Displaying publications 21 - 40 of 55 in total

Abstract:
Sort:
  1. Narayanamurthy V, Padmapriya P, Noorasafrin A, Pooja B, Hema K, Firus Khan AY, et al.
    RSC Adv, 2018 Aug 02;8(49):28095-28130.
    PMID: 35542700 DOI: 10.1039/c8ra04164d
    Skin cancer is the most common form of cancer and is globally rising. Historically, the diagnosis of skin cancers has depended on various conventional techniques which are of an invasive manner. A variety of commercial diagnostic tools and auxiliary techniques are available to detect skin cancer. This article explains in detail the principles and approaches involved for non-invasive skin cancer diagnostic methods such as photography, dermoscopy, sonography, confocal microscopy, Raman spectroscopy, fluorescence spectroscopy, terahertz spectroscopy, optical coherence tomography, the multispectral imaging technique, thermography, electrical bio-impedance, tape stripping and computer-aided analysis. The characteristics of an ideal screening test are outlined, and the authors pose several points for clinicians and scientists to consider in the evaluation of current and future studies of skin cancer detection and diagnosis. This comprehensive review critically analyses the literature associated with the field and summarises the recent updates along with their merits and demerits.
  2. Goud EVSS, Gulati S, Agrawal A, Pani P, Nishant K, Pattnaik SJ, et al.
    J Family Med Prim Care, 2021 Nov;10(11):4247-4252.
    PMID: 35136797 DOI: 10.4103/jfmpc.jfmpc_885_21
    BACKGROUND: Down syndrome which is also known as "trisomy 21" is the commonest chromosomal defect that has been associated with intellectual disability or impairment. Clinically, it has been characterized by the generalized presence of hypotonic musculature, variety of neurobiological alterations, numerous respiratory diseases, and significantly higher risk of developing infection along with various dental abnormalities and oro-facial dysmorphological changes. Periodontal diseases are the most prominent oral health issue among individuals diagnosed with Down Syndrome.

    AIM: The objective of the present prevalence analysis was to study the implications of Down's syndrome on oral health status among patients.

    MATERIALS AND METHODS: This was a descriptive and cross-sectional prevalence analysis conducted within a duration of 1 year. A total of 100 children diagnosed with Down syndrome (aged between 5 and 16 years) were selected as the study sample. Inclusion criteria were (a) cytogenetic positive trisomy 21, (b) cooperative behavior, and (c) written informed consent obtained from the legal care-takers. Exclusion criteria were (a) any debilitating form of systemic diseases, (b) any other disability, and (c) extremely uncooperative children. The gingival health status was assessed using gingival index (GI) [Loe and Silness], calculus index (CI) [Ramfjord], and plaque index (PI) [Silness and Loe]. Information involving the practice of oral hygiene maintenance, diet plans, and parental educational status was derived from each parent. Based upon their intelligence quotient (I. Q.) values, the subjects were classified into three groups: a) mild (I. Q. level = 50 to 70), b) moderate (I. Q. level = 35 to 50), and c) severe (I. Q. level ≤35). Statistical analysis was performed using the statistical software tool Statistical Package for Social Sciences (SPSS) version 20.0. Qualitative data were recorded as frequencies, and percentages and quantitative data were recorded as mean and standard deviation values. All categorical outcomes were analyzed by means of the Chi-square test. The quantitative outcomes of Calculus Index, Gingival Index, and Plaque Index were analyzed by either student's t-test or one-way analysis of variance (ANOVA). Significance was set at a cut-off value of P < 0.05.

    RESULTS: Down syndromic children between 12 and 16 years were reported to have statistically significant higher Calculus Index, Gingival Index, and Plaque Index values in comparison with younger age syndromic children (P < 0.01). Those with severe mental retardation had significantly higher Plaque Index (P < 0.001) and Gingival Index (P < 0.04) values when compared with those with mild and moderate mental retardation. No significant difference in comparing Calculus Index was noted.

    CONCLUSION: Higher age group children with Down syndrome require close monitoring by parents for assisting in maintaining oral hygiene practices just as in younger age group children.

