Displaying publications 21 - 40 of 904 in total

Abstract:
Sort:
  1. Song J, Cha L, Sillanpää M, Sainio T
    Water Sci Technol, 2023 Apr;87(7):1672-1685.
    PMID: 37051790 DOI: 10.2166/wst.2023.083
    Excessive phosphorus causes eutrophication problems. The adsorptive removal of phosphate is prevalent and practical in large-scale applications, such as column adsorption. A metal organic framework (MOF)-enhanced layered double hydroxide (LDH) adsorbent material was developed and studied for batch adsorption and then combined with polyacrylonitrile (PAN) to form MOF/LDH/PAN composite beads working as a functional material for columns. Scanning electron microscopy (SEM) images showed the well-dispersed adsorbent powder in porous composite beads. The Fowler-Guggenheim isotherm model described the phosphate adsorption behavior of the MOF/LDH powder with a maximum capacity of 74.96 mg P/g. Mass transfer in the composite beads was successfully described with the Fickian diffusion model. The composite-packed fixed bed treated 37.95 BVs of the influent (55.51 mg P/L phosphate solution) and achieved an uptake of 18.92 mg P/g, with a removal efficiency of 96.42%, before the breakthrough point in the column study. The phosphate-loaded composite bed was regenerated with 0.1 M NaOH to 70% efficiency within 30 BVs. The polymer composite can be considered a practical solution for adsorption-based water treatment applications in tank and column processes where powder adsorbents cannot be applied.
    Matched MeSH terms: Adsorption
  2. Mergbi M, Galloni MG, Aboagye D, Elimian E, Su P, Ikram BM, et al.
    Environ Sci Pollut Res Int, 2023 Jun;30(30):74544-74574.
    PMID: 37227629 DOI: 10.1007/s11356-023-27484-2
    An exponential rise in global pollution and industrialization has led to significant economic and environmental problems due to the insufficient application of green technology for the chemical industry and energy production. Nowadays, the scientific and environmental/industrial communities push to apply new sustainable ways and/or materials for energy/environmental applications through the so-called circular (bio)economy. One of today's hottest topics is primarily valorizing available lignocellulosic biomass wastes into valuable materials for energy or environmentally related applications. This review aims to discuss, from both the chemistry and mechanistic points of view, the recent finding reported on the valorization of biomass wastes into valuable carbon materials. The sorption mechanisms using carbon materials prepared from biomass wastes by emphasizing the relationship between the synthesis route or/and surface modification and the retention performance were discussed towards the removal of organic and heavy metal pollutants from water or air (NOx, CO2, VOCs, SO2, and Hg0). Photocatalytic nanoparticle-coated biomass-based carbon materials have proved to be successful composites for water remediation. The review discusses and simplifies the most raised interfacial, photonic, and physical mechanisms that might take place on the surface of these composites under light irradiation. Finally, the review examines the economic benefits and circular bioeconomy and the challenges of transferring this technology to more comprehensive applications.
    Matched MeSH terms: Adsorption
  3. Flafel HM, Rafatullah M, Lalung J, Kapoor RT, Siddiqui MR, Qutob M
    Chemosphere, 2024 Nov;367:143591.
    PMID: 39442577 DOI: 10.1016/j.chemosphere.2024.143591
    This study explores an innovative integrated system for removing the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) from aquatic environments, utilizing a combination by modified biochar derived from waste biomass of palm kernel shells (PKS-BM) and water hyacinth (Eichhornia crassipes). The characterization of the biochar revealed significant surface functional groups, a substantial surface area, and a mesoporous structure conducive to adsorption application. Biochar-assisted phytoremediation demonstrated markedly higher removal efficiencies of 2,4-D as compared to phytoremediation alone, achieving up to 98.7%, 96.9%, and 90.3% removal efficiency for 2,4-D concentrations of 50 mg/L, 100 mg/L, and 150 mg/L, respectively. Additionally, the presence of biochar significantly enhanced the morphological growth of Eichhornia crassipes, particularly under higher concentrations of 2,4-D, by mitigating toxic effects and supporting healthier plant development. These findings suggest that integrating biochar into phytoremediation system offers a promising, sustainable approach for effectively removing herbicides from contaminated water bodies while also promoting plant health and growth.
    Matched MeSH terms: Adsorption
  4. Manoj D, Rajendran S, Murphy M, Jalil AA, Sonne C
    Chemosphere, 2023 Nov;340:139820.
