Displaying publications 21 - 40 of 43 in total

Abstract:
Sort:
  1. Ghasemzadeh A, Nasiri A, Jaafar HZ, Baghdadi A, Ahmad I
    Molecules, 2014 Oct 30;19(11):17632-48.
    PMID: 25361426 DOI: 10.3390/molecules191117632
    In the current study, changes in secondary metabolite synthesis and the pharmaceutical quality of sabah snake grass leaves and buds were considered in relation to plant age (1 month, 6 months, and 1 year old). The activity of the enzyme chalcone synthase (CHS, EC 2.3.1.74) was measured, as it is a key enzyme for flavonoid production. Significant differences in total flavonoid (TF) production were observed between the three plant growth periods and the different plant parts. The highest contents of TF (6.32 mg/g dry weight [DW]) and total phenolic (TP) (18.21 mg/g DW) were recorded in 6-month-old buds. Among the flavonoids isolated in this study the most important ones based on concentration were from high to low as follows: catechin > quercetin > kaempferol > luteolin. Production of phenolic acids increased from 1 to 6 months, but after 6 months up to 1 year of age, they decreased significantly. The highest contents of caffeic acid (0.307 mg/g DW) and gallic acid (5.96 mg/g DW) were recorded in 1-year and 6-month-old buds, respectively. The lowest and highest activity of CHS was recorded in 1-month and 6-month-old buds with values of 3.6 and 9.5 nkat/mg protein, respectively. These results indicate that the increment in flavonoids and phenolic acids in 6-month-old buds can be attributed to an increase in CHS activity. The highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity was observed in the extract of 1-year-old buds followed by 6-month-old buds, with 50% of free radical scavenging (IC50) values of 64.6 and 73.5 µg/mL, respectively. Interestingly, a ferric reducing antioxidant power (FRAP) assay showed a higher activity in 6-month-old buds (488 μM of Fe(II)/g) than in 1-year-old buds (453 μM of Fe(II)/g), in contrast to the DPPH result. Significant correlations (p < 0.05) were observed between CHS enzyme activity and FRAP activity, TF, catechin, and kaempferol content. Extracts of 6-month-old bud exhibited a significant in vitro anticancer activity against HeLa cancer cells with IC50 value of 56.8 µg/mL. These results indicate that early harvesting of snake grass (6-month-old) may yield increased concentrations of secondary metabolites, which are potent antioxidant compounds.
    Matched MeSH terms: Acanthaceae/chemistry*
  2. Yaacob NS, Kamal NN, Norazmi MN
    PMID: 25034326 DOI: 10.1186/1472-6882-14-252
    Development of tumour resistance to chemotherapeutic drugs and concerns over their toxic effects has led to the increased use of medicinal herbs or natural products by cancer patients. Strobilanthes crispus is a traditional remedy for many ailments including cancer. Its purported anticancer effects have led to the commercialization of the plant leaves as medicinal herbal tea, although the scientific basis for its use has not been established. We previously reported that a bioactive subfraction of Strobilanthes crispus leaves (SCS) exhibit potent cytotoxic activity against human breast cancer cell lines. The current study investigates the effect of this subfraction on cell death activities induced by the antiestrogen drug, tamoxifen, in estrogen receptor-responsive and nonresponsive breast cancer cells.
    Matched MeSH terms: Acanthaceae/chemistry*
  3. Lim KT, Lim V, Chin JH
    Asian Pac J Trop Biomed, 2012 Dec;2(12):948-52.
    PMID: 23593574 DOI: 10.1016/S2221-1691(13)60005-2
    To examine the oral toxicity of repeated dosing of Strobilanthes crispus (S. crispus) ethanol leaves extract on the liver and kidney functions in Sprague Dawley rats.
    Matched MeSH terms: Acanthaceae/chemistry*
  4. Fadzelly AB, Asmah R, Fauziah O
    Plant Foods Hum Nutr, 2006 Mar;61(1):7-12.
    PMID: 16688478
    Strobilanthes crispus (Acanthaceae) has been used traditionally as antidiabetic, diuretic, antilytic, and laxative and has been proven scientifically to possess high antioxidant activity, anti-AIDS, and anticancer properties. It is commonly consumed in the form of herbal tea. The ethnopharmacological value of this plant, such as the development of nutraceutical S. crispus herbal tea (fermented and unfermented) and assessment of their antihyperglycemic properties were investigated. The antidiabetic properties of S. crispus fermented and unfermented tea was carried out in normal and streptozotocin-induced hyperglycaemic rats for 21 days. Glucose and lipid profile (total cholesterol, triglyceride, HDL-cholesterol, LDL-cholesterol) were determined at day 0 (baseline), day 7, and day 21. The results showed that the hot water extract of both fermented and unfermented S. crispus tea reduced blood glucose in hyperglycaemic rats. S. crispus unfermented tea also reduced glucose level in normal rat. Both fermented and unfermented S. crispus tea also showed to improve lipid profile. Antioxidant and polyphenol content that present in the extracts might contribute to the antihyperglycemic and antilipidemic properties. Further study is needed to be carried out in pre-clinical and clinical environment to prove its efficacy in human.
    Matched MeSH terms: Acanthaceae/chemistry*
  5. Hussin F, Eshkoor SA, Rahmat A, Othman F, Akim A, Eshak Z
    Asian Pac J Cancer Prev, 2015;16(14):6047-53.
    PMID: 26320494
    BACKGROUND: Hepatocellular carcinoma is one of the most common cancers worldwide. Its prevalence is increasing in many countries. Plant products can be used to protect against cancer due to natural anticancer and chemopreventive constituents. Strobilanthes crispus is one of plants with potential chemopreventive ability.