  3. Tweel LE, Compher C, Bear DE, Gutierrez-Castrellon P, Leaver SK, MacEachern K, et al.
    Crit Care Med, 2024 Apr 01;52(4):586-595.
    PMID: 37930244 DOI: 10.1097/CCM.0000000000006117
    OBJECTIVES: Across guidelines, protein dosing for critically ill patients with obesity varies considerably. The objective of this analysis was to evaluate whether this population would benefit from higher doses of protein.

    DESIGN: A post hoc subgroup analysis of the effect of higher protein dosing in critically ill patients with high nutritional risk (EFFORT Protein): an international, multicenter, pragmatic, registry-based randomized trial.

    SETTING: Eighty-five adult ICUs across 16 countries.

    PATIENTS: Patients with obesity defined as a body mass index (BMI) greater than or equal to 30 kg/m 2 ( n = 425).

    INTERVENTIONS: In the primary study, patients were randomized into a high-dose (≥ 2.2 g/kg/d) or usual-dose protein group (≤ 1.2 g/kg/d).

    MEASUREMENTS AND MAIN RESULTS: Protein intake was monitored for up to 28 days, and outcomes (time to discharge alive [TTDA], 60-d mortality, days of mechanical ventilation [MV], hospital, and ICU length of stay [LOS]) were recorded until 60 days post-randomization. Of the 1301 patients in the primary study, 425 had a BMI greater than or equal to 30 kg/m 2 . After adjusting for sites and covariates, we observed a nonsignificant slower rate of TTDA with higher protein that ruled out a clinically important benefit (hazard ratio, 0.78; 95% CI, 0.58-1.05; p = 0.10). We found no evidence of difference in TTDA between protein groups when subgroups with different classes of obesity or patients with and without various nutritional and frailty risk variables were examined, even after the removal of patients with baseline acute kidney injury. Overall, 60-day mortality rates were 31.5% and 28.2% in the high protein and usual protein groups, respectively (risk difference, 3.3%; 95% CI, -5.4 to 12.1; p = 0.46). Duration of MV and LOS in hospital and ICU were not significantly different between groups.

    CONCLUSIONS: In critically ill patients with obesity, higher protein doses did not improve clinical outcomes, including those with higher nutritional and frailty risk.

  4. Nizamuddin S, Qureshi SS, Baloch HA, Siddiqui MTH, Takkalkar P, Mubarak NM, et al.
    Materials (Basel), 2019 Jan 28;12(3).
    PMID: 30696042 DOI: 10.3390/ma12030403
    The process parameters of microwave-induced hydrothermal carbonization (MIHTC) play an important role on the hydrothermal chars (hydrochar) yield. The effect of reaction temperature, reaction time, particle size and biomass to water ratio was optimized for hydrochar yield by modeling using the central composite design (CCD). Further, the rice straw and hydrochar at optimum conditions have been characterized for energy, chemical, structural and thermal properties. The optimum condition for hydrochar synthesis was found to be at a 180 °C reaction temperature, a 20 min reaction time, a 1:15 weight per volume (w/v) biomass to water ratio and a 3 mm particle size, yielding 57.9% of hydrochar. The higher heating value (HHV), carbon content and fixed carbon values increased from 12.3 MJ/kg, 37.19% and 14.37% for rice straw to 17.6 MJ/kg, 48.8% and 35.4% for hydrochar. The porosity, crystallinity and thermal stability of the hydrochar were improved remarkably compared to rice straw after MIHTC. Two characteristic peaks from XRD were observed at 2θ of 15° and 26°, whereas DTG peaks were observed at 50⁻150 °C and 300⁻350 °C for both the materials. Based on the results, it can be suggested that the hydrochar could be potentially used for adsorption, carbon sequestration, energy and agriculture applications.
  5. Sankari M, Rao PR, Hemachandran H, Pullela PK, Doss C GP, Tayubi IA, et al.
    J Biotechnol, 2018 Jan 20;266:89-101.
    PMID: 29247672 DOI: 10.1016/j.jbiotec.2017.12.010
    Carotenoids are isoprenoid pigments synthesized exclusively by plants and microorganisms and play critical roles in light harvesting, photoprotection, attracting pollinators and phytohormone production. In recent years, carotenoids have been used for their health benefits due to their high antioxidant activity and are extensively utilized in food, pharmaceutical, and nutraceutical industries. Regulation of carotenoid biosynthesis occurs throughout the life cycle of plants, with vibrant changes in composition based on developmental needs and responses to external environmental stimuli. With advancements in metabolic engineering techniques, there has been tremendous progress in the production of industrially valuable secondary metabolites such as carotenoids. Application of metabolic engineering and synthetic biology has become essential for the successful and improved production of carotenoids. Synthetic biology is an emerging discipline; metabolic engineering approaches may provide insights into novel ideas for biosynthetic pathways. In this review, we discuss the current knowledge on carotenoid biosynthetic pathways and genetic engineering of carotenoids to improve their nutritional value. In addition, we investigated synthetic biological approaches for the production of carotenoids. Theoretical biology approaches that may aid in understanding the biological sciences are discussed in this review. A combination of theoretical knowledge and experimental strategies may improve the production of industrially relevant secondary metabolites.
  6. Khandagale PD, Shetty PP, Makandar SD, Bapna PA, Karobari MI, Marya A, et al.
    Int J Dent, 2021;2021:7402658.
    PMID: 34367289 DOI: 10.1155/2021/7402658
    Introduction: The main aims of root canal instrumentation are to provide an environment that will lead to healing and to provide a root canal shape that is comfortable to clean and seal. When working with rotary endodontic instruments, the most significant concerns are that the instrument might fracture in the root canal, thus affecting the treatment outcome. Hence, it is of immense importance to know which file systems have more cyclic fatigue resistance. Methodology. This study evaluated the effect of the curved segment length of the artificial canal (the arch), and the number of cycles necessary in fracture of Hyflex EDM, Twisted files, and ProTaper Gold were recorded. Sixty NiTi rotary instruments of 25 mm length (Hyflex EDM (20), Twisted files (20), and ProTaper Gold (20)) were tested in a metal block with simulated canal having 90° angle of curvature. The study was performed with a specific radius and degree of curvature, i.e., 8 mm radius and 90⁰ angle of curvature, and data obtained were subsequently subjected to statistical evaluation using one-way analysis of variance and Tukey's post hoc test.

    Result: The Hyflex EDM (774.29) exhibited the maximum cyclic fatigue resistance compared to Twisted files (654.875) and ProTaper Gold (375.575). A statistically significant difference was observed between the tested groups.

    Conclusion: The Hyflex EDM files showed the highest cyclic fatigue resistance, followed by Twisted files and ProTaper Gold files.

  7. Verma RK, Pandey M, Chawla P, Choudhury H, Mayuren J, Bhattamisra SK, et al.
    PMID: 33982657 DOI: 10.2174/1871527320666210512014505
    BACKGROUND: The complication of Alzheimer's disease (AD) has made the development of its therapeutic a challenging task. Even after decades of research, we have achieved no more than a few years of symptomatic relief. The inability to diagnose the disease early is the foremost hurdle behind its treatment. Several studies have aimed to identify potential biomarkers that can be detected in body fluids (CSF, blood, urine, etc) or assessed by neuroimaging (i.e., PET and MRI). However, the clinical implementation of these biomarkers is incomplete as they cannot be validated.

    METHOD: To overcome the limitation, the use of artificial intelligence along with technical tools has been extensively investigated for AD diagnosis. For developing a promising artificial intelligence strategy that can diagnose AD early, it is critical to supervise neuropsychological outcomes and imaging-based readouts with a proper clinical review.

    CONCLUSION: Profound knowledge, a large data pool, and detailed investigations are required for the successful implementation of this tool. This review will enlighten various aspects of early diagnosis of AD using artificial intelligence.

  8. Ghosh P, Kumar M, Kapoor R, Kumar SS, Singh L, Vijay V, et al.
    Bioresour Technol, 2020 Jan;296:122275.
    PMID: 31683109 DOI: 10.1016/j.biortech.2019.122275
    The present study intends to evaluate the potential of co-digestion for utilizing Organic fraction of Municipal Solid Waste (OFMSW) and sewage sludge (SS) for enhanced biogas production. Metagenomic analysis was performed to identify the dominant bacteria, archaea and fungi, changes in their communities with time and their functional roles during the course of anaerobic digestion (AD). The cumulative biogas yield of 586.2 mL biogas/gVS with the highest methane concentration of 69.5% was observed under an optimum ratio of OFMSW:SS (40:60 w/w). Bacteria and fungi were found to be majorly involved in hydrolysis and initial stages of AD. Probably, the most common archaea Methanosarsina sp. primarily followed the acetoclastic pathway. The hydrogenotrophic pathway was less followed as indicated by the reduction in abundance of syntrophic acetate oxidizers. An adequate understanding of microbial communities is important to manipulate and inoculate the specific microbial consortia to maximize CH4 production through AD.
  9. Menon V, Sharma S, Gupta S, Ghosal A, Nadda AK, Jose R, et al.
    Chemosphere, 2023 Mar;317:137848.
    PMID: 36642147 DOI: 10.1016/j.chemosphere.2023.137848
    Synthetic plastics, which are lightweight, durable, elastic, mouldable, cheap, and hydrophobic, were originally invented for human convenience. However, their non-biodegradability and continuous accumulation at an alarming rate as well as subsequent conversion into micro/nano plastic scale structures via mechanical and physio-chemical degradation pose significant threats to living beings, organisms, and the environment. Various minuscule forms of plastics detected in water, soil, and air are making their passage into living cells. High temperature and ambient humidity increase the degradation potential of plastic polymers photo-catalytically under sunlight or UV-B radiations. Microplastics (MPs) of polyethylene terephthalate, polyethylene, polystyrene, polypropylene, and polyvinyl chloride have been detected in bottled water. These microplastics are entering into the food chain cycle, causing serious harm to all living organisms. MPs entering into the food chain are usually inert in nature, possessing different sizes and shapes. Once they enter a cell or tissue, it causes mechanical damage, induces inflammation, disturbs metabolism, and even lead to necrosis. Various generation routes, types, impacts, identification, and treatment of microplastics entering the water bodies and getting associated with various pollutants are discussed in this review. It emphasizes potential detection techniques like pyrolysis, gas chromatography-mass spectrometry (GC-MS), micro-Raman spectroscopy, and fourier transform infrared spectroscopy (FT IR) spectroscopy for microplastics from water samples.
  10. Vasudevan A, Majumder N, Sharma I, Kaur I, Sundarrajan S, Venugopal JR, et al.
    ACS Biomater Sci Eng, 2023 Nov 13;9(11):6357-6368.
    PMID: 37847169 DOI: 10.1021/acsbiomaterials.3c01216
    Immortalized liver cell lines and primary hepatocytes are currently used as in vitro models for hepatotoxic drug screening. However, a decline in the viability and functionality of hepatocytes with time is an important limitation of these culture models. Advancements in tissue engineering techniques have allowed us to overcome this challenge by designing suitable scaffolds for maintaining viable and functional primary hepatocytes for a longer period of time in culture. In the current study, we fabricated liver-specific nanofiber scaffolds with polylactic acid (PLA) along with a decellularized liver extracellular matrix (LEM) by the electrospinning technique. The fabricated hybrid PLA-LEM scaffolds were more hydrophilic and had better swelling properties than the PLA scaffolds. The hybrid scaffolds had a pore size of 38 ± 8 μm and supported primary rat hepatocyte cultures for 10 days. Increased viability (2-fold increase in the number of live cells) and functionality (5-fold increase in albumin secretion) were observed in primary hepatocytes cultured on the PLA-LEM scaffolds as compared to those on conventional collagen-coated plates on day 10 of culture. A significant increase in CYP1A2 enzyme activity was observed in hepatocytes cultured on PLA-LEM hybrid scaffolds in comparison to those on collagen upon induction with phenobarbital. Drugs like acetaminophen and rifampicin showed the highest toxicity in hepatocytes cultured on hybrid scaffolds. Also, the lethal dose of these drugs in rodents was accurately predicted as 1.6 g/kg and 594 mg/kg, respectively, from the corresponding IC50 values obtained from drug-treated hepatocytes on hybrid scaffolds. Thus, the fabricated liver-specific electrospun scaffolds maintained primary hepatocyte viability and functionality for an extended period in culture and served as an effective ex vivo drug screening platform to predict an accurate in vivo drug-induced hepatotoxicity.
  11. Sharma T, Xia C, Sharma A, Raizada P, Singh P, Sharma S, et al.
    Bioengineered, 2022 Apr;13(4):10518-10539.
    PMID: 35443858 DOI: 10.1080/21655979.2022.2062526
    Enzymes of commercial importance, such as lipase, amylase, laccase, phytase, carbonic anhydrase, pectinase, maltase, glucose oxidase etc., show multifunctional features and have been extensively used in several fields including fine chemicals, environmental, pharmaceutical, cosmetics, energy, food industry, agriculture and nutraceutical etc. The deployment of biocatalyst in harsh industrial conditions has some limitations, such as poor stability. These drawbacks can be overcome by immobilizing the enzyme in order to boost the operational stability, catalytic activity along with facilitating the reuse of biocatalyst. Nowadays, functionalized polymers and composites have gained increasing attention as an innovative material for immobilizing the industrially important enzyme. The different types of polymeric materials and composites are pectin, agarose, cellulose, nanofibers, gelatin, and chitosan. The functionalization of these materials enhances the loading capacity of the enzyme by providing more functional groups to the polymeric material and hence enhancing the enzyme immobilization efficiency. However, appropriate coordination among the functionalized polymeric materials and enzymes of interest plays an important role in producing emerging biocatalysts with improved properties. The optimal coordination at a biological, physical, and chemical level is requisite to develop an industrial biocatalyst. Bio-catalysis has become vital aspect in pharmaceutical and chemical industries for synthesis of value-added chemicals. The present review describes the current advances in enzyme immobilization on functionalized polymers and composites. Furthermore, the applications of immobilized enzymes in various sectors including bioremediation, biosensor and biodiesel are also discussed.