    PMID: 37586499 DOI: 10.1016/j.chemosphere.2023.139820
    Over the past decades, increasing research in metal-organic frameworks (MOFs) being a large family of highly tunable porous materials with intrinsic physical properties, show propitious results for a wide range of applications in adsorption, separation, electrocatalysis, and electrochemical sensors. MOFs have received substantial attention in electrochemical sensors owing to their large surface area, active metal sites, high chemical and thermal stability, and tunable structure with adjustable pore diameters. Benefiting from the superior properties, MOFs and MOF-derived carbon materials act as promising electrode material for the detection of food contaminants. Although several reviews have been reported based on MOF and its nanocomposites for the detection of food contaminants using various analytical methods such as spectrometric, chromatographic, and capillary electrophoresis. But there no significant review has been devoted to MOF/and its derived carbon-based electrodes using electrochemical detection of food contaminants. Here we review and classify MOF-based electrodes over the period between 2017 and 2022, concerning synthetic procedures, electrode fabrication process, and the possible mechanism for detection of the food contaminants which include: heavy metals, antibiotics, mycotoxins, and pesticide residues. The merits and demerits of MOF as electrode material and the need for the fabrication of MOF and its composites/derivatives for the determination of food contaminants are discussed in detail. At last, the current opportunities, key challenges, and prospects in MOF for the development of smart sensing devices for future research in this field are envisioned.
    Matched MeSH terms: Adsorption
  5. Amalina F, Krishnan S, Zularisam AW, Nasrullah M
    Sci Total Environ, 2024 Mar 01;914:169608.
    PMID: 38157898 DOI: 10.1016/j.scitotenv.2023.169608
    Employing biomass for environmental conservation is regarded as a successful and environmentally friendly technique since they are cost-effective, renewable, and abundant. Biochar (BC), a thermochemically converted biomass, has a considerably lower production cost than the other conventional activated carbons. This material's distinctive properties, including a high carbon content, good electrical conductivity (EC), high stability, and a large surface area, can be utilized in various research fields. BC is feasible as a renewable source for potential applications that may achieve a comprehensive economic niche. Despite being an inexpensive and environmentally sustainable product, research has indicated that pristine BC possesses restricted properties that prevent it from fulfilling the intended remediation objectives. Consequently, modifications must be made to BC to strengthen its physicochemical properties and, thereby, its efficacy in decontaminating the environment. Modified BC, an enhanced iteration of BC, has garnered considerable interest within academia. Many modification techniques have been suggested to augment BC's functionality, including its adsorption and immobilization reliability. Modified BC is overviewed in its production, functionality, applications, and regeneration. This work provides a holistic review of the recent advances in synthesizing modified BC through physical, chemical, or biological methods to achieve enhanced performance in a specific application, which has generated considerable research interest. Surface chemistry modifications require the initiation of surface functional groups, which can be accomplished through various techniques. Therefore, the fundamental objective of these modification techniques is to improve the efficacy of BC contaminant removal, typically through adjustments in its physical or chemical characteristics, including surface area or functionality. In addition, this article summarized and discussed the applications and related mechanisms of modified BC in environmental decontamination, focusing on applying it as an ideal adsorbent, soil amendment, catalyst, electrochemical device, and anaerobic digestion (AD) promoter. Current research trends, future directions, and academic demands were available in this study.
    Matched MeSH terms: Adsorption
  6. Mubarak AA, Ilyas RA, Nordin AH, Ngadi N, Alkbir MFM
    Int J Biol Macromol, 2024 Oct;277(Pt 1):134165.
