Displaying publications 21 - 37 of 37 in total

Abstract:
Sort:
  1. Ali Y, Muhamad Bunnori N, Susanti D, Muhammad Alhassan A, Abd Hamid S
    Front Chem, 2018;6:210.
    PMID: 29946538 DOI: 10.3389/fchem.2018.00210
    Calixarene derivatives are reported as potential therapeutic agents. Azo derivatives of calixarenes have not been given much consideration to explore their biomedical applications. In the present study, some azo-based derivatives of calix[4]arene were synthesized and characterized and their antibacterial and antiviral potentials were studied. The mono azo products of sulphanilamide, sulfaguanidine and 2-methyl-4-aminobenzoic acid showed good activity against bacterial strains with minimum inhibition concentration values ranging from 0.97 to 62.5 μg/mL. For mono azo products, the diazotized salt was applied as a limiting reagent. The use of calix[4]arene and sodium acetate trihydrate in 1:3 (molar ratio) helped in partial substitution. Molecular docking was performed to see the interaction of the designed compounds with two bacterial and one viral (neuraminidase) receptor. Some of the derivatives showed good interaction with the active site of bacterial and neuraminidase enzymes through hydrogen, hydrophobic and pi-pi interactions, and could inhibit the activity of the selected enzymes.
  2. Аrbаin D, Saputri GA, Syahputra GS, Widiyastuti Y, Susanti D, Taher M
    J Ethnopharmacol, 2021 Oct 05;278:114316.
    PMID: 34116190 DOI: 10.1016/j.jep.2021.114316
    ETHNOPHARMACOLOGICAL RELEVANCE: The genus Pterocarpus (Fabaceae) has about 46 species that are distributed over Asia, especially Indonesia, Africa, and several countries in America. Particularly, P. indicus and P. santalinus have been recorded as ancestor recipe in the old Indonesian book (Cabe puyang warisan nenek moyang). These plants have found application in traditional medicine, such as in the treatment of inflammatory diseases, gonorrhoea, infection, coughs, mouth ulcers, boils, diarrhoea, as well as in the management of pain (as an analgesic).

    AIM OF THE REVIEW: The present review aimed to comprehensively summarise the current researches on the traditional and scientific applications of the genus Pterocarpus with regard to the phytochemical content, in vivo and in vitro bioactivities, as well as clinical evidence that may be useful for future drug development.

    MATERIALS AND METHODS: Information about the Pterocarpus genus were obtained from local classic herbal literature and electronic databases, such as PubMed, Scopus, and Google Scholar. The scientific name of the species and its synonyms were checked with the information of The Plant List. Additionally, clinical trial results were obtained from the Cochrane library.

    RESULTS: Several phytochemical constituents of the plants, e.g., flavonoids, isoflavonoids, terpenoids, phenolic acids, and fatty acids have been reported. There are about 11 species of Pterocarpus that have been scientifically studied for their biological activities, including anti-inflammatory, anti-microbial, analgesic, and anti-hyperglycemic. Of which, the anti-hyperglycemic activity of the extracts and phytochemicals of P. indicus and P. marsupium is particularly remarkable, allowing them to be further studied under clinical trial.

    CONCLUSION: The present review has provided an insight into the traditional applications of the plants and some of them have been validated by scientific evidence, particularly their applications as anti-inflammatory and anti-microbial agents. In addition, the genus has demonstrated notable anti-diabetic activity in various clinical trials.

  3. Taher M, Susanti D, Haris MS, Rushdan AA, Widodo RT, Syukri Y, et al.
    Heliyon, 2023 Mar;9(3):e13823.
    PMID: 36873538 DOI: 10.1016/j.heliyon.2023.e13823
    Cancer is a second leading disease-causing death worldwide that will continuously grow as much as 70% in the next 20 years. Chemotherapy is still becoming a choice for cancer treatment despite its severity of side effects and low success rate due to ineffective delivery of the chemodrugs. Since it was introduced in 1960, significant progress has been achieved in the use of liposomes in drug delivery. The study aims to review relevant literatures on role of PEGylated liposome in enhancing cytotoxic activity of several agents. A systematic literature on the use of PEGylated liposomes in anticancer research via Scopus, Google scholar and PubMed databases was conducted for studies published from 2000 to 2022. A total of 15 articles were selected and reviewed from 312 articles identified covering a variety of anticancer treatments by using PEGylated liposomes. PEGylated liposome which is purposed to achieve steric equilibrium is one of enhanced strategies to deliver anticancer drugs. It has been shown that some improvement of delivery and protection form a harsh gastric environment of several anticancer drugs when they are formulated in a PEGylated liposome. One of the successful drugs that has been clinically used is Doxil®, followed by some other drugs in the pipeline Various drugs (compounds) had been used to enhance the efficacy of PEGylated liposomes for targeted cancer cells in vitro and in vivo. In conclusion, PEGylated liposomes enhance drug activities and have great potential to become efficient anticancer delivery to follow Doxil® in the clinical setting.
  4. Sh Ahmed A, Taher M, Mandal UK, Jaffri JM, Susanti D, Mahmood S, et al.
    BMC Complement Altern Med, 2019 Aug 14;19(1):213.
    PMID: 31412845 DOI: 10.1186/s12906-019-2625-2
    BACKGROUND: Various extracts of Centella asiatica (Apiaceae) and its active constituent, asiaticoside, have been reported to possess wound healing property when assessed using various in vivo and in vitro models. In an attempt to develop a formulation with accelerated wound healing effect, the present study was performed to examine in vivo efficacy of asiaticoside-rich hydrogel formulation in rabbits.