  12. Sharma P, Parakh SK, Tsui TH, Bano A, Singh SP, Singh VP, et al.
    Crit Rev Biotechnol, 2023 Aug 29.
    PMID: 37643972 DOI: 10.1080/07388551.2023.2241112
    The generation of food waste (FW) is increasing at an alarming rate, contributing to a total of 32% of all the waste produced globally. Anaerobic digestion (AD) is an effective method for dealing with organic wastes of various compositions, like FW. Waste valorization into value-added products has increased due to the conversion of FW into biogas using AD technology. A variety of pathways are adopted by microbes to avoid unfavorable conditions in AD, including competition between sulfate-reducing bacteria and methane (CH4)-forming bacteria. Anaerobic bacteria decompose organic matter to produce biogas, a digester gas. The composition depends on the type of raw material and the method by which the digestion process is conducted. Studies have shown that the biogas produced by AD contains 65-75% CH4 and 35-45% carbon dioxide (CO2). Methanothrix soehngenii and Methanosaeta concilii are examples of species that convert acetate to CH4 and CO2. Methanobacterium bryantii, Methanobacterium thermoautotrophicum, and Methanobrevibacter arboriphilus are examples of species that produce CH4 from hydrogen and CO2. Methanobacterium formicicum, Methanobrevibacter smithii, and Methanococcus voltae are examples of species that consume formate, hydrogen, and CO2 and produce CH4. The popularity of AD has increased for the development of biorefinery because it is seen as a more environmentally acceptable alternative in comparison to physico-chemical techniques for resource and energy recovery. The review examines the possibility of using accessible FW to produce important value-added products such as organic acids (acetate/butyrate), biopolymers, and other essential value-added products.
  13. Ramlal A, Bhat I, Nautiyal A, Baweja P, Mehta S, Kumar V, et al.
    Front Physiol, 2023;14:1172684.
    PMID: 37324400 DOI: 10.3389/fphys.2023.1172684
    Cardiovascular diseases (CVDs) are one of the major reasons for deaths globally. The renin-angiotensin-aldosterone system (RAAS) regulates body hypertension and fluid balance which causes CVD. Angiotensin-converting enzyme I (ACE I) is the central Zn-metallopeptidase component of the RAAS playing a crucial role in maintaining homeostasis of the cardiovascular system. The available drugs to treat CVD have many side effects, and thus, there is a need to explore phytocompounds and peptides to be utilized as alternative therapies. Soybean is a unique legume cum oilseed crop with an enriched source of proteins. Soybean extracts serve as a primary ingredient in many drug formulations against diabetes, obesity, and spinal cord-related disorders. Soy proteins and their products act against ACE I which may provide a new scope for the identification of potential scaffolds that can help in the design of safer and natural cardiovascular therapies. In this study, the molecular basis for selective inhibition of 34 soy phytomolecules (especially of beta-sitosterol, soyasaponin I, soyasaponin II, soyasaponin II methyl ester, dehydrosoyasaponin I, and phytic acid) was evaluated using in silico molecular docking approaches and dynamic simulations. Our results indicate that amongst the compounds, beta-sitosterol exhibited a potential inhibitory action against ACE I.
  14. Hussain S, Gupta G, Shahwan M, Bansal P, Kaur H, Deorari M, et al.
    Noncoding RNA Res, 2024 Dec;9(4):1222-1234.
    PMID: 39036600 DOI: 10.1016/j.ncrna.2024.05.007
    Ferroptosis, a form of regulated cell death, has emerged as a crucial process in diverse pathophysiological states, encompassing cancer, neurodegenerative ailments, and ischemia-reperfusion injury. The glutathione (GSH)-dependent lipid peroxidation pathway, chiefly governed by glutathione peroxidase 4 (GPX4), assumes an essential part in driving ferroptosis. GPX4, as the principal orchestrator of ferroptosis, has garnered significant attention across cancer, cardiovascular, and neuroscience domains over the past decade. Noteworthy investigations have elucidated the indispensable functions of ferroptosis in numerous diseases, including tumorigenesis, wherein robust ferroptosis within cells can impede tumor advancement. Recent research has underscored the complex regulatory role of non-coding RNAs (ncRNAs) in regulating the GSH-GPX4 network, thus influencing cellular susceptibility to ferroptosis. This exhaustive review endeavors to probe into the multifaceted processes by which ncRNAs control the GSH-GPX4 network in ferroptosis. Specifically, we delve into the functions of miRNAs, lncRNAs, and circRNAs in regulating GPX4 expression and impacting cellular susceptibility to ferroptosis. Moreover, we discuss the clinical implications of dysregulated interactions between ncRNAs and GPX4 in several conditions, underscoring their capacity as viable targets for therapeutic intervention. Additionally, the review explores emerging strategies aimed at targeting ncRNAs to modulate the GSH-GPX4 pathway and manipulate ferroptosis for therapeutic advantage. A comprehensive understanding of these intricate regulatory networks furnishes insights into innovative therapeutic avenues for diseases associated with perturbed ferroptosis, thereby laying the groundwork for therapeutic interventions targeting ncRNAs in ferroptosis-related pathological conditions.
  15. Shelash SI, Shabeeb IA, Ahmad I, Saleem HM, Bansal P, Kumar A, et al.
    Med Oncol, 2024 Nov 08;41(12):310.
    PMID: 39516331 DOI: 10.1007/s12032-024-02536-w