    PMID: 39059537 DOI: 10.1016/j.ijbiomac.2024.134165
    In recent years, there has been an increase in research devoted to the advancement of cellulose and nanocellulose-based materials, which are advantageous due to their renewable nature, strength, rigidity, and environmental friendliness. This exploration complies with the fundamental tenets of environmental stewardship and sustainability. An area of industrial biotechnology where cellulosic agricultural residues have the potential to be economically utilized is through the conversion of such residues; sugarcane bagasse is currently leading this charge. SCB, a plentiful fibrous byproduct produced during the sugarcane industry's operations, has historically been utilized in various sectors, including producing paper, animal feed, enzymes, biofuel conversion, and biomedical applications. Significantly, SCB comprises a considerable amount of cellulose, approximately 40 % to 50 %, rendering it a valuable source of cellulose fibre for fabricating cellulose nanocrystals. This review sheds light on the significant advances in surface modification techniques, encompassing physical, chemical, and biological treatments, that enhance sugarcane bagasse fibres' adsorption capacity and selectivity. Furthermore, the paper investigates the specific advancements related to the augmentation of sugarcane bagasse fibres' efficacy in adsorbing a wide range of pollutants. These pollutants span a spectrum that includes heavy metals, dyes, organic pollutants, and emerging contaminants. The discussion provides a comprehensive overview of the targeted removal processes facilitated by applying modified fibres. The unique structural and chemical properties inherent in sugarcane bagasse fibres and their widespread availability position them as highly suitable adsorbents for various pollutants. This convergence of attributes underscores the potential of sugarcane bagasse fibres in addressing environmental challenges and promoting sustainable solutions across multiple industries.
    Matched MeSH terms: Adsorption
  7. Nur H, Manan AF, Wei LK, Muhid MN, Hamdan H
    J Hazard Mater, 2005 Jan 14;117(1):35-40.
    PMID: 15621351
    The surfaces of NaY zeolite particles were modified by the alkylsilylation of n-octadecyltrichlorosilane (OTS). Two kinds of modified NaY zeolites were prepared; one with its external surface partially and the other fully covered with alkylsilyl groups. Since the size of OTS is bigger than the pore diameter of NaY, it is attached on the external surface, leaving the internal pore accessible to adsorbate molecules. As a result of alkylsilylation, the adsorption properties of these sorbents were improved. The adsorption properties of these materials were tested by their reaction in a mixture of paraquat and blue dye. The results demonstrate that the alkysilylated NaY materials are capable of simultaneous adsorption of paraquat and blue dye. Paraquat was selectively adsorbed into the internal pore of the zeolite whereas the dye on the externally attached alkylsilyl groups of the sorbent; displaying the unique bimodal amphiphilic character of the alkylsilylated NaY zeolites.
    Matched MeSH terms: Adsorption
  8. Syahir A, Tomizaki KY, Kajikawa K, Mihara H
    Methods Mol Biol, 2016;1352:97-110.
    PMID: 26490470 DOI: 10.1007/978-1-4939-3037-1_8
    The importance of protein detection system for protein functions analyses in recent post-genomic era is rising with the emergence of label-free protein detection methods. We are focusing on a simple and practical label-free optical-detection method called anomalous reflection (AR) of gold. When a molecular layer forms on the gold surface, significant reduction in reflectivity can be observed at wavelengths of 400-500 nm. This allows the detection of molecular interactions by monitoring changes in reflectivity. In this chapter, we describe the AR method with three different application platforms: (1) gold, (2) gold containing alloy/composite (AuAg2O), and (3) metal-insulator-metal (MIM) thin layers. The AuAg2O composite and MIM are implemented as important concepts for signal enhancement process for the AR technique. Moreover, the observed molecular adsorption and activity is aided by a three-dimensional surface geometry, performed using poly(amidoamine) or PAMAM dendrimer modification. The described system is suitable to be used as a platform for high-throughput detection system in a chip format.
    Matched MeSH terms: Adsorption
  9. Mohamad NR, Marzuki NH, Buang NA, Huyop F, Wahab RA
    Biotechnology, biotechnological equipment, 2015 Mar 04;29(2):205-220.
    PMID: 26019635
    The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies.
    Matched MeSH terms: Adsorption
  10. Nik-Rashida Nik-Abdul-Ghani, Mohammed Saedi Jami, Ku Mariam Zainab Ku Abdullah
    MyJurnal
    Lead contamination present in wastewater is one of the major problems due to its toxicity and persistence. This issue increased dramatically and led to the environmental and health concerns worldwide. Therefore, this study aims to remove lead from synthetic wastewater effluent by adsorption process. In this study, nanomaterial called graphene oxide (GO) is used as an adsorbent due to its mechanical strength and high surface area. The parameters were optimized using Fractional factorial design under response surface method. GO demonstrates high adsorption capacity, qmax = 500 mg/g at 100 mg/L of initial lead concentration and at optimum pH 9. Adsorption isotherm of lead was also investigated to evaluate the adsorption capacity. The equilibrium data of graphene oxide adsorption was better represented by the Langmuir isotherm and was achieved within 60 minutes. The results showed that GO has potential to be an important adsorbent for lead removal. In the future, GO might be imbedded as adsorbent in the membrane fabrication for wastewater treatment.