    OBJECTIVE: This study aimed to evaluate the anticancer effects of Strobilanthes crispus juice on hepatocellular carcinoma cells.

    MATERIALS AND METHODS: MTT assays, flow cytometry, comet assays and the reverse transcription- polymerase chain reaction (RT-PCR) were used to determine the effects of juice on DNA damage and cancer cell numbers.

    RESULTS: This juice induced apoptosis after exposure of the HepG2 cell line for 72 h. High percentages of apoptotic cell death and DNA damage were seen at the juice concentrations above 0.1%. It was found that the juice was not toxic for normal cells. In addition, juice exposure increased the expression level of c-myc gene and reduced the expression level of c-fos and c-erbB2 genes in HepG2 cells. The cytotoxic effects of juice on abnormal cells were in dose dependent.

    CONCLUSIONS: It was concluded that the Strobilanthes crispus juice may have chemopreventive effects on hepatocellular carcinoma cells.

    Matched MeSH terms: Acanthaceae/chemistry*
  6. Yaacob NS, Nik Mohamed Kamal NN, Wong KK, Norazmi MN
    Asian Pac J Cancer Prev, 2015;16(18):8135-40.
    PMID: 26745050
    BACKGROUND: Cell cycle regulatory proteins are suitable targets for cancer therapeutic development since genetic alterations in many cancers also affect the functions of these molecules. Strobilanthes crispus (S. crispus) is traditionally known for its potential benefits in treating various ailments. We recently reported that an active sub-fraction of S. crispus leaves (SCS) caused caspase-dependent apoptosis of human breast cancer MCF-7 and MDA-MB-231 cells.

    MATERIALS AND METHODS: Considering the ability of SCS to also promote the activity of the antiestrogen, tamoxifen, we further examined the effect of SCS in modulating cell cycle progression and related proteins in MCF-7 and MDA-MB-231 cells alone and in combination with tamoxifen. Expression of cell cycle- related transcripts was analysed based on a previous microarray dataset.

    RESULTS: SCS significantly caused G1 arrest of both types of cells, similar to tamoxifen and this was associated with modulation of cyclin D1, p21 and p53. In combination with tamoxifen, the anticancer effects involved downregulation of ERα protein in MCF-7 cells but appeared independent of an ER-mediated mechanism in MDA-MB-231 cells. Microarray data analysis confirmed the clinical relevance of the proteins studied.

