Displaying publications 21 - 40 of 117 in total

Abstract:
Sort:
  1. Ismail IN, Taufik M, Umor NA, Norulhuda MR, Zulkarnaini Z, Ismail S
    Water Sci Technol, 2022 Dec;86(12):3093-3112.
    PMID: 36579872 DOI: 10.2166/wst.2022.403
    Treatment of ammonia- and nitrate-rich wastewater, such as that generated in the aquaculture industry, is important to prevent environmental pollution. The anaerobic ammonium oxidation (anammox) process has been reported as a great alternative in reducing ammoniacal nitrogen concentration in aquaculture wastewater treatment compared to conventional treatment systems. This paper will highlight the impact of the anammox process on aquaculture wastewater, particularly in the regulation of ammonia and nitrogen compounds. The state of the art for anammox treatment systems is discussed in comparison to other available treatment methods. While the anammox process is viable for the treatment of aquaculture wastewater, the efficiency of nitrogen removal could be further improved through the proper use of anammox bacteria, operating conditions, and microbial diversity. In conclusion, a new model of the anammox process is proposed in this review.
    Matched MeSH terms: Ammonium Compounds*
  2. Kok ESK, Lim XJ, Chew SX, Ong SF, See LY, Lim SH, et al.
    BMC Oral Health, 2021 03 12;21(1):116.
    PMID: 33711992 DOI: 10.1186/s12903-021-01470-x
    BACKGROUND: Compare antimicrobial efficacy of a quarternary ammonium silane (QAS)/k21 as an intracanal medicament against E. faecalis and C. albicans biofilms formed on root dentin.

    METHODOLOGY: Dentin blocks were sterilized and E. faecalis and C. albicans microbial colonies were counted for colony-forming-units against 2%k21, 2%CHX and Ca(OH)2 medicaments. Biofilm colonies after 7 days on dentin were analysed using confocal laser scanning microscopy with live/dead bacterial viability staining. TEM was done to study dentin collagen matrix. Dentin discs from 3rd day and 7th day well plate was used for Raman spectra and observed under fluorescent-microscope. Docking studies were carried out on MMP-2 S1 binding-domain with k21.

    RESULTS: There was reduction of E. faecalis/C. albicans when k21, chlorhexidine and calcium hydroxide were used with highest percentage in 2%k21 treated specimens. 2%k21 showed dense and regular collagen network with intact cross-banding and decreased Raman intensity for 2%k21 on 3rd day. NaOCl + k21 showed least adherence, whereas saline groups showed highest adherence of E. faecalis and C. albicans to root-canal dentin. Alizarin red staining of hDPSCs revealed calcium deposition in all groups with significant difference seen amongst 2%k21 groups. MMP-2 ligand binding was seen accurately indicating possible target sites for k21 intervention.

    CONCLUSION: 2%k21 can be considered as alternative intracanal medicament.

    Matched MeSH terms: Ammonium Compounds*
  3. Noraziah Mohamad Zin, Marlini Othman
    MyJurnal
    Bakteria endofit adalah berpotensi untuk menghasilkan antibiotik dan metabolit sekunder yang lain. Penghasilan metabolit sekunder dapat ditingkatkan melalui pengoptimuman kandungan nutrien seperti sumber nitrogen. Dalam kajian ini kandungan sumber nitrogen iaitu ammonium sulfat, ammonium dihidrