispersity index (PDI), surface charge, viscosity, mucoadhesive property, spreadability, in vitro release and release mechanism. Further, increasing polymer concentration in the nanoemulgels was reflected with the increased mucoadhesive property with corresponding decrease in the release rate of the drug. The optimized nanoemulgel (NG1) consisted of uniform dispersion (PDI, 0.452 ​± ​0.03) of the nanometric globules (145.58 ​± ​12.5) of the dispersed phase, and negative surface charge (-21.1 ​± ​3.32 ​mV) with viscosity 297,600 ​cP and good spreadability. In vitro release of naringenin in phosphate buffer saline revealed a sustained release profile up to a maximum of 74.62 ​± ​4.54% from the formulated nanoemulgel (NG1) within the time-frame of 24 ​h. Alternatively, the release from the nanoemulsion was much higher (89.17 ​± ​2.87%), which might be due to lack of polymer coating on the dispersed oil droplets. Moreover, the in vitro release kinetics from the nanoemulgel followed the first-order release and Higuchi model with non-Fickian diffusion. Therefore, encouraging results in this research is evident in bringing a promising future in wound management, particularly associated with diabetes complications.
  11. Kumar Bandaru R, Rout SR, Kenguva G, Gorain B, Alhakamy NA, Kesharwani P, et al.
    Front Pharmacol, 2021;12:780582.
    PMID: 34858194 DOI: 10.3389/fphar.2021.780582
    The pharmacokinetics profile of active pharmaceutical ingredients (APIs) in the solid pharmaceutical dosage forms is largely dependent on the solid-state characteristics of the chemicals to understand the physicochemical properties by particle size, size distribution, surface area, solubility, stability, porosity, thermal properties, etc. The formation of salts, solvates, and polymorphs are the conventional strategies for altering the solid characteristics of pharmaceutical compounds, but they have their own limitations. Cocrystallization approach was established as an alternative method for tuning the solubility, permeability, and processability of APIs by introducing another compatible molecule/s into the crystal structure without affecting its therapeutic efficacy to successfully develop the formulation with the desired pharmacokinetic profile. In the present review, we have grossly focused on cocrystallization, particularly at different stages of development, from design to production. Furthermore, we have also discussed regulatory guidelines for pharmaceutical industries and challenges associated with the design, development and production of pharmaceutical cocrystals with commercially available cocrystal-based products.
  12. Hejmady S, Pradhan R, Alexander A, Agrawal M, Singhvi G, Gorain B, et al.
    Drug Discov Today, 2020 12;25(12):2227-2244.
    PMID: 33011342 DOI: 10.1016/j.drudis.2020.09.031
    A tumor serves as a major avenue in drug development owing to its complexity. Conventional therapies against tumors possess limitations such as suboptimal therapeutic efficacy and extreme side effects. These display poor pharmacokinetics and lack specific targeting, with non-specific distribution resulting in systemic toxicity. Therefore, nanocarriers targeted against cancers are increasingly being explored. Nanomedicine aids in maintaining a balance between efficacy and toxicity by specifically accumulating in tumors. Nanotherapeutics possess advantages such as increased solubility of chemotherapeutics, encapsulation of multiple drugs and improved biodistribution, and can ensure tumor-directed drug delivery and release via the approaches of passive targeting and active targeting. This review aims to offer a general overview of the current advances in tumor-targeting nanocarriers for clinical and diagnostic use.
  13. Nair AB, Gandhi D, Patel SS, Morsy MA, Gorain B, Attimarad M, et al.
    Molecules, 2020 Oct 26;25(21).