    CONCLUSIONS: The current data suggest that SCS growth inhibitory effects are similar to that of the antiestrogen, tamoxifen, further supporting the previously demonstrated cytotoxic and apoptotic actions of both agents.

    Matched MeSH terms: Acanthaceae/chemistry*
  7. Ng CT, Fong LY, Tan JJ, Rajab NF, Abas F, Shaari K, et al.
    BMC Complement Altern Med, 2018 Jul 06;18(1):210.
    PMID: 29980198 DOI: 10.1186/s12906-018-2270-1
    BACKGROUND: Clinacanthus nutans (Burm. f.) Lindau. has traditionally been using in South East Asia countries to manage cancer. However, scientific evidence is generally lacking to support this traditional claim. This study aims to investigate the in vitro, ex-vivo and in vivo effects of C. nutans extracts on angiogenesis.

    METHODS: C. nutans leaves was extracted with 50-100% ethanol or deionised water at 1% (w/v). Human umbilical veins endothelial cell (HUVEC) proliferation was examined using MTT assay. The in vitro anti-angiogenic effects of C. nutans were assessed using wound scratch, tube formation and transwell migration assays. The VEGF levels secreted by human oral squamous cell carcinoma (HSC-4) cell and HUVEC permeability were also measured. Besides, the rat aortic ring and chick embryo chorioallantoic membrane (CAM) assays, representing ex vivo and in vivo models, respectively, were performed.

    RESULTS: The MTT assay revealed that water extract of C. nutans leaves exhibited the highest activity, compared to the ethanol extracts. Therefore, the water extract was chosen for subsequent experiments. C. nutans leaf extract significantly suppressed endothelial cell proliferation and migration in both absence and presence of VEGF. However, the water extract failed to suppress HUVEC transmigration, differentiation and permeability. C. nutans water extract also did not suppress HSC-4 cell-induced VEGF production. Importantly, C. nutans water extract significantly abolished the sprouting of vessels in aortic rings as well as in chick embryo CAM.

    CONCLUSION: In conclusion, these findings reveal potential anti-angiogenic effects of C. nutans, providing new evidence for its potential application as an anti-angiogenic agent.

    Matched MeSH terms: Acanthaceae/chemistry*
  8. Khoo LW, Foong Kow AS, Maulidiani M, Lee MT, Tan CP, Shaari K, et al.
    Molecules, 2018 Aug 29;23(9).
    PMID: 30158427 DOI: 10.3390/molecules23092172
    The present study aims for the first time to provide the in vivo acute toxicological profile of the highest dose of Clinacanthus nutans (Burm. f.) Lindau water leaf extract according to the Organization for economic co-operation and development (OECD) 423 guidelines through conventional toxicity and advanced proton nuclear magnetic resonance (¹H-NMR) serum and urinary metabolomics evaluation methods. A single dose of 5000 mg/kg bw of C. nutans water extract was administered to Sprague Dawley rats, and they were observed for 14 days. Conventional toxicity evaluation methods (physical observation, body and organ weight, food and water consumption, hematology, biochemical testing and histopathological analysis) suggested no abnormal toxicity signs. Serum ¹H-NMR metabolome revealed no significant metabolic difference between untreated and treated groups. Urinary ¹H-NMR analysis, on the other hand, revealed alteration in carbohydrate metabolism, energy metabolism and amino acid metabolism in extract-treated rats after 2 h of extract administration, but the metabolic expression collected after 24 h and at Day 5, Day 10 and Day 15 indicated that the extract-treated rats did not accumulate any toxicity biomarkers. Importantly, the outcomes further suggest that single oral administration of up to 5000 mg/kg bw of C. nutans water leaf extract is safe for consumption.
    Matched MeSH terms: Acanthaceae/chemistry*
  9. Azemi AK, Mokhtar SS, Sharif SET, Rasool AHG
    Pharm Biol, 2021 Dec;59(1):1432-1440.
    PMID: 34693870 DOI: 10.1080/13880209.2021.1990357
    CONTEXT: Atherosclerosis predisposes individuals to adverse cardiovascular events. Clinacanthus nutans L. (Acanthaceae) is a traditional remedy used for diabetes and inflammatory conditions.