    Lung cancer ranks among the most lethal types of cancer globally, with a high occurrence and fatality rate. The spread of cancer to other parts of the body, known as metastasis, is the primary cause of treatment failure and death in lung cancer cases. Current approaches for treating advanced lung cancer typically involve a combination of chemotherapy and targeted therapy. However, the majority of patients ultimately develop resistance to these treatments, leading to a worsened prognosis. In recent years, cancer biology research has predominantly focused on the role of protein-encoding genes in cancer development. Long non-coding RNAs (lncRNAs) are transcripts over 200 nucleotides in length that do not encode proteins but are crucial RNA molecules involved in numerous biological functions. While many functions of lncRNAs remain unknown, some have been linked to human diseases, including cancer. Studies have demonstrated that lncRNAs interact with other large molecules in the cell, such as proteins, DNA, and RNA, influencing various critical aspects of cancer. LncRNAs play a significant role in regulating gene expression and have a crucial function in the transcriptional regulation of cancer cells. They mediate various biological and clinical processes such as invasion, metastasis, apoptosis, and cell proliferation. Dysregulation of lncRNAs has been found to impact the process of carcinogenesis through advanced technologies like RNA sequencing and microarrays. Collectively, these long non-coding RNAs hold promise as potential biomarkers and therapeutic targets for human cancers. In this segment, we provide a comprehensive summary of the literature on the characteristics and formation of lncRNAs, along with an overview of their current known roles in lung cancer.
  16. Jangra A, Gola P, Singh J, Gond P, Ghosh S, Rachamalla M, et al.
    Neural Regen Res, 2024 Jan;19(1):62-68.
    PMID: 37488845 DOI: 10.4103/1673-5374.374139
    Taurine is a sulfur-containing, semi-essential amino acid that occurs naturally in the body. It alternates between inflammation and oxidative stress-mediated injury in various disease models. As part of its limiting functions, taurine also modulates endoplasmic reticulum stress, Ca2+ homeostasis, and neuronal activity at the molecular level. Taurine effectively protects against a number of neurological disorders, including stroke, epilepsy, cerebral ischemia, memory dysfunction, and spinal cord injury. Although various therapies are available, effective management of these disorders remains a global challenge. Approximately 30 million people are affected worldwide. The design of taurine formation could lead to potential drugs/supplements for the health maintenance and treatment of central nervous system disorders. The general neuroprotective effects of taurine and the various possible underlying mechanisms are discussed in this review. This article is a good resource for understanding the general effects of taurine on various diseases. Given the strong evidence for the neuropharmacological efficacy of taurine in various experimental paradigms, it is concluded that this molecule should be considered and further investigated as a potential candidate for neurotherapeutics, with emphasis on mechanism and clinical studies to determine efficacy.
  17. Sharma D, Pooja, Nirban S, Ojha S, Kumar T, Jain N, et al.
    AAPS PharmSciTech, 2023 Dec 04;24(8):252.
    PMID: 38049695 DOI: 10.1208/s12249-023-02708-3
    Tuberculosis (TB) is among the top 10 infectious diseases worldwide. It is categorized among the leading killer diseases that are the reason for the death of millions of people globally. Although a standardized treatment regimen is available, non-adherence to treatment has increased multi-drug resistance (MDR) and extensive drug-resistant (XDR) TB development. Another challenge is targeting the death of TB reservoirs in the alveoli via conventional treatment. TB Drug resistance may emerge as a futuristic restraint of TB with the scarcity of effective Anti-tubercular drugs. The paradigm change towards nano-targeted drug delivery systems is mostly due to the absence of effective therapy and increased TB infection recurrent episodes with MDR. The emerging field of nanotechnology gave an admirable opportunity to combat MDR and XDR via accurate diagnosis with effective treatment. The new strategies targeting the lung via the pulmonary route may overcome the new incidence of MDR and enhance patient compliance. Therefore, this review highlights the importance and recent research on pulmonary drug delivery with nanotechnology along with prevalence, the need for the development of nanotechnology, beneficial aspects of nanomedicine, safety concerns of nanocarriers, and clinical studies.
  18. Tungekar A, Mandarthi S, Mandaviya PR, Gadekar VP, Tantry A, Kotian S, et al.
    Sci Rep, 2018 08 24;8(1):12715.
    PMID: 30143675 DOI: 10.1038/s41598-018-30579-3
    Esophageal cancer (EC) is the eighth most aggressive malignancy and its treatment remains a challenge due to the lack of biomarkers that can facilitate early detection. EC is identified in two major histological forms namely - Adenocarcinoma (EAC) and Squamous cell carcinoma (ESCC), each showing differences in the incidence among populations that are geographically separated. Hence the detection of potential drug target and biomarkers demands a population-centric understanding of the molecular and cellular mechanisms of EC. To provide an adequate impetus to the biomarker discovery for ESCC, which is the most prevalent esophageal cancer worldwide, here we have developed ESCC ATLAS, a manually curated database that integrates genetic, epigenetic, transcriptomic, and proteomic ESCC-related genes from the published literature. It consists of 3475 genes associated to molecular signatures such as, altered transcription (2600), altered translation (560), contain copy number variation/structural variations (233), SNPs (102), altered DNA methylation (82), Histone modifications (16) and miRNA based regulation (261). We provide a user-friendly web interface ( http://www.esccatlas.org , freely accessible for academic, non-profit users) that facilitates the exploration and the analysis of genes among different populations. We anticipate it to be a valuable resource for the population specific investigation and biomarker discovery for ESCC.
  19. de Souza AC, Sebastian IA, Zaidi WAW, Nasreldein A, Bazadona D, Amaya P, et al.
    Int J Stroke, 2022 10;17(9):990-996.
    PMID: 35137645 DOI: 10.1177/17474930221082446
    BACKGROUND: Major disparities have been reported in recombinant tissue plasminogen activator (rtPA) availability among countries of different socioeconomic status.

