Displaying publications 21 - 40 of 55 in total

Abstract:
Sort:
  1. Bang LT, Ramesh S, Purbolaksono J, Long BD, Chandran H, Ramesh S, et al.
    Biomed Mater, 2015 Aug;10(4):045011.
    PMID: 26225725 DOI: 10.1088/1748-6041/10/4/045011
    Interconnected porous tricalcium phosphate ceramics are considered to be potential bone substitutes. However, insufficient mechanical properties when using tricalcium phosphate powders remain a challenge. To mitigate these issues, we have developed a new approach to produce an interconnected alpha-tricalcium phosphate (α-TCP) scaffold and to perform surface modification on the scaffold with a composite layer, which consists of hybrid carbonate apatite / poly-epsilon-caprolactone (CO3Ap/PCL) with enhanced mechanical properties and biological performance. Different CO3Ap combinations were tested to evaluate the optimal mechanical strength and in vitro cell response of the scaffold. The α-TCP scaffold coated with CO3Ap/PCL maintained a fully interconnected structure with a porosity of 80% to 86% and achieved an improved compressive strength mimicking that of cancellous bone. The addition of CO3Ap coupled with the fully interconnected microstructure of the α-TCP scaffolds coated with CO3Ap/PCL increased cell attachment, accelerated proliferation and resulted in greater alkaline phosphatase (ALP) activity. Hence, our bone substitute exhibited promising potential for applications in cancellous bone-type replacement.
  2. Vikneswaran R, Syafiq MS, Eltayeb NE, Kamaruddin MN, Ramesh S, Yahya R
    PMID: 26046495 DOI: 10.1016/j.saa.2015.05.087
    Copper ion recognition and DNA interaction of a newly synthesized fluorescent Schiff base (HPyETSC) were investigated using UV-vis and fluorescent spectroscopy. Examination using these two techniques revealed that the detection of copper by HPyETSC is highly sensitive and selective, with a detection limit of 0.39 μm and the mode of interaction between HPyETSC and DNA is electrostatic, with a binding constant of 8.97×10(4) M(-1). Furthermore, gel electrophoresis studies showed that HPyETSC exhibited nuclease activity through oxidative pathway.
  3. Khanmirzaei MH, Ramesh S, Ramesh K
    Sci Rep, 2015;5:18056.
    PMID: 26659087 DOI: 10.1038/srep18056
    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10(-3) S cm(-1) is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm(-2), 610 mV and 69.1%, respectively.
  4. Omar FS, Duraisamy N, Ramesh K, Ramesh S
    Biosens Bioelectron, 2016 May 15;79:763-75.
    PMID: 26774092 DOI: 10.1016/j.bios.2016.01.013
    Nicotinamide Adenine Dinucleotide (NADH) is an important coenzyme in the human body that participates in many metabolic reactions. The impact of abnormal concentrations of NADH significantly causes different diseases in human body. Electrochemical detection of NADH using bare electrode is a challenging task especially in the presence of main electroactive interferences such as ascorbic acid (AA), uric acid (UA) and dopamine (DA). Modified electrodes have been widely explored to overcome the problems of poor sensitivity and selectivity occurred from bare electrodes. This review gives an overview on the progress of using conducting polymers, polyelectrolyte and its composites (co-polymer, carbonaceous, metal, metal oxide and clay) based modified electrodes for the sensing of NADH. In addition, developments on the fabrication of numerous conducting polymer composites based modified electrodes are clearly described.
  5. Liew CW, Ng HM, Numan A, Ramesh S
    Polymers (Basel), 2016 May 18;8(5).