    Matched MeSH terms: Adsorption
  11. Zubair M, Ihsanullah I, Abdul Aziz H, Azmier Ahmad M, Al-Harthi MA
    Bioresour Technol, 2021 Jan;319:124128.
    PMID: 32979597 DOI: 10.1016/j.biortech.2020.124128
    Biochar/layered double hydroxide (LDH) composites have gained considerable attention in recent times as low-cost sustainable materials for applications in water treatment. This paper critically evaluates the latest development in applications of biochar/LDH composites in water treatment with an emphasis on adsorption and catalytic degradation of various pollutants. The adsorption of various noxious contaminants, i.e., heavy metals, dyes, anions, and pharmaceuticals onto biochar/LDH composites are described in detail by elaborating the adsorption mechanism and regeneration ability. The synergistic effect of LDH with biochar exhibited significant improvement in specific surface area, surface functional groups, structure heterogeneity, stability, and adsorption characteristics of the resulting biochar/LDH composites. The major hurdles and challenges associated with the synthesis and applications of biochar/LDH composites in water remediation are emphasized. Finally, a roadmap is suggested for future research to assure the effective applications of biochar/LDH composites in water purification.
    Matched MeSH terms: Adsorption
  12. Nur Shazwani Abdul Mubarak, S. Sabar, Ali H. Jawad
    Science Letters, 2020;14(1):68-83.
    MyJurnal
    Commercial titanium dioxide Degussa P25 (TiO2) was used for the adsorption of reactive red 120
    (RR120) dye in a batch system. The optimization functions such as solution pH (3-12), adsorbent dosage (0.02 g-1.2 g), and initial dye concentration (30-400 mg/L) were studied. The equilibrium adsorption data for RR120 dye was analyzed by two types of isotherm models which are Langmuir and Freundlich models. The adsorption at equilibrium showed a better fit for linear Langmuir isotherm with the adsorption capacity, qmax of 18.62 mg/g at 303 K. The adsorption kinetic was well-described by pseudosecond order model. TiO2 showed a decent outcome due to the ability to adsorb target pollutants with theadded advantage of providing large hydroxyl groups (OH) on the surface of TiO2 so that pollutants can be adsorbed by interacting on the surface of OH.
    Matched MeSH terms: Adsorption
  13. Nurul Najwa Abd Malek, Ali H. Jawad, Emad Yousif
    Science Letters, 2020;14(1):83-95.
    MyJurnal
    Cross-linked chitosan-epichlorohydrin was prepared for the adsorption of Reactive Red 4 (RR4).
    Response surface methodology (RSM) with 3–level Box-Behnken design (BBD) was employed to
    optimize the RR4 dye removal efficiency from aqueous solution. The adsorption key parameters that were selected such as adsorbent dose (A: 0.5 – 1.5 g), pH (B: 4 – 10) and time (30 – 80 min). The F-value of BBD model for RR4 removal efficiency was 185.36 (corresponding p-value < 0.0001). The results illustrated that the highest RR4 removal efficiency (70.53%) was obtained at the following conditions: adsorbent dose (1.0 g), pH 4 and time of 80 min.
    Matched MeSH terms: Adsorption
  14. Iberahim N, Sethupathi S, Goh CL, Bashir MJK, Ahmad W
    J Environ Manage, 2019 Oct 15;248:109302.
    PMID: 31377539 DOI: 10.1016/j.jenvman.2019.109302
    Palm oil sludge (POS) is an organic waste generated from the palm oil industry. POS causes environmental pollution if it is improperly disposed. In this study, the potential of activated POS biochar, as an adsorbent for the removal of SO2 gas was tested. POS biochar was physically activated using CO2 gas. The effects of activation preparation variables i.e. activation temperature (300-700 °C), activation time (30-150 min) and CO2 flow rate (100-500 ml/min) were investigated using design expert version 8.0.7.1 software. Central Composite Design (CCD) was used to develop a quadratic model to correlate the operating variables with the activated biochar adsorption capacity. Analysis of variance (ANOVA) was performed to identify the significant factors on the experimental design response. The optimum preparation conditions of activated POS biochar were found to be at activation temperature of 442 °C, activation time of 63 min and CO2 flow rate of 397 ml/min. The maximum adsorption capacity at the optimum conditions was recorded as 16.65 mg/g. The adsorption capacity increased significantly after the activation process. Characteristics of the activated POS biochar proposed that SO2 was physically adsorbed. Furthermore, it was found that the adsorption capacity can be further enhanced by increasing the reaction temperature to 100 °C or with 15% of relative humidity in the inlet gas. The prepared adsorbents can be regenerated by thermal treatment.