    AIMS: To characterize variability of rtPA price, its availability, and its association with and impact on each country's health expenditure (HE) resources.

    METHODS: We conducted a global survey to obtain information on rtPA price (50 mg vial, 2020 US Dollars) and availability. Country-specific data, including low, lower middle (LMIC), upper middle (UMIC), and high-income country (HIC) classifications, and gross domestic product (GDP) and HE, both nominally and adjusted for purchasing power parity (PPP), were obtained from World Bank Open Data. To assess the impact of rtPA cost, we computed the rtPA price as percentage of per capita GDP and HE and examined its association with the country income classification.

    RESULTS: rtPA is approved and available in 109 countries. We received surveys from 59 countries: 27 (46%) HIC, 20 (34%) UMIC, and 12 (20%) LMIC. Although HIC have significantly higher per capita GDP and HE compared to UMIC and LMIC (p < 0.0001), the median price of rtPA is non-significantly higher in LMICs (USD 755, interquartile range, IQR (575-1300)) compared to UMICs (USD 544, IQR (400-815)) and HICs (USD 600, IQR (526-1000)). In LMIC, rtPA cost accounts for 217.4% (IQR, 27.1-340.6%) of PPP-adjusted per capita HE, compared to 17.6% (IQR (11.2-28.7%), p < 0.0001) for HICs.