    OBJECTIVES: To investigate the anti-atherosclerotic activity of a C. nutans leaf methanol extract (CNME) in a type 2 diabetic (T2D) rat model induced by a high-fat diet (HFD) and low-dose streptozotocin.

    MATERIALS AND METHODS: Sixty male Sprague-Dawley rats were divided into five groups: non-diabetic fed a standard diet (C), C + CNME (500 mg/kg, orally), diabetic fed an HFD (DM), DM + CNME (500 mg/kg), and DM + Metformin (DM + Met; 300 mg/kg). Treatment with oral CNME and metformin was administered for 4 weeks. Fasting blood glucose (FBG), serum lipid profile, atherogenic index (AI), aortic tissue superoxide dismutase levels (SOD), malondialdehyde (MDA), and tumour necrosis factor-alpha (TNF-α) were measured. The rats' aortas were stained for histological analysis and intima-media thickness (IMT), a marker of subclinical atherosclerosis.

    RESULTS: The CNME-treated diabetic rats had reduced serum total cholesterol (43.74%; p = 0.0031), triglycerides (80.91%; p = 0.0003), low-density lipoprotein cholesterol (56.64%; p = 0.0008), AI (51.32%; p 

    Matched MeSH terms: Acanthaceae/chemistry*
  10. Yakop F, Abd Ghafar SA, Yong YK, Saiful Yazan L, Mohamad Hanafiah R, Lim V, et al.
    Artif Cells Nanomed Biotechnol, 2018;46(sup2):131-139.
    PMID: 29561182 DOI: 10.1080/21691401.2018.1452750
    PURPOSE: The purpose of this study was to investigate apoptotic activity of silver nanoparticle Clinacanthus nutans (AgNps-CN) towards HSC-4 cell lines (oral squamous cell carcinoma cell lines).

    METHODS: Methods involved were MTT assay (cytotoxic activity), morphological cells analysis, flow cytometry and cell cycle analysis and western blot.

    RESULTS: MTT assay revealed IC50 concentration was 1.61 µg/mL, 3T3-L1 cell lines were used to determine whether AgNps-CN is cytotoxic to normal cells. At the highest concentration (3 µg/mL), no cytotoxic activity has been observed. Flow cytometry assay revealed AgNps-CN caused apoptosis effects towards HSC-4 cell lines with significant changes were observed at G1 phase when compared with untreated cells. Morphological cells analysis revealed that most of the cells exhibit apoptosis characteristics rather than necrosis. Protein study revealed that ratio of Bax/Bcl-2 increased mainly due to down-regulation of Bcl-2 expression.

    CONCLUSION: AgNps-CN have shown potential in inhibiting HSC-4 cell lines. IC50 was low compared to few studies involving biosynthesized of silver nanoparticles. Apoptosis effects were shown towards HSC-4 cell lines by the increased in Bax/Bcl-2 protein ratio. Further study such as PCR or in vivo studies are required.