    PMID: 30979292 DOI: 10.3390/polym8050179
    Nanocomposite polymer electrolyte membranes (NCPEMs) based on poly(acrylic acid)(PAA) and titania (TiO₂) are prepared by a solution casting technique. The ionic conductivity of NCPEMs increases with the weight ratio of TiO₂.The highest ionic conductivity of (8.36 ± 0.01) × 10-4 S·cm-1 is obtained with addition of 6 wt % of TiO₂ at ambient temperature. The complexation between PAA, LiTFSI and TiO₂ is discussed in Attenuated total reflectance-Fourier Transform Infrared (ATR-FTIR) studies. Electrical double layer capacitors (EDLCs) are fabricated using the filler-free polymer electrolyte or the most conducting NCPEM and carbon-based electrodes. The electrochemical performances of fabricated EDLCs are studied through cyclic voltammetry (CV) and galvanostatic charge-discharge studies. EDLC comprising NCPEM shows the specific capacitance of 28.56 F·g-1 (or equivalent to 29.54 mF·cm-2) with excellent electrochemical stability.
  6. Duraisamy N, Numan A, Fatin SO, Ramesh K, Ramesh S
    J Colloid Interface Sci, 2016 Jun 01;471:136-144.
    PMID: 26995554 DOI: 10.1016/j.jcis.2016.03.013
    In this work, we demonstrate the influence of nickel oxides with divergent particle sizes as the working electrodes for supercapacitor application. The nanostructured nickel oxide (NiO) is synthesized via facile sonochemical method, followed by calcination process. The crystallinity and surface purity of prepared samples are clearly examined by X-ray diffraction and Raman analysis. NiO crystallinity is significantly increased with increasing calcination temperatures. The surface analysis confirmed that the calcination at 250°C exhibited nanoclutser like NiO with average particle size of ∼6nm. While increasing the calcination temperature beyond 250°C, hexagonal shaped NiO is observed with enhanced particle sizes. The electrochemical performance confirmed the good redox behavior of NiO electrodes. Moreover, NiO with average particle size of ∼6nm exhibited high specific capacitance of 449F/g at a scan rate of 5mV/s compared to other samples with particle sizes of ∼21nm (323F/g) and ∼41nm (63F/g). This is due to the good ion transfer mechanism and effective electrochemical utilization of the working electrode.
  7. Fattah NFA, Ng HM, Mahipal YK, Numan A, Ramesh S, Ramesh K
    Materials (Basel), 2016 Jun 06;9(6).
    PMID: 28773573 DOI: 10.3390/ma9060450
    Solid polymer electrolyte (SPE) composed of semi-crystalline poly (vinylidene fluoride-hexafluoropropylene) [P(VdF-HFP)] copolymer, 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulphonyl) imide [EMI-BTI] and graphene oxide (GO) was prepared and its performance evaluated. The effects of GO nano-filler were investigated in terms of enhancement in ionic conductivity along with the electrochemical properties of its electrical double layer capacitors (EDLC). The GO-doped SPE shows improvement in ionic conductivity compared to the P(VdF-HFP)-[EMI-BTI] SPE system due to the existence of the abundant oxygen-containing functional group in GO that assists in the improvement of the ion mobility in the polymer matrix. The complexation of the materials in the SPE is confirmed in X-ray diffraction (XRD) and thermogravimetric analysis (TGA) studies. The electrochemical performance of EDLC fabricated with GO-doped SPE is examined using cyclic voltammetry and charge-discharge techniques. The maximum specific capacitance obtained is 29.6 F∙g(-1), which is observed at a scan rate of 3 mV/s in 6 wt % GO-doped, SPE-based EDLC. It also has excellent cyclic retention as it is able keep the performance of the EDLC at 94% even after 3000 cycles. These results suggest GO doped SPE plays a significant role in energy storage application.
  8. Pai YS, Yap HJ, Md Dawal SZ, Ramesh S, Phoon SY
    Sci Rep, 2016 06 07;6:27380.
    PMID: 27271840 DOI: 10.1038/srep27380
    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.
  9. Ming NH, Ramesh S, Ramesh K
    Sci Rep, 2016 06 08;6:27630.