    CONCLUSION: We documented significant variability in rtPA availability and price among countries. Relative costs are higher in lower income countries, exceeding the available HE. Concerted efforts to improve rtPA affordability in low-income settings are necessary.

  20. G Singh P, S Jain A, B Sridhara Setty P, Bv S, S Patil S, P A, et al.
    Bioinformation, 2022;18(8):683-691.
    PMID: 37323557 DOI: 10.6026/97320630018683
    There is a shred of evidence to suggest that Emblica officinalis Gaertn, the botanical name for amla seeds, has greater medicinal potential than amla fruit. We conducted this work to assess the anti-inflammatory, antibacterial, and antioxidant capacities of E. officinalis seed extracts. The bioactive components from the seeds were fractionated using chloroform, hexane, methanol, and diethyl ether, according to the polarity of the solvents. The total amount of phenolic and flavonoid was estimated. Both the reducing power and antioxidant capacities of the extracts were evaluated using the DPPH (1,1-diphenyl-2-picryl-hydrazyl) technique. 15-lipoxygenase (LOX) was inhibited by seed extracts at doses ranging from 5 to 25 micrograms. In silico docking was employed to assess the results. Some human pathogenic microorganisms were tested for their antibacterial activity using the agar disc diffusion method. Escherichia coli, Proteus vulgaris, and Klebsiella pneumonia were inhibited by a methanolic extract with an IC50 value of 58g, making it the most common organic solvent extract. Methanolic extracts also showed good antioxidant and antibacterial activity. Our investigation led us to discover that amla seeds have anti-inflammatory, antioxidant, and antibacterial effects.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links