    PMID: 33114598 DOI: 10.3390/molecules25214947
    Sinigrin, a precursor of allyl isothiocyanate, present in the Raphanus sativus exhibits diverse biological activities, and has an immense role against cancer proliferation. Therefore, the objective of this study was to quantify the sinigrin in the R. sativus roots using developed and validated RP-HPLC method and further evaluated its' anticancer activity. To achieve the objective, the roots of R. sativus were lyophilized to obtain a stable powder, which were extracted and passed through an ion-exchange column to obtain sinigrin-rich fraction. The RP-HPLC method using C18 analytical column was used for chromatographic separation and quantification of sinigrin in the prepared fraction, which was attained using the mobile phase consisting of 20 mM tetrabutylammonium: acetonitrile (80:20%, v/v at pH 7.0) at a flow rate of 0.5 mL/min. The chromatographic peak for sinigrin was showed at 3.592 min for pure sinigrin, where a good linearity was achieved within the concentration range of 50 to 800 µg/mL (R2 > 0.99), with an excellent accuracy (-1.37% and -1.29%) and precision (1.43% and 0.94%), for intra and inter-day, respectively. Finally, the MTT assay was performed for the sinigrin-rich fraction using three different human cancer cell lines, viz. prostate cancer (DU-145), colon adenocarcinoma (HCT-15), and melanoma (A-375). The cell-based assays were extended to conduct apoptotic and caspase-3 activities, to determine the mechanism of action of sinigrin in the treatment of cancer. MTT assay showed IC50 values of 15.88, 21.42, and 24.58 µg/mL for DU-145, HCT-15, and A-375 cell lines, respectively. Increased cellular apoptosis and caspase-3 expression were observed with sinigrin-rich fraction, indicating significant increase in overexpression of caspase-3 in DU-145 cells. In conclusion, a simple, sensitive, fast, and accurate RP-HPLC method was developed for the estimation of sinigrin in the prepared fraction. The data observed here indicate that sinigrin can be beneficial in treating prostate cancer possibly by inducing apoptosis.
  14. Akrawi SH, Gorain B, Nair AB, Choudhury H, Pandey M, Shah JN, et al.
    Pharmaceutics, 2020 Sep 20;12(9).
    PMID: 32962195 DOI: 10.3390/pharmaceutics12090893
    The potential role of naringenin (NAR), a natural flavonoid, in the treatment of chronic wound has prompted the present research to deliver the drug in nanoemulsion (NE) form, where synergistic role of chitosan was achieved through development of chitosan-coated NAR NE (CNNE). The NE consisted of Capryol 90, Tween 20 and Transcutol P, which was fabricated by low-energy emulsification method to encapsulate NAR within the oil core. The optimization of the formulated NEs was performed using Box-Behnken statistical design to obtain crucial variable parameters that influence globule size, size distribution and surface charge. Finally, the optimized formulation was coated with different concentrations of chitosan and subsequently characterized in vitro. The size of the CNNE was found to be increased when the drug-loaded formulation was coated with chitosan. Controlled release characteristics depicted 67-81% release of NAR from the CNNE, compared to 89% from the NE formulation. Cytotoxicity study of the formulation was performed in vitro using fibroblast cell line (NIH-3T3), where no inhibition in proliferation of the cells was observed with CNNE. Finally, the wound healing potential of the CNNE was evaluated in an abrasion-created wound model in experimental animals where the animals were treated and compared histologically at 0 and 14 days. Significant improvement in construction of the abrasion wound was observed when the animals were treated with formulated CNNE, whereas stimulation of skin regeneration was depicted in the histological examination. Therefore, it could be summarized that the chitosan coating of the developed NAR NE is a potential platform to accelerate healing of wounds.
  15. Kumbhar SA, Kokare CR, Shrivastava B, Gorain B, Choudhury H
    Int J Pharm, 2020 Aug 30;586:119499.