    PMID: 27273020 DOI: 10.1038/srep27630
    In this study, dye-sensitized solar cells (DSSCs) has been assembled with poly(1-vinylpyrrolidone-co-vinyl acetate) (P(VP-co-VAc)) gel polymer electrolytes (GPEs) which have been incorporated with binary salt and an ionic liquid. The potential of this combination was studied and reported. The binary salt system GPEs was having ionic conductivity and power conversion efficiency (PCE) that could reach up to 1.90 × 10(-3) S cm(-1) and 5.53%, respectively. Interestingly, upon the addition of the ionic liquid, MPII into the binary salt system the ionic conductivity and PCE had risen steadily up to 4.09 × 10(-3) S cm(-1) and 5.94%, respectively. In order to know more about this phenomenon, the electrochemical impedance studies (EIS) of the GPE samples have been done and reported. Fourier transform infrared studies (FTIR) and thermogravimetric analysis (TGA) have also been studied to understand more on the structural and thermal properties of the GPEs. The Nyquist plot and Bodes plot studies have been done in order to understand the electrochemical properties of the GPE based DSSCs and Tafel polarization studies were done to determine the electrocatalytic activity of the GPE samples.
  10. Huda N, Raman AAA, Bello MM, Ramesh S
    J Environ Manage, 2017 Dec 15;204(Pt 1):75-81.
    PMID: 28865309 DOI: 10.1016/j.jenvman.2017.08.028
    The main problem of landfill leachate is its diverse composition comprising many persistent organic pollutants which must be removed before being discharge into the environment. This study investigated the treatment of raw landfill leachate using electrocoagulation process. An electrocoagulation system was designed with iron as both the anode and cathode. The effects of inter-electrode distance, initial pH and electrolyte concentration on colour and COD removals were investigated. All these factors were found to have significant effects on the colour removal. On the other hand, electrolyte concentration was the most significant parameter affecting the COD removal. Numerical optimization was also conducted to obtain the optimum process performance. Under optimum conditions (initial pH: 7.73, inter-electrode distance: 1.16 cm, and electrolyte concentration (NaCl): 2.00 g/L), the process could remove up to 82.7% colour and 45.1% COD. The process can be applied as a pre-treatment for raw leachates before applying other appropriate treatment technologies.
  11. Viswanathan, R., Ramesh, S., Kamesh Kumar, D., Elango, N.
    MyJurnal
    This paper focuses on examining the ‘cutting zone temperature’ while performing turning operation
    on AZ91Mg alloy using cemented carbide tools. The regression model is developed by using the RSM
    techniques based on experimental results. It is revealed that the cutting speed (v) is the most dominant
    factor affecting cutting zone temperature. The developed models of cutting zone temperature sufficiently
    map within the range of the turning conditions considered. The adequacy and accuracy of the regression
    equation is justified through ANOVA. It is found that the optimal combinations of machining parameters
    minimize the cutting temperature.
  12. Bashir S, Teo YY, Naeem S, Ramesh S, Ramesh K
    PLoS One, 2017;12(7):e0179250.
    PMID: 28678803 DOI: 10.1371/journal.pone.0179250
    There has been significant progress in the last few decades in addressing the biomedical applications of polymer hydrogels. Particularly, stimuli responsive hydrogels have been inspected as elegant drug delivery systems capable to deliver at the appropriate site of action within the specific time. The present work describes the synthesis of pH responsive semi-interpenetrating network (semi-IPN) hydrogels of N-succinyl-chitosan (NSC) via Schiff base mechanism using glutaraldehyde as a crosslinking agent and Poly (acrylamide-co-acrylic acid)(Poly (AAm-co-AA)) was embedded within the N-succinyl chitosan network. The physico-chemical interactions were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and field emission scanning electron microscope (FESEM). The synthesized hydrogels constitute porous structure. The swelling ability was analyzed in physiological mediums of pH 7.4 and pH 1.2 at 37°C. Swelling properties of formulations with various amounts of NSC/ Poly (AAm-co-AA) and crosslinking agent at pH 7.4 and pH 1.2 were investigated. Hydrogels showed higher swelling ratios at pH 7.4 while lower at pH 1.2. Swelling kinetics and diffusion parameters were also determined. Drug loading, encapsulation efficiency, and in vitro release of 5-fluorouracil (5-FU) from the synthesized hydrogels were observed. In vitro release profile revealed the significant influence of pH, amount of NSC, Poly (AAm-co-AA), and crosslinking agent on the release of 5-FU. Accordingly, rapid and large release of drug was observed at pH 7.4 than at pH 1.2. The maximum encapsulation efficiency and release of 5-FU from SP2 were found to be 72.45% and 85.99%, respectively. Kinetics of drug release suggested controlled release mechanism of 5-FU is according to trend of non-Fickian. From the above results, it can be concluded that the synthesized hydrogels have capability to adapt their potential exploitation as targeted oral drug delivery carriers.