    Matched MeSH terms: Acanthaceae/chemistry*
  11. Paydar M, Wong YL, Moharam BA, Wong WF, Looi CY
    Pak J Biol Sci, 2013 Oct 15;16(20):1212-5.
    PMID: 24506026
    Sanchezia speciosa, is a bushy shrub from Acanthaceae family which commonly grows in tropical areas of South and Central America. In this study, we employed MTT assay to test the cytotoxicity of that methanolic fraction of S. speciosa leaves on MCF-7 human breast cancer, SK-MEL-5 human malignant melanoma and human umbilical vein endothelial cells, HUVEC cells. The extract showed highest activity on MCF-7 and moderate cytotoxicity towards SK-MEL-5. In contrast, the extract demonstrated lowest cell growth inhibition activity on HUVEC cells, indicating better selectivity compare to standard drug, doxorubicin. In addition, we also performed ORAC assay to determine the radical scavenging capacity of methanolic extract of S. speciosa leaves. The extract exhibited nearly similar anti-oxidant activity as quercetin, suggesting S. speciosa leaves as a potential source of natural anti-oxidant. To the best of our knowledge, this is the first report on anti-oxidant and cytotoxic activity of S. speciosa.
    Matched MeSH terms: Acanthaceae/chemistry*
  12. Al-Henhena N, Khalifa SA, Ying RP, Hassandarvish P, Rouhollahi E, Al-Wajeeh NS, et al.
    Sci Rep, 2015 Aug 26;5:13312.
    PMID: 26307342 DOI: 10.1038/srep13312
    In this work, microscopic and histological studies suggest that Strobilanthes crispus ethanol extract reduce azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in rats. S. crispus is considered a traditional medicine and used as an antioxidant. Its leaf contains a large amount of phenolic compounds to which its radical scavenging role is attributed and enhance its ability to eradicate oxidative stress reactions. The study was designed to determine the chemopreventive effect of S. crispus ethanol extract in vivo and in vitro by elucidating the effect of the extract on intermediate biomarkers which can be used as effective predictors of colon cancer. S. crispus was analyzed for DPPH free radical scavenging, nitric oxide (NO) and ferric acid reduction. The results indicated that S. crispus oral administration significantly inhibited colorectal carcinogenesis induced by AOM as revealed by the reduction in the number of ACF. S. crispus down-regulated the expression of PCNA, Bcl2 and β-catenin. Additionally, it exerted a pronounced inhibitory effect on MDA and NO levels and stimulatory effect on CAT and GPx activities. These results demonstrate that S. crispus is a chemopreventive agent for colorectal cancer through the suppression of early and intermediate carcinogenic phases that may be related to its flavonoid content.
    Matched MeSH terms: Acanthaceae/chemistry*
  13. Huang D, Guo W, Gao J, Chen J, Olatunji JO
    Molecules, 2015;20(9):17405-28.
    PMID: 26393569 DOI: 10.3390/molecules200917405
    Clinacanthans nutans (Burm. f.) Lindau is a popular medicinal vegetable in Southern Asia, and its extracts have displayed significant anti-proliferative effects on cancer cells in vitro. However, the underlying mechanism for this effect has yet to be established. This study investigated the antitumor and immunomodulatory activity of C. nutans (Burm. f.) Lindau 30% ethanol extract (CN30) in vivo. CN30 was prepared and its main components were identified using high-performance liquid chromatography (HPLC) and mass spectrometry (LC/MS/MS). CN30 had a significant inhibitory effect on tumor volume and weight. Hematoxylin and eosin (H & E) staining and TUNEL assay revealed that hepatoma cells underwent significant apoptosis with CN30 treatment, while expression levels of proliferation markers PCNA and p-AKT were significantly decreased when treated with low or high doses of CN30 treatment. Western blot analysis of PAPR, caspase-3, BAX, and Bcl2 also showed that CN30 induced apoptosis in hepatoma cells. Furthermore, intracellular staining analysis showed that CN30 treatment increased the number of IFN-γ⁺ T cells and decreased the number of IL-4⁺ T cells. Serum IFN-γ and interleukin-2 levels also significantly improved. Our findings indicated that CN30 demonstrated antitumor properties by up-regulating the immune response, and warrants further evaluation as a potential therapeutic agent for the treatment and prevention of cancers.
    Matched MeSH terms: Acanthaceae/chemistry*
  14. Hii LW, Lim SE, Leong CO, Chin SY, Tan NP, Lai KS, et al.
    BMC Complement Altern Med, 2019 Sep 14;19(1):257.
    PMID: 31521140 DOI: 10.1186/s12906-019-2663-9
    BACKGROUND: Clinacanthus nutans extracts have been consumed by the cancer patients with the hope that the extracts can kill cancers more effectively than conventional chemotherapies. Our previous study reported its anti-inflammatory effects were caused by inhibiting Toll-like Receptor-4 (TLR-4) activation. However, we are unsure of its anticancer effect, and its interaction with existing chemotherapy.