    PMID: 32505580 DOI: 10.1016/j.ijpharm.2020.119499
    The tight junctions between capillary endothelial cells of the blood-brain barrier (BBB) restricts the entry of therapeutics into the brain. Potential of the intranasal delivery tool has been explored in administering the therapeutics directly to the brain, thus bypassing BBB. The objective of this study was to develop and optimize an intranasal mucoadhesive nanoemulsion (MNE) of asenapine maleate (ASP) in order to enhance the nasomucosal adhesion and direct brain targetability for improved efficacy and safety. Box-Behnken statistical design was used to recognize the crucial formulation variables influencing droplet size, size distribution and surface charge of ASP-NE. ASP-MNE was obtained by incorporating GRAS mucoadhesive polymer, Carbopol 971 in the optimized NE. Optimized ASP-MNE displayed spherical morphology with a droplet size of 21.2 ± 0.15 nm and 0.355 polydispersity index. Improved ex-vivo permeation was observed in ASP-NE and ASP-MNE, compared to the ASP-solution. Finally, the optimized formulation was found to be safe in ex-vivo ciliotoxicity study on sheep nasal mucosa. The single-dose pharmacokinetic study in male Wistar rats revealed a significant increase in concentration of ASP in the brain upon intranasal administration of ASP-MNE, with a maximum of 284.33 ± 5.5 ng/mL. The time required to reach maximum brain concentration (1 h) was reduced compared to intravenous administration of ASP-NE (3 h). Furthermore, it has been established during the course of present study, that the brain targeting capability of ASP via intranasal administration had enhanced drug-targeting efficiency and drug-targeting potential. In the animal behavioral studies, no extrapyramidal symptoms were observed after intranasal administration of ASP-MNE, while good locomotor activity and hind-limb retraction test established its antipsychotic activity in treated animals. Thus, it can be concluded that the developed intranasal ASP-MNE could be used as an effective and safe tool for brain targeting of ASP in the treatment of psychotic disorders.
  16. Pandey M, Choudhury H, Fern JLC, Kee ATK, Kou J, Jing JLJ, et al.
    Drug Deliv Transl Res, 2020 08;10(4):986-1001.
    PMID: 32207070 DOI: 10.1007/s13346-020-00737-0
    The involvement of recent technologies, such as nanotechnology and three-dimensional printing (3DP), in drug delivery has become the utmost importance for effective and safe delivery of potent therapeutics, and thus, recent advancement for oral drug delivery through 3DP technology has been expanded. The use of computer-aided design (CAD) in 3DP technology allows the manufacturing of drug formulation with the desired release rate and pattern. Currently, the most applicable 3DP technologies in the oral drug delivery system are inkjet printing method, fused deposition method, nozzle-based extrusion system, and stereolithographic 3DP. In 2015, the first 3D-printed tablet was approved by the US Food and Drug Administration (FDA), and since then, it has opened up more opportunities in the discovery of formulation for the development of an oral drug delivery system. 3DP allows the production of an oral drug delivery device that enables tailor-made formulation with customizable size, shape, and release rate. Despite the advantages offered by 3DP technology in the drug delivery system, there are challenges in terms of drug stability, safety as well as applicability in the clinical sector. Nonetheless, 3DP has immense potential in the development of drug delivery devices for future personalized medicine. This article will give the recent advancement along with the challenges of 3DP techniques for the development of oral drug delivery. Graphical abstract.
  17. Choudhury H, Pandey M, Lim YQ, Low CY, Lee CT, Marilyn TCL, et al.
    Mater Sci Eng C Mater Biol Appl, 2020 Jul;112:110925.
    PMID: 32409075 DOI: 10.1016/j.msec.2020.110925
    Wounds associated with diabetes mellitus are the most severe co-morbidities, which could be progressed to cause cell necrosis leading to amputation. Statistics on the recent status of the diabetic wounds revealed that the disease affects 15% of diabetic patients, where 20% of them undergo amputation of their limb. Conventional therapies are found to be ineffective due to changes in the molecular architecture of the injured area, urging novel deliveries for effective treatment. Therefore, recent researches are on the development of new and effective wound care materials. Literature is evident in providing potential tools in topical drug delivery for wound healing under the umbrella of nanotechnology, where nano-scaffolds and nanofibers have shown promising results. The nano-sized particles are also known to promote healing of wounds by facilitating proper movement through the healing phases. To date, focuses have been made on the efficacy of silver nanoparticles (AgNPs) in treating the diabetic wound, where these nanoparticles are known to exploit potential biological properties in producing anti-inflammatory and antibacterial activities. AgNPs are also known to activate cellular mechanisms towards the healing of chronic wounds; however, associated toxicities of AgNPs are of great concern. This review is an attempt to illustrate the use of AgNPs in wound healing to facilitate this delivery system in bringing into clinical applications for a superior dressing and treatment over wounds and ulcers in diabetes patients.