  13. Bashir S, Teo YY, Ramesh S, Ramesh K, Mushtaq MW
    Int J Biol Macromol, 2018 Oct 01;117:454-466.
    PMID: 29807081 DOI: 10.1016/j.ijbiomac.2018.05.182
    Novel pH sensitive N-succinyl chitosan-g-poly (acrylic acid) hydrogels were synthesized through free radical mechanism. Rheometer was used to observe the mechanical strength of the hydrogels. In vitro degradation was conducted in SIF (pH 7.4). The effect of concentration of monomers, initiator, and crosslinking agent and pH and ionic strength of NaCl, CaCl2, and AlCl3 on swelling of the hydrogels was observed. The results showed that equilibrium swelling ratio was highly influenced by concentration of monomers, initiator, and crosslinking agent concentration, and pH and salt solutions of NaCl, CaCl2, and AlCl3. The swelling kinetics revealed that swelling followed non-Fickian anomalous transport. Furthermore, theophylline loading (DL %) and encapsulation efficiency (EE %) of the hydrogels was in the range of 15.5 ± 0.15-22.8 ± 0.06% and 62 ± 0.15-91 ± 0.26%, respectively. The release of theophylline in physiological mediums was strongly influenced by the pH. The theophylline release was in the range of 51 ± 0.20-92 ± 0.12% in SIF and 7.4 ± 0.02-14.9 ± 0.03% in SGF (pH 1.2), respectively. The release data fitted well to Korsmeyer-Peppas model. The chemical activity of the theophylline suggested that drug maintained its chemical activity after release in vitro. The results suggest that synthesized hydrogels are excellent drug carriers.
  14. Bayrami A, Alioghli S, Rahim Pouran S, Habibi-Yangjeh A, Khataee A, Ramesh S
    Ultrason Sonochem, 2019 Jul;55:57-66.
    PMID: 31084791 DOI: 10.1016/j.ultsonch.2019.03.010
    The synthesis of nanoparticles often result in the generation of harmful chemical pollutants. As such, many researchers have focused on developing green processes, which include the biosynthesis. In this research, ZnO nanoparticles were prepared using the leaf extract of whortleberry (Vaccinium arctostaphylos L.) via a simple ultrasonic-assisted method. The morphology, crystal size and structure, surface, thermal, and optical properties of the bio-mediated ZnO sample (ZnOext) were analyzed and compared with that produced without incorporating the extract (ZnOchem). The ZnO samples were evaluated for their antidiabetic, antibacterial, as well as their sono- and photo-catalytic performances. Initially, the samples were intraperitoneal injected to alloxan-diabetic rats to examine their treatment efficiency in terms of effects on fasting blood glucose, insulin, cholesterol, high-density lipoprotein, and total triglyceride levels. The ZnOext showed significantly higher efficiency for improving the health status of alloxan-diabetic rats in contrast with other tested treatments, vis. ZnOchem, insulin, and only leaf extract. In addition, both the ZnO samples were assessed against gram-negative and gram-positive bacteria and through sono- and photo-catalytic processes for removing rhodamine B, respectively. The results of this study indicated that not only the ZnOext sample was pollution free, it also exhibited higher potentials for treating diabetic rats, bacterial decontamination, and also oxidative removal of organic compounds under the influences of ultrasound and UV irradiations when compared with ZnOchem sample.