    Matched MeSH terms: Adsorption
  15. Yang J, Mohmad AR, Wang Y, Fullon R, Song X, Zhao F, et al.
    Nat Mater, 2019 12;18(12):1309-1314.
    PMID: 31451781 DOI: 10.1038/s41563-019-0463-8
    Metallic transition metal dichalcogenides (TMDs)1-8 are good catalysts for the hydrogen evolution reaction (HER). The overpotential and Tafel slope values of metallic phases and edges9 of two-dimensional (2D) TMDs approach those of Pt. However, the overall current density of 2D TMD catalysts remains orders of magnitude lower (~10-100 mA cm-2) than industrial Pt and Ir electrolysers (>1,000 mA cm-2)10,11. Here, we report the synthesis of the metallic 2H phase of niobium disulfide with additional niobium (2H Nb1+xS2, where x is ~0.35)12 as a HER catalyst with current densities of >5,000 mA cm-2 at ~420 mV versus a reversible hydrogen electrode. We find the exchange current density at 0 V for 2H Nb1.35S2 to be ~0.8 mA cm-2, corresponding to a turnover frequency of ~0.2 s-1. We demonstrate an electrolyser based on a 2H Nb1+xS2 cathode that can generate current densities of 1,000 mA cm-2. Our theoretical results reveal that 2H Nb1+xS2 with Nb-terminated surface has free energy for hydrogen adsorption that is close to thermoneutral, facilitating HER. Therefore, 2H Nb1+xS2 could be a viable catalyst for practical electrolysers.
    Matched MeSH terms: Adsorption
  16. Fu D, Kurniawan TA, Lin L, Li Y, Avtar R, Dzarfan Othman MH, et al.
    J Environ Manage, 2021 May 15;286:112246.
    PMID: 33667817 DOI: 10.1016/j.jenvman.2021.112246
    This study tested the technical feasibility of pyrite and/or persulfate oxidation system for arsenic (As) removal from aqueous solutions. The effects of persulfate on As removal by the pyrite in the integrated treatment were also investigated. Prior to the persulfate addition into the reaction system, the physico-chemical interactions between As and the pyrite alone in aqueous solutions were explored in batch studies. The adsorption mechanisms of As by the adsorbent were also presented. At the same As concentration of 5 mg/L, it was found that As(III) attained a longer equilibrium time (8 h) than As(V) (2 h), while the pyrite worked effectively at pH ranging from 6 to 11. At optimum conditions (0.25 g/L of pyrite, pH 8.0 and 5 mg/L of As(III) concentration), the addition of persulfate (0.5 mM) into the reaction promoted a complete removal of arsenic from the solutions. Consequently, this enabled the treated effluents to meet the arsenic maximum contaminant limit (MCL) of <10 μg/L according to the World Health Organization (WHO)'s requirements. The redox mechanisms, which involved electron transfer from the S22- of the pyrite to Fe3+, supply Fe2+ for persulfate decomposition, oxidizing As(III) to As(V). The sulfur species played roles in the redox cycle of the Fe3+/Fe2+ of the pyrite by giving its electrons, while the As(III) oxidation to As(V) was attributed to the pyrite. Overall, this work reveals the applicability of the pyrite as an adsorbent for water treatment and the importance of persulfate addition to promote a complete As removal from aqueous solutions.
    Matched MeSH terms: Adsorption
  17. Kurniawan TA, Singh D, Xue W, Avtar R, Othman MHD, Hwang GH, et al.
    J Environ Manage, 2021 Jun 01;287:112265.