    METHODS: We investigated the anti-proliferative efficacy of polar leaf extracts (LP), non-polar leaf extracts (LN), polar stem extract (SP) and non-polar stem extracts (SN) in human breast, colorectal, lung, endometrial, nasopharyngeal, and pancreatic cancer cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT assay. The most potent extracts was tested along with gemcitabine using our established drug combination analysis. The effect of the combinatory treatment in apoptosis were quantified using enzyme-linked immunosorbent assay (ELISA), Annexin V assay, antibody array and immunoblotting. Statistical significance was analysed using one-way analysis of variance (ANOVA) and post hoc Dunnett's test. A p-value of less than 0.05 (p 

    Matched MeSH terms: Acanthaceae/chemistry*
  15. Azemi AK, Mokhtar SS, Rasool AHG
    Oxid Med Cell Longev, 2020;2020:7572892.
    PMID: 32879653 DOI: 10.1155/2020/7572892
    Diabetes mellitus is associated with endothelial dysfunction; it causes progressive vascular damage resulting from an impaired endothelium-dependent vasorelaxation. In the diabetes state, presence of hyperglycemia and insulin resistance predisposes to endothelial dysfunction. Clinacanthus nutans, widely used as a traditional medicine for diabetes is reported to have hypoglycemic, hypolipidemic, antioxidant, and anti-inflammatory properties. However, the possibility of C. nutans affecting the vascular endothelial function in diabetes remains unclear. This study was aimed at evaluating the effects of C. nutans methanolic leaves extract (CNME) on endothelial function in a type 2 diabetes (T2DM) rat model. Sixty male Sprague-Dawley rats were divided into five groups (n = 12 per group): nondiabetic control, nondiabetic treated with four weeks of CNME (500 mg/kg/daily), untreated diabetic rats, diabetic treated with metformin (300 mg/kg/daily), and diabetic treated with CNME (500 mg/kg/daily). T2DM was induced by a single intraperitoneal injection of low-dose streptozotocin (STZ) to rats fed with high-fat diet (HFD). Endothelial-dependent and endothelial-independent relaxations and contractions of the thoracic aorta were determined using the organ bath. Aortic endothelial nitric oxide synthase (eNOS) expression was determined using Western blotting. Endothelial-dependent relaxation was reduced in diabetic rats. Both diabetic groups treated with CNME or metformin significantly improved the impairment in endothelium-dependent vasorelaxation; this was associated with increased expression of aortic eNOS protein. CNME- and metformin-treated groups also reduced aortic endothelium-dependent and aortic endothelium-independent contractions in diabetics. Both of these diabetic-treated groups also reduced blood glucose levels and increased body weight compared to the untreated diabetic group. In conclusion, C. nutans improves endothelial-dependent vasodilatation and reduces endothelial-dependent contraction, thus ameliorating endothelial dysfunction in diabetic rats. This may occur due to its effect on increasing eNOS protein expression.
    Matched MeSH terms: Acanthaceae/chemistry*
  16. Dyary HO, Arifah AK, Sharma RS, Rasedee A, Mohd-Aspollah MS, Zakaria ZA, et al.
    Trop Biomed, 2014 Mar;31(1):89-96.
    PMID: 24862048 MyJurnal
    Trypanosoma evansi, the causative agent of "surra", infects many species of wild and domestic animals worldwide. In the current study, the aqueous and ethanolic extracts of six medicinal plants, namely, Aquilaria malaccensis, Derris elliptica, Garcinia hombroniana, Goniothalamus umbrosus, Nigella sativa, and Strobilanthes crispus were screened in vitro for activity against T. evansi. The cytotoxic activity of the extracts was evaluated on green monkey kidney (Vero) cells using MTT-cell proliferation assay. The median inhibitory concentrations (IC50) of the extracts ranged between 2.30 and 800.97 μg/ml and the median cytotoxic concentrations (CC50) ranged between 29.10 μg/ml and 14.53 mg/ml. The aqueous extract of G. hombroniana exhibited the highest selectivity index (SI) value of 616.36, followed by A. malaccensis aqueous extract (47.38). Phytochemical screening of the G. hombroniana aqueous extract revealed the presence of flavonoids, phenols, tannins, and saponins. It is demonstrated here that the aqueous extract of G. hombroniana has potential antitrypanosomal activity with a high SI, and may be considered as a potential source for the development of new antitrypanosomal compounds.
    Matched MeSH terms: Acanthaceae/chemistry