  15. Lal LPJ, Ramesh S, Parasuraman S, Natarajan E, Elamvazuthi I
    Materials (Basel), 2019 Sep 20;12(19).
    PMID: 31547117 DOI: 10.3390/ma12193057
    Nanosilica particles were utilized as secondary reinforcement to enhance the strength of the epoxy resin matrix. Thin glass fibre reinforced polymer (GFRP) composite laminates of 3 ± 0.25 mm were developed with E-Glass mats of 610 GSM and LY556 epoxy resin. Nanosilica fillers were mixed with epoxy resin in the order of 0.25, 0.5, 0.75 and 1 wt% through mechanical stirring followed by an ultrasonication method. Thereafter, the damage was induced on toughened laminates through low-velocity drop weight impact tests and the induced damage was assessed through an image analysis tool. The residual compression strength of the impacted laminates was assessed through compression after impact (CAI) experiments. Laminates with nanosilica as secondary reinforcement exhibited enhanced compression strength, stiffness, and damage suppression. Results of Fourier-transform infrared spectroscopy revealed that physical toughening mechanisms enhanced the strength of the nanoparticle-reinforced composite. Failure analysis of the damaged area through scanning electron microscopy (SEM) evidenced the presence of key toughening mechanisms like damage containment through micro-cracks, enhanced fiber-matrix bonding, and load transfer.
  16. Pal B, Yang S, Ramesh S, Thangadurai V, Jose R
    Nanoscale Adv, 2019 Oct 09;1(10):3807-3835.
    PMID: 36132093 DOI: 10.1039/c9na00374f
    Electrolytes are one of the vital constituents of electrochemical energy storage devices and their physical and chemical properties play an important role in these devices' performance, including capacity, power density, rate performance, cyclability and safety. This article reviews the current state of understanding of the electrode-electrolyte interaction in supercapacitors and battery-supercapacitor hybrid devices. The article discusses factors that affect the overall performance of the devices such as the ionic conductivity, mobility, diffusion coefficient, radius of bare and hydrated spheres, ion solvation, viscosity, dielectric constant, electrochemical stability, thermal stability and dispersion interaction. The requirements needed to design better electrolytes and the challenges that still need to be addressed for building better supercapacitive devices for the competitive energy storage market have also been highlighted.
  17. Prabhu AV, Ve RS, Talukdar J, Chandrasekaran V
    Oman J Ophthalmol, 2019 10 11;12(3):145-149.
    PMID: 31902987 DOI: 10.4103/ojo.OJO_190_2018
    AIM: The aim of this study is to estimate the prevalence of visual impairment among school-going children in Udupi district, Karnataka.

    MATERIALS AND METHODS: A cross-sectional study across eleven schools from both urban and rural parts of Udupi taluk was conducted to report the magnitude of visual impairment among the schoolchildren. Complex survey design was used in allocating the sample size through stratification and clustering. Totally 1784 schoolchildren between the age groups of 5 and 15 years participated in the study. Presenting visual acuity and objective refraction was measured using computerized logMAR acuity charts and Plusoptix A09 photorefractor, respectively. Manifest ocular deviation or squint was also recorded.

    RESULTS: The mean age of the students was found to be 10.62 ± 2.72 years. The prevalence of visual impairment, i.e., visual acuity worse than or equal to 20/40 in the better eye was found to be 4.32% (95% confidence interval: 3.38%, 5.26%). The prevalence rate was significantly higher among students from urban area (5.6%) compared to those from rural area (3.6%) (P = 0.011).

    CONCLUSION: Visual impairment was found to be 4.32% in the school-going population of Udupi district. Effective and user-friendly devices aided the visual deficit screening including refractive error and squint.

  18. Bang LT, Shi R, Bui Duc L, Ramesh S, Shi X, Sugiura Y, et al.
    Biomed Mater, 2020 Jan 08.