    METHODS: Asiaticoside-rich fraction was prepared from C. asiatica aerial part and then incorporated into polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogel. The hydrogel was subjected to wound healing investigation using the in vivo incision model.

    RESULTS: The results obtained demonstrated that: i) the hydrogel formulation did not cause any signs of irritation on the rabbits' skin and; ii) enhanced wound healing 15% faster than the commercial cream and > 40% faster than the untreated wounds. The skin healing process was seen in all wounds marked by formation of a thick epithelial layer, keratin, and moderate formation of granulation tissues, fibroblasts and collagen with no fibrinoid necrosis detected.

    CONCLUSION: The asiaticoside-rich hydrogel developed using the freeze-thaw method was effective in accelerating wound healing in rabbits.

  5. Arbain D, Sinaga LMR, Taher M, Susanti D, Zakaria ZA, Khotib J
    Front Pharmacol, 2022;13:849704.
    PMID: 35685633 DOI: 10.3389/fphar.2022.849704
    The genus Alocasia (Schott) G. Don consists of 113 species distributed across Asia, Southeast Asia, and Australia. Alocasia plants grow in tropical and subtropical forests with humid lowlands. Featuring their large green heart-shaped or arrow-shaped ear leaves and occasionally red-orange fruit, they are very popular ornamental plants and are widely used as traditional medicines to treat various diseases such as jaundice, snake bite, boils, and diabetes. This manuscript critically analysed the distribution, traditional uses, and phytochemical contents of 96 species of Alocasia. The numerous biological activities of Alocasia species were also presented, which include anti-cancer, antidiabetic and antihyperglycaemic, antioxidant, antidiarrhoea, antimicrobial and antifungal, antiparasitic (antiprotozoal and anthelminthic), antinociceptive and anti-inflammatory, brine shrimp lethality, hepatoprotective, anti-hemagglutinin, anti-constipation and diuretic, and radioprotective activities as well as acute toxicity studies. Research articles were acquired by the accessing three scientific databases comprising PubMed, Scopus, and Google Scholar. For this review, specific information was obtained using the general search term "Alocasia", followed by the "plant species names" and "phytochemical" or "bioactivity" or "pharmacological activity". The accepted authority of the plant species was referred from theplantlist.org. Scientific studies have revealed that the genus is mainly scattered throughout Asia. It has broad traditional benefits, which have been associated with various biological properties such as cytotoxic, antihyperglycaemic, antimicrobial, and anti-inflammatory. Alocasia species exhibit diverse biological activities that are very useful for medical treatment. The genus Alocasia was reported to be able to produce a strong and high-quality anti-cancer compound, namely alocasgenoside B, although information on this compound is currently limited. Therefore, it is strongly recommended to further explore the relevant use of natural compounds present in the genus Alocasia, particularly as an anti-cancer agent. With only a few Alocasia species that have been scientifically studied so far, more attention and effort is required to establish the link between traditional uses, active compounds, and pharmacological activities of various species of this genus.
  6. Badrillah N, Susanti D, Kamil TKTM, Swandiny GF, Widyastuti Y, Zaini E, et al.
    Heliyon, 2024 Feb 29;10(4):e25454.
    PMID: 38379964 DOI: 10.1016/j.heliyon.2024.e25454
    Silver nanoparticle is widely used in various field including medical, cosmetic, food and industrial purposes due to their unique properties in electrical conductivity, thermal, and biological activities. In the medical field, silver nanoparticles (AgNPs) have been reported to have strong antimicrobial and cytotoxic activities. This study aimed to synthesize and characterize silver nanoparticles (AgNPs) using Maclurodendron porteri (MP) extract and to evaluate the antimicrobial and cytotoxic activities of the synthesised MP-AgNPs. Green method of Ultrasound Assisted Extraction (UAE) was used to extract the leaves of M. porter. Liquid Chromatography -Mass Spectrometry/Quadrupole time-of-flight (LC-MS/QTOF) was used to identify the compounds in the leaf extract of M. porteri. Characterisation of the synthesised nanoparticles involved ultraviolet-visible (UV-Vis), Fourier Transform Infrared (FTIR), scanning electromagnetic microscopy (SEM), Zeta potential Analyzer and Particle Size Analyzer. The cytotoxic assay was conducted on MCF-7 and Caco-2 cell lines by MTT assay. Antimicrobial activity was tested on Gram-negative and Gram-positive bacteria using the disc diffusion method. Based on LC-MS/QTOF analysis, 430 compounds were found. The identified major compounds consist of amino acids, polyphenols, steroids, terpenoids and heterocyclic compounds which possibly act as reducing agents. 