  17. Zakaria ZA, Abdul Rahim MH, Roosli RAJ, Mohd Sani MH, Omar MH, Mohd Tohid SF, et al.
    Pain Res Manag, 2018;2018:9536406.
    PMID: 29686743 DOI: 10.1155/2018/9536406
    Methanolic extract of Clinacanthus nutans Lindau leaves (MECN) has been proven to possess antinociceptive activity that works via the opioid and NO-dependent/cGMP-independent pathways. In the present study, we aimed to further determine the possible mechanisms of antinociception of MECN using various nociceptive assays. The antinociceptive activity of MECN was (i) tested against capsaicin-, glutamate-, phorbol 12-myristate 13-acetate-, bradykinin-induced nociception model; (ii) prechallenged against selective antagonist of opioid receptor subtypes (β-funaltrexamine, naltrindole, and nor-binaltorphimine); (iii) prechallenged against antagonist of nonopioid systems, namely, α2-noradrenergic (yohimbine), β-adrenergic (pindolol), adenosinergic (caffeine), dopaminergic (haloperidol), and cholinergic (atropine) receptors; (iv) prechallenged with inhibitors of various potassium channels (glibenclamide, apamin, charybdotoxin, and tetraethylammonium chloride). The results demonstrated that the orally administered MECN (100, 250, and 500 mg/kg) significantly (p < 0.05) reversed the nociceptive effect of all models in a dose-dependent manner. Moreover, the antinociceptive activity of 500 mg/kg MECN was significantly (p < 0.05) inhibited by (i) antagonists of μ-, δ-, and κ-opioid receptors; (ii) antagonists of α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic, and cholinergic receptors; and (iii) blockers of different K+ channels (voltage-activated-, Ca2+-activated, and ATP-sensitive-K+ channels, resp.). In conclusion, MECN-induced antinociception involves modulation of protein kinase C-, bradykinin-, TRVP1 receptors-, and glutamatergic-signaling pathways; opioidergic, α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic, and cholinergic receptors; and nonopioidergic receptors as well as the opening of various K+ channels. The antinociceptive activity could be associated with the presence of several flavonoid-based bioactive compounds and their synergistic action with nonvolatile bioactive compounds.
    Matched MeSH terms: Acanthaceae/chemistry*
  18. Khoo LW, Audrey Kow SF, Maulidiani M, Lee MT, Tan CP, Shaari K, et al.
    J Pharm Biomed Anal, 2018 Sep 05;158:438-450.
    PMID: 29957507 DOI: 10.1016/j.jpba.2018.06.038
    The present study sought to identify the key biomarkers and pathways involved in the induction of allergic sensitization to ovalbumin and to elucidate the potential anti-anaphylaxis property of Clinacanthus nutans (Burm. f.) Lindau water leaf extract, a Southeast Asia herb in an in vivo ovalbumin-induced active systemic anaphylaxis model evaluated by 1H-NMR metabolomics. The results revealed that carbohydrate metabolism (glucose, myo-inositol, galactarate) and lipid metabolism (glycerol, choline, sn-glycero-3-phosphocholine) are the key requisites for the induction of anaphylaxis reaction. Sensitized rats treated with 2000 mg/kg bw C. nutans extract before ovalbumin challenge showed a positive correlation with the normal group and was negatively related to the induced group. Further 1H-NMR analysis in complement with Kyoto Encyclopedia of Genes and Genomes (KEGG) reveals the protective effect of C. nutans extract against ovalbumin-induced anaphylaxis through the down-regulation of lipid metabolism (choline, sn-glycero-3-phosphocholine), carbohydrate and signal transduction system (glucose, myo-inositol, galactarate) and up-regulation of citrate cycle intermediates (citrate, 2-oxoglutarate, succinate), propanoate metabolism (1,2-propanediol), amino acid metabolism (betaine, N,N-dimethylglycine, methylguanidine, valine) and nucleotide metabolism (malonate, allantoin). In summary, this study reports for the first time, C. nutans water extract is a potential anti-anaphylactic agent and 1H-NMR metabolomics is a great alternative analytical tool to explicate the mechanism of action of anaphylaxis.
    Matched MeSH terms: Acanthaceae/chemistry*
  19. Khoo LW, Kow ASF, Maulidiani M, Ang MY, Chew WY, Lee MT, et al.
    Phytochem Anal, 2019 Jan;30(1):46-61.
    PMID: 30183131 DOI: 10.1002/pca.2789
    INTRODUCTION: Clinacanthus nutans, a small shrub that is native to Southeast Asia, is commonly used in traditional herbal medicine and as a food source. Its anti-inflammation properties is influenced by the metabolites composition, which can be determined by different binary extraction solvent ratio and extraction methods used during plant post-harvesting stage.

    OBJECTIVE: Evaluate the relationship between the chemical composition of C. nutans and its anti-inflammatory properties using nuclear magnetic resonance (NMR) metabolomics approach.

    METHODOLOGY: The anti-inflammatory effect of C. nutans air-dried leaves extracted using five different binary extraction solvent ratio and two extraction methods was determined based on their nitric oxide (NO) inhibition effect in lipopolysaccharide-interferon-gamma (LPS-IFN-γ) activated RAW 264.7 macrophages. The relationship between extract bioactivity and metabolite profiles and quantifications were established using 1 H-NMR metabolomics and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The possible metabolite biosynthesis pathway was constructed to further strengthen the findings.

    RESULTS: Water and sonication prepared air-dried leaves possessed the highest NO inhibition activity (IC50  = 190.43 ± 12.26 μg/mL, P 

    Matched MeSH terms: Acanthaceae/chemistry*
  20. Kuo X, Herr DR, Ong WY
    Neuromolecular Med, 2021 03;23(1):176-183.
    PMID: 33085066 DOI: 10.1007/s12017-020-08621-3
    Clinacanthus nutans (Lindau) (C. nutans) has diverse uses in traditional herbal medicine for treating skin rashes, insect and snake bites, lesions caused by herpes simplex virus, diabetes mellitus and gout in Singapore, Malaysia, Indonesia, Thailand and China. We previously showed that C. nutans has the ability to modulate the induction of cytosolic phospholipase A2 (cPLA2) expression in SH-SY5Y cells through the inhibition of histone deacetylases (HDACs). In the current study, we elucidated the effect of C. nutans on the hCMEC/D3 human brain endothelial cell line. Endothelial cells are exposed to high levels of the cholesterol oxidation product, 7-ketocholesterol (7KC), in patients with cardiovascular disease and diabetes, and this process is thought to mediate pathological inflammation. 7KC induced a dose-dependent loss of hCMEC/D3 cell viability, and such damage was significantly inhibited by C. nutans leaf extracts but not stem extracts. 7KC also induced a marked increase in mRNA expression of pro-inflammatory cytokines, IL-1β IL-6, IL-8, TNF-α and cyclooxygenase-2 (COX-2) in brain endothelial cells, and these increases were significantly inhibited by C. nutans leaf but not stem extracts. HPLC analyses showed that leaf extracts have a markedly different chemical profile compared to stem extracts, which might explain their different effects in counteracting 7KC-induced inflammation. Further study is necessary to identify the putative phytochemicals in C. nutans leaves that have anti-inflammatory properties.
    Matched MeSH terms: Acanthaceae/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links