    PMID: 31914435 DOI: 10.1088/1748-605X/ab6939
    Titainum (Ti) implants have been successfully used in orthopaedic and dental surgery. However, the poor early bone tissue integration is still a common failure. This could be modulated by improving material bonding or adhesion directly to bone though a surface roughening and/or a bioresorbable and osteoconductive coating. In this study, we report on the biological behavious of the Ti substrate with modified surface roughness and/or bioactive coating. The roughened Ti surface was prepared by acid etching reaction, and the calcium carbonate (CaCO3) coating on the substrates was synthesized by hydrothermal treatment of Ti in calcium citrate complexes. The study demonstrated that surface roughing of Ti alone did not improve the biological reponse of the MC3T3-E1 cells, however, CaCO3 coating on smooth Ti surface increased cell responses, and the affects were further enhanced in combination with Ti surface roughening. Larger cell area, greater cell proliferation and increased bone-like nodule formation were obtained on the CaCO3 coating of the roughened Ti surface. This was also supported by a higher ALP value obtained for the the coatings of roughened Ti surface. The cell behaviours found in the current study support further development of calcium carbonate coatings towards clinical application.
  19. Khanmirzaei MH, Ramesh S, Ramesh K
    J Nanosci Nanotechnol, 2020 Apr 01;20(4):2423-2429.
    PMID: 31492257 DOI: 10.1166/jnn.2020.17192
    Solid polymer electrolytes (SPEs) were prepared using rice starch as the polymer, sodium iodide (NaI) as the salt and 1-hexyl-3-methylimidazolium iodide (HMII) as the ionic liquid (IL). The solution casting technique was used for preparation of the PEs. The ionic conductivity and temperaturedependent properties of the PEs were measured and all the SPEs were found to follow the Arrhenius thermal activated model. Ionic conductivity increased as the percentage of ILs increased. The SPE containing 20% (wt) of HMII IL showed the highest ionic conductivity of 1.83×10-3 S/cm. Spectral and structural characterization of the PEs were performed by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), respectively. The results of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) indicate that the decomposition temperature (Tdc), glass transition temperatures (Tg) and melting points (Tm) shifted when complexation with HMII occurred. The PEs were used to fabricate dye-sensitized solar cells (DSSCs) and the DSSCs were analyzed under a 1-sun simulator. The SPE with the highest ionic conductivity displayed a short circuit current density (Jsc) of 9.07 (mA cm-2), open circuit voltage (Voc) of 0.58 (V), a fill factor (FF) of 0.65 and had the highest energy conversion efficiency of 3.42%.
  20. Mehboob H, Tarlochan F, Mehboob A, Chang SH, Ramesh S, Harun WSW, et al.
    J Mater Sci Mater Med, 2020 Aug 20;31(9):78.
    PMID: 32816091 DOI: 10.1007/s10856-020-06420-7
    The current study is proposing a design envelope for porous Ti-6Al-4V alloy femoral stems to survive under fatigue loads. Numerical computational analysis of these stems with a body-centered-cube (BCC) structure is conducted in ABAQUS. Femoral stems without shell and with various outer dense shell thicknesses (0.5, 1.0, 1.5, and 2 mm) and inner cores (porosities of 90, 77, 63, 47, 30, and 18%) are analyzed. A design space (envelope) is derived by using stem stiffnesses close to that of the femur bone, maximum fatigue stresses of 0.3σys in the porous part, and endurance limits of the dense part of the stems. The Soderberg approach is successfully employed to compute the factor of safety Nf > 1.1. Fully porous stems without dense shells are concluded to fail under fatigue load. It is thus safe to use the porous stems with a shell thickness of 1.5 and 2 mm for all porosities (18-90%), 1 mm shell with 18 and 30% porosities, and 0.5 mm shell with 18% porosity. The reduction in stress shielding was achieved by 28%. Porous stems incorporated BCC structures with dense shells and beads were successfully printed.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links