  18. Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P
    Drug Discov Today, 2020 07;25(7):1174-1188.
    PMID: 32344042 DOI: 10.1016/j.drudis.2020.04.013
    Theranostics has the potential to revolutionize the diagnosis, treatment, and prognosis of cancer, where novel drug delivery systems could be used to detect the disease at an early stage with instantaneous treatment. Various preclinical approaches of nanoemulsions with entrapped contrast and chemotherapeutic agents have been documented to act specifically on the tumor microenvironment (TME) for both diagnostic and therapeutic purposes. However, bringing these theranostic nanoemulsions through preclinical trials to patients requires several fundamental hurdles to be overcome, including the in vivo behavior of the delivery tool, degradation, and clearance from the system, as well as long-term toxicities. Here, we discuss recent advances in the application of nanoemulsions in molecular imaging with simultaneous therapeutic efficacy in a single delivery system.
  19. Kumbhar SA, Kokare CR, Shrivastava B, Gorain B
    Ann Pharm Fr, 2020 May 06.
    PMID: 32387177 DOI: 10.1016/j.pharma.2020.04.005
    A novel, simple reversed-phase high-performance liquid chromatographic (RP-HPLC) analytical method was developed and validated for the quantitative determination of asenapine from various nanoemulsion components during pre-formulation screening. The developed method was validated according to ICH Q2 (R1) guidelines. The developed and validated method was precisely and accurately quantified asenapine in various oils, surfactants and co-surfactants. The separation of asenapine was carried out on Hypersil BDS C18, 250×4.6mm, 5μm particle size column using methanol: acetonitrile (90:10) as mobile phase with a flow rate of 1mL.min-1. Measurement at 270nm for the concentration range of 5 to 50μg.mL-1 of the analyte was found to be linear with the determination coefficient (r2) of 0.999 as calculated by the least square regression method. The validated method was sensitive with LOD of 10.0ng.mL-1 and LOQ of 30.0ng.mL-1. Further, the method was precise and accurate, where the intraday and interday precision values were ranged from 0.70-0.95 and 0.36-0.95, respectively with the corresponding accuracy were ranged from 98.80-100.63 and 98.36-100.63. This developed and validated RP-HPLC method for asenapine was applied in the quantitative determination and screening of various oils, surfactants, and co-surfactants during the development of the asenapine maleate nanoemulsion.
  20. Aldawsari HM, Gorain B, Alhakamy NA, Md S
    J Drug Target, 2020 02;28(2):166-175.
    PMID: 31339380 DOI: 10.1080/1061186X.2019.1648478
    Tumour-associated macrophages (TAMs) represent as much as 50% of the solid mass in different types of human solid tumours including lung, breast, ovarian and pancreatic adenocarcinomas. The tumour microenvironment (TME) plays an important role in the polarisation of macrophages into the M1 phenotype, which is tumour-suppressive, or M2 phenotype, which is tumour promoting. Preclinical and clinical evidences suggest that TAMs are predominantly of the M2 phenotype that supports immune suppression, tumour growth, angiogenesis, metastasis and therapeutic resistance. Hence, significant attention has been focussed on the development of strategies for the modification of TAMs to halt lung cancer progression. The promotion of repolarisation from the M2 to the M1 subtype, or the prevention of M2 polarisation of TAMs in the stromal environment is potential approaches to reduce progression and metastasis of lung cancer. The focus of this article is an introduction to the development and evaluation of therapeutic agents that may halt lung cancer progression via the manipulation of macrophage polarisation. This article will address recent advances in the therapeutic efficacy of nanomedicine exploiting surface functionalisation of nanoparticles and will also consider future perspectives.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links