1 mM, 5 mM and 10 mM of silver nitrate solution were mixed with the leaf extract to form silver nanoparticles. 1.2 mg/ml of MP-AgNPs were found to have antibacterial activity against B. subtilis, S. aureus, E. coli, and P. aeruginosa with inhibitory zones of 8.0 ± 0.36 mm, 8.5 ± 0.45 mm, 7.5 ± 0.36 mm, and 9.0 ± 0.40 mm respectively. MP-AgNPs showed no cytotoxic activity against Caco-2 and MCF-7 cells. In conclusion, the presence of major amine compounds such as 10,11-dihydro-10,11-dihydroxyprotriptyline and harderoporphyrin in the extract facilitated the synthesis of AgNPs and the nanoparticle showed weak bioactivities in the assay conducted.
  7. Aminudin NI, Abdul Aziz AA, Zainal Abidin ZA, Susanti D, Taher M
    Nat Prod Res, 2024 May;38(9):1583-1590.
    PMID: 36577029 DOI: 10.1080/14786419.2022.2161543
    Biotransformation is acknowledged as one of the green chemistry methods to synthesis various analogues for further valorization of natural product compounds chemistry and bioactivities. It has huge advantage over chemical synthesis due to its cost-efficiency and higher selectivity. In this work, a xanthorrhizol derivatives, namely (7 R,10S)-10,11-dihydro-10,11-dihydroxyxanthorrhizol was produced in 60% yield from the biotransformation process utilizing A. niger. The structure of the compound was established by extensive spectroscopic methods and comparison with literature data. This biotransformation successfully afforded enantioselective dihydroxylation reaction via green chemistry route. This is the first report on both biotransformation of xanthorrhizol and utilization of A. niger as its biocatalyst.
  8. Adom MB, Taher M, Mutalabisin MF, Amri MS, Abdul Kudos MB, Wan Sulaiman MWA, et al.
    Biomed Pharmacother, 2017 Dec;96:348-360.
    PMID: 29028587 DOI: 10.1016/j.biopha.2017.09.152
    The medicinal benefits of Plantago major have been acknowledged around the world for hundreds of years. This plant contains a number of effective chemical constituents including flavonoids, alkaloids, terpenoids, phenolic acid derivatives, iridoid glycosides, fatty acids, polysaccharides and vitamins which contribute to its exerting specific therapeutic effects. Correspondingly, studies have found that Plantago major is effective as a wound healer, as well as an antiulcerative, antidiabetic, antidiarrhoeal, anti-inflammatory, antinociceptive, antibacterial, and antiviral agent. It also combats fatigue and cancer, is an antioxidant and a free radical scavenger. This paper provides a review of the medicinal benefits and chemical constituents of Plantago major published in journals from year 1937 to 2015 which are available from PubMed, ScienceDirect and Google Scholar.
  9. Ajiboye BO, Dada S, Fatoba HO, Lawal OE, Oyeniran OH, Adetuyi OY, et al.
    Biomed Pharmacother, 2023 Dec;168:115681.
    PMID: 37837880 DOI: 10.1016/j.biopha.2023.115681
    This experiment was conducted to evaluate the Dalbergiella welwitschia alkaloid-rich extracts on liver damage in streptozotocin-induced diabetic rats. Hence, to induce diabetes, 45 mg/kg body weight of streptozotocin was intraperitoneally injected into the Wistar rats. Subsequently, 5 % (w/v) of glucose water was given to the induced animals for 24 h. Thus, the animals (48) were grouped into five groups (n = 8), containing normal control (NC), diabetic control (DC), diabetic rats placed on low (50 mg/kg body weight) and high (100 mg/kg body weight) doses of D. welwitschi alkaloid-rich leaf extracts (i.e. DWL and DWH respectively), and diabetic rats administered 200 mg/kg body weight of metformin (MET). The animals were sacrificed on the 21st day of the experiment, blood and liver were harvested, and different liver damage biomarkers were evaluated. The results obtained demonstrated that diabetic rats administered DWL, DWH and MET significantly (p  0.05) different when compared with NC. Also, diabetic rats administered DWL, DWH and MET revealed a significant (p  0.05) different when compared with NC. In addition, histological examination revealed that diabetic rats placed on DWL, DWH and MET normalized the hepatocytes. Consequently, it can be inferred that alkaloid-rich extracts from D. welwitschi leaf could be helpful in improving liver damage associated with diabetes mellitus rats.
  10. Taher M, Mohamed Amiroudine MZ, Tengku Zakaria TM, Susanti D, Ichwan SJ, Kaderi MA, et al.
    PMID: 25873982 DOI: 10.1155/2015/740238
    Obesity has been often associated with the occurrence of cardiovascular diseases, type 2 diabetes, and cancer. The development of obesity is also accompanied by significant differentiation of preadipocytes into adipocytes. In this study, we investigated the activity of α-mangostin, a major xanthone component isolated from the stem bark of G. malaccensis, on glucose uptake and adipocyte differentiation of 3T3-L1 cells focusing on PPARγ, GLUT4, and leptin expressions. α-Mangostin was found to inhibit cytoplasmic lipid accumulation and adipogenic differentiation. Cells treated with 50 μM of α-mangostin reduced intracellular fat accumulation dose-dependently up to 44.4% relative to MDI-treated cells. Analyses of 2-deoxy-D-[(3)H] glucose uptake activity showed that α-mangostin significantly improved the glucose uptake (P < 0.05) with highest activity found at 25 μM. In addition, α-mangostin increased the amount of free fatty acids (FFA) released. The highest glycerol release level was observed at 50 μM of α-mangostin. qRT-PCR analysis showed reduced lipid accumulation via inhibition of PPARγ gene expression. Induction of glucose uptake and free fatty acid release by α-mangostin were accompanied by increasing mRNA expression of GLUT4 and leptin. These evidences propose that α-mangostin might be possible candidate for the effective management of obesity in future.
  11. Asmani AZA, Zainuddin AFF, Azmi Murad NA, Mohd Darwis NH, Suhaimi NS, Zaini E, et al.
    Pathol Res Pract, 2024 Nov;263:155627.
    PMID: 39357185 DOI: 10.1016/j.prp.2024.155627
    Antibody-based treatment was first used in 1891 for the treatment of diphtheria. Since then, monoclonal antibodies (mAbs) have been developed to treat many diseases such as cancer and act as vaccines. However, murine-derived therapeutic mAbs were found to be highly immunogenic, and caused anti-drug antibodies (ADAs) reaction, reducing their efficacy and causing severe infusion reactions. Fully human, humanised, and chimeric antibodies were then introduced for better therapeutic efficacy. With the introduction of immune response associated with mAbs immunogenicity. This review explores the immunogenicity of mAbs, its mechanism, contributing factors, and its impact on therapeutic efficacy. It also discusses immunogenicity assessment for preclinical studies and strategies for minimising immunogenicity for effective therapeutic treatment in various diseases. Finally, predicting immunogenicity in drug development is essential for selecting top drug candidates. A lot of methods can be implemented by the researchers and developers to reduce the development of ADAs while simultaneously minimising the immunogenicity reaction of mAbs.
  12. Mamat SS, Kamarolzaman MF, Yahya F, Mahmood ND, Shahril MS, Jakius KF, et al.
    PMID: 24267313 DOI: 10.1186/1472-6882-13-326
    Melastoma malabathricum L. (Melastomaceae) is a small shrub with various medicinal uses. The present study was carried out to determine the hepatoprotective activity of methanol extract of M. malabathricum leaves (MEMM) against the paracetamol-induced liver toxicity in rats model.
  13. Taher M, Amiroudine MZAM, Jaffri JM, Amri MS, Susanti D, Abd Hamid S, et al.
    Pak J Pharm Sci, 2017 Jul;30(4):1335-1339.
    PMID: 29039334
    A new naturally occurring dibenzylbutyrolactone lignan named isocubebinic ether has been isolated from Knema patentinervia. The structure was established by spectroscopic methods, which include Ultraviolet, Infrared, Nuclear Magnetic Resonance and Mass Spectrometry. The compound showed activity in the stimulation of glucose uptake by 3T3-L1 adipocytes.
  14. Mohamad Razif MI, Nizar N, Zainal Abidin NH, Muhammad Ali SN, Wan Zarimi WNN, Khotib J, et al.
    Expert Rev Vaccines, 2023;22(1):629-642.
    PMID: 37401128 DOI: 10.1080/14760584.2023.2232450
    INTRODUCTION: mRNA vaccines have been developed as a promising cancer management. It is noted that specification of the antigen sequence of the target antigen is necessary for the design and manufacture of an mRNA vaccine.