    PMID: 33730674 DOI: 10.1016/j.jenvman.2021.112265
    This study investigated the feasibility of integrated ammonium stripping and/or coconut shell waste-based activated carbon (CSWAC) adsorption in treating leachate samples. To valorize unused biomass for water treatment application, the adsorbent originated from coconut shell waste. To enhance its performance for target pollutants, the adsorbent was pretreated with ozone and NaOH. The effects of pH, temperature, and airflow rate on the removal of ammoniacal nitrogen (NH3-N) and refractory pollutants were studied during stripping alone. The removal performances of refractory compounds in this study were compared to those of other treatments previously reported. To contribute new knowledge to the field of study, perspectives on nutrients removal and recovery like phosphorus and nitrogen are presented. It was found that the ammonium stripping and adsorption treatment using the ozonated CSWAC attained an almost complete removal (99%) of NH3-N and 90% of COD with initial NH3-N and COD concentrations of 2500 mg/L and 20,000 mg/L, respectively, at optimized conditions. With the COD of treated effluents higher than 200 mg/L, the combined treatments were not satisfactory enough to remove target refractory compounds. Therefore, further biological processes are required to complete their biodegradation to meet the effluent limit set by environmental legislation. As this work has contributed to resource recovery as the driving force of landfill management, it is important to note the investment and operational expenses, engineering applicability of the technologies, and their environmental concerns and benefits. If properly managed, nutrient recovery from waste streams offers environmental and socio-economic benefits that would improve public health and create jobs for the local community.
    Matched MeSH terms: Adsorption
  18. Sher F, Hanif K, Rafey A, Khalid U, Zafar A, Ameen M, et al.
    J Environ Manage, 2021 Jan 15;278(Pt 2):111302.
    PMID: 33152547 DOI: 10.1016/j.jenvman.2020.111302
    The water reservoirs are getting polluted due to increasing amounts of micropollutants such as pharmaceuticals, organic polymers and suspended solids. Powdered activated carbon (PAC) has been proved to be a promising solution for the purification of water without having harmful impacts on the environment. Parameters such as PAC dosing, wastewater hardness, the effect of coagulant and flocculant were evaluated in a batch scale study. These parameters were further applied on a pilot plant scale for the performance evaluation of PAC based removal of micropollutants concerning the contact time and PAC dosing with main focus on recirculation of PAC sludge. The obtained optimum dose was 10-20 mg/L providing 84.40-91.30% removal efficiency of suspended solid micropollutants (MPs) and this efficiency increased to 88.90-93.00% along with coagulant which further raised by the addition of polymer and recirculation process at batch scale. On pilot plant scale, the concentration in contact reactor and PAC removal effectiveness of dissolved air flotation, lamella separator and sedimentation tank were compared. Constant optimisation resulted in a concentration ranging from 2.70 to 3.40 g/L at dosing of PAC 10 mg/L, coagulant 2.00 mg/L and polymer 0.50 mg/L. PAC doses of 10-20 mg/L with 15-30 min contact time proved best for above 70-80% elimination. The recirculation system has also proved an efficient technique because the PAC's adsorption capacity was practically completely used. Small PAC dosages yielded high micropollutants elimination.
    Matched MeSH terms: Adsorption
  19. Praveena SM, Rashid U, Rashid SA
    Environ Technol, 2020 Nov;41(25):3363-3374.
    PMID: 31002023 DOI: 10.1080/09593330.2019.1609590
    There is limited information on the optimal processes to remove heavy metals in greywater. A Response Surface Methodology (RSM) via the Box-Behnken Design (BBD) approach was applied in this study to investigate and optimise the process variables of activation time (1.5-2.5 h), impregnation ratio (0.25-0.75) and zinc chloride (ZnCl2) percentage (20-60%) for the removal of heavy metal ions (Cd, Cu, Pb and Ni) associated with greywater treatment. The quadratic model was chosen to describe the effects of the process variables (activation time, impregnation ratio, ZnCl2 percentage) on predicting the responses (heavy metal ions removal) with low p-values (
    Matched MeSH terms: Adsorption
  20. Huang SL, Zhang WH, Ling Y, Ng SW, Luo HK, Hor TS
    Chem Asian J, 2015 Oct;10(10):2117-20.
    PMID: 25965032 DOI: 10.1002/asia.201500231
    Four porous coordination networks have been synthesized from 1,4-benzenedicarboxylate with Cl, Br, I, and NO2 substituents whose different spatial differences are sufficient to influence the coordination mode of adjacent carboxyl moieties to unlock an inter-penetrating framework to give isostructural structures. Their size and polarity differences account for the diverging CO2 adsorption performances.
    Matched MeSH terms: Adsorption
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links