OBJECTIVE: The present study was aimed to synthesize and evaluate antimicrobial and anticancer activities of Schiff bases of 2-mercaptobenzimidazole.
METHODS: The Schiff bases of 2-mercaptobenzimidazole were synthesized from 4-(2-(1H-benzo[d]- imidazol-2-ylthio)acetamido)benzohydrazide. The synthesized compounds were evaluated for antimicrobial and anticancer activities by tube dilution method and Sulforhodamine-B (SRB) assay, respectively.
RESULTS: Compounds 8 (MICpa, an = 2.41, 1.20 µM/ml), 10 (MICse, sa = 2.50 µM/ml), 20 (MICec = 2.34 µM/ml) and 25 (MICca = 1.46 µM/ml) showed significant antimicrobial activity against tested bacterial and fungal strains and compounds 20 (IC50 = 8 µg/ml) and 23 (IC50 = 7 µg/ml) exhibited significant anticancer activity.
CONCLUSION: In general, the synthesized derivatives exhibited moderate antimicrobial and anticancer activities. Compounds 8 and 25 having high antifungal potential among the synthesized compounds may be taken as lead molecules for the development of novel antifungal agents.
METHODS: The synthesized pyrimidine scaffolds were screened for their antimicrobial activity by tube dilution method as well for antiproliferative activity (human colorectal (HCT116) cancer cell line) by SRB assay.
RESULTS: The antimicrobial screening results demonstrated that compounds, k6, k12, k14 and k20 were found to be the most potent ones against selected microbial species. The anticancer screening results indicated that compounds, k8 and k14 displayed potent anticancer activity against cancer cell line (HCT116).
CONCLUSION: Further, the molecular docking study carried to find out the interaction between active pyrimidine compounds with CDK-8 protein indicated that compound k14 showed best dock score with better potency within the ATP binding pocket and may be used as a lead for rational drug designing of the anticancer molecule.
METHODS: An open web server PharmMapper was used to identify the possible target of the developed compounds through reverse pharmacophore mapping. The results were analyzed and validated through docking with Schrodinger v9.6 using 10 protein GTPase HRas selected as possible target. The docking studies with Schrödinger validated the binding behavior of bis-pyrimidine compounds within GTP binding pocket. MTT and sulforhodamine assay were used as antiproliferative activity.
RESULTS AND DISCUSSION: The protein was found one of the top scored targets of the compound 18, hence, the GTPase HRas protein was found crucial to be targeted for competing cancer. Toxicity study demonstrated the significant selectivity of most active compounds, 12, 16 and 18 showed negligible cell toxicity at their IC50 concentration.
CONCLUSION: From the results, we may conclude that GTPase HRas as a possible target of studied bis-pyrimidine derivatives where the retrieved information may be quite useful for rational drug designing.
RESULTS AND DISCUSSION: The synthesized benzoxazole compounds were confirmed by IR, 1H/13C-NMR, mass and screened for their in vitro antimicrobial activity against Gram-positive bacterium: Bacillus subtilis, four Gram-negative bacteria: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhi and two fungal strains: Candida albicans and Aspergillus niger using tube dilution technique and minimum inhibitory concentration (MIC) was noted in µM and compared to ofloxacin and fluconazole. Human colorectal carcinoma (HCT116) cancer cell line was used for the determination of in vitro anticancer activity (IC50 value) by Sulforhodamine B assay using 5-fluorouracil as standard drug.
CONCLUSION: The performed study indicated that the compounds 1, 10, 13, 16, 19, 20 and 24 had highest antimicrobial activity with MIC values comparable to ofloxacin and fluconazole and compounds 4, 6, 25 and 26 had best anticancer activity in comparison to 5-fluorouracil.
RESULTS: The molecular structures of synthesized benzoxazole derivatives were confirmed by physicochemical and spectral means. The synthesized compounds were further evaluated for their in vitro biological potentials i.e. antimicrobial activity against selected microbial species using tube dilution method and antiproliferative activity against human colorectal carcinoma (HCT 116) cancer cell line by Sulforhodamine B assay.