    AREAS COVERED: The steps involved in preparing the mRNA-based cancer vaccines are isolation of the mRNA cancer from the target protein using the nucleic acid RNA-based vaccine, sequence construction to prepare the DNA template, in vitro transcription for protein translation from DNA into mRNA strand, 5' cap addition and poly(A) tailing to stabilize and protect the mRNA from degradation and purification process to remove contaminants produced during preparation.

    EXPERT OPINION: Lipid nanoparticles, lipid/protamine/mRNA nanoparticles, and cell-penetrating peptides have been used to formulate mRNA vaccine and to ensure vaccine stability and delivery to the target site. Delivery of the vaccine to the target site will trigger adaptive and innate immune responses. Two predominant factors of the development of mRNA-based cancer vaccines are intrinsic influence and external influence. In addition, research relating to the dosage, route of administration, and cancer antigen types have been observed to positively impact the development of mRNA vaccine.

  15. Onikanni SA, Lawal B, Munyembaraga V, Bakare OS, Taher M, Khotib J, et al.
    Molecules, 2023 Jul 30;28(15).
    PMID: 37570723 DOI: 10.3390/molecules28155752
    Glucokinase plays an important role in regulating the blood glucose level and serves as an essential therapeutic target in type 2 diabetes management. Entada africana is a medicinal plant and highly rich source of bioactive ligands with the potency to develop new target drugs for glucokinase such as diabetes and obesity. Therefore, the study explored a computational approach to predict identified compounds from Entada africana following its intermolecular interactions with the allosteric binding site of the enzymes. We retrieved the three-dimensional (3D) crystal structure of glucokinase (PDB ID: 4L3Q) from the online protein data bank and prepared it using the Maestro 13.5, Schrödinger Suite 2022-3. The compounds identified were subjected to ADME, docking analysis, pharmacophore modeling, and molecular simulation. The results show the binding potential of the identified ligands to the amino acid residues, thereby suggesting an interaction of the amino acids with the ligand at the binding site of the glucokinase activator through conventional chemical bonds such as hydrogen bonds and hydrophobic interactions. The compatibility of the molecules was highly observed when compared with the standard ligand, thereby leading to structural and functional changes. Therefore, the bioactive components from Entada africana could be a good driver of glucokinase, thereby paving the way for the discovery of therapeutic drugs for the treatment of diabetes and its related complications.
  16. Yahya F, Mamat SS, Kamarolzaman MF, Seyedan AA, Jakius KF, Mahmood ND, et al.
    PMID: 23853662 DOI: 10.1155/2013/636580
    In an attempt to further establish the pharmacological properties of Bauhinia purpurea (Fabaceae), hepatoprotective potential of methanol extract of B. purpurea leaves (MEBP) was investigated using the paracetamol- (PCM-) induced liver toxicity in rats. Five groups of rats (n = 6) were used and administered orally once daily with 10% DMSO (negative control), 200 mg/kg silymarin (positive control), or MEBP (50, 250, and 500 mg/kg) for 7 days, followed by the hepatotoxicity induction using paracetamol (PCM). The blood samples and livers were collected and subjected to biochemical and microscopical analysis. The extract was also subjected to antioxidant study using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay with the total phenolic content (TPC) also determined. From the histological observation, lymphocyte infiltration and marked necrosis were observed in PCM-treated groups (negative control), whereas maintenance of the normal hepatic structural was observed in group pretreated with silymarin and MEBP. Hepatotoxic rats pretreated with silymarin or MEBP exhibited significant decrease (P < 0.05) in ALT and AST enzyme level. Moreover, the extract also exhibited antioxidant activity and contained high TPC. In conclusion, MEBP exerts potential hepatoprotective activity that could be partly attributed to its antioxidant activity and high phenolic content and thus warrants further investigation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links