CONCLUSION: In vitro antimicrobial results demonstrated that compounds 4, 5, 7 and 16 showed promising antimicrobial potential. The in vitro anticancer activity indicated that compounds 4 and 16 showed promising anticancer activity against human colorectal cancer cell line (HCT 116) when compared to standard drug and these compounds may serve as lead compound for further development of novel antimicrobial and anticancer agents.
METHODOLOGY: The synthesized metal complexes were characterized by physicochemical and spectral investigation (UV, IR, 1H and 13C-NMR) and were further evaluated for their antimicrobial (tube dilution) and anticancer (SRB assay) activities. In addition, the corrosion inhibition potential was determined by electrochemical impedance spectroscopy (EIS) technique.
RESULTS AND DISCUSSION: Antimicrobial screening results found complexes (MC1-MC4) to exhibit less antibacterial activity against the tested bacterial species compared to ofloxacin while the complex MC1 exhibited greater antifungal activity than the fluconazole. The anticancer activity results found the synthesized Schiff base and its metal complexes to elicit poor cytotoxic activity than the standard drug (5-fluorouracil) against HCT116 cancer cell line. Metal complex MC2 showed more corrosion inhibition efficiency with high Rct values and low Cdl values.
CONCLUSION: From the results, we can conclude that complexes MC1 and MC2 may be used as potent antimicrobial and anticorrosion agents, respectively.
RESULTS AND DISCUSSION: The antimicrobial activity was performed against selected fungal and bacterial strains using tube dilution method. The antiproliferative potential was evaluated against human colorectal carcinoma (HCT116) and oestrogen- positive human breast carcinoma (MCF7) cancer cell lines using Sulforhodamine B assay and, results were compared to standard drugs, 5-fluorouracil and tamoxifen, respectively.
CONCLUSION: The performed antimicrobial activity indicated that compounds 3, 5, 6, 8 and 14 showed promising activity against selected microbial species. Antiproliferative screening found compound 14 to be the most potent compound against HCT116 (IC50 = 71.8 µM), whereas Compound 6 was the most potent against MCF7 (IC50 = 74.1 µM). Further, the molecular docking study has been carried to find out the interaction between active oxazole compounds with CDK8 (HCT116) and ER-α (MCF7) proteins indicated that compound 14 and 6 showed good dock score with better potency within the ATP binding pocket and may be used as a lead for rational drug designing of the anticancer molecule.
METHODS: They have also been used for antibacterial, antifungal, anticancer, antitubercular activities. Novel synthesised Schiff's base 2-methoxy-4-((3-methylpyridin-2-ylimino)methyl)phenol (SB) and its metal complexes (Zn[II], Cu[II], Co[II] and Ni[II]) were characterised by UV, IR and NMR spectroscopy. Formation of the Schiff base and the metal (Zn[II], Cu[II], Co[II] and Ni[II]) chelates was supported by spectral and analytical data. The ligand and metal complexes have been screened for their antibacterial activity against Staphylococcus aureus, Salmonella typhi, Escherichia coli, Klebsiella pneumoniae and antifungal activity against the fungi Candida albicans and Aspergillus niger. Further, the synthesised compounds were also screened for antiproliferative activity against the human colorectal carcinoma (HCT116) cell line using the Sulforhodamine B assay.
RESULT: Metal complexes formed were found to enhance the potency of the Schiff base due to coordination with a copper complex, showing better activity than others.
CONCLUSION: Copper complex was observed to be more potent than other complexes against all the pathogenic microbes and cancer cell line (HCT116).
RESULTS: All the compounds possessed significant antimicrobial activity with MIC in the range of 0.007 and 0.061 µM/ml. The cytotoxicity study revealed that almost all the derivatives were potent in inhibiting the growth of HCT116 cell line in comparison to the standard drug 5-fluorouracil. Compounds 5l and 5k (IC50 = 0.00005 and 0.00012 µM/ml, respectively) were highly cytotoxic towards HCT116 cell line in comparison to 5-fluorouracil (IC50 = 0.00615 µM/ml) taken as standard drug.
CONCLUSION: The molecular docking studies of potent anticancer compounds 5l, 5k, 5i and 5p showed their putative binding mode and significant interactions with cyclin-dependent kinase-8 as prospective agents for treating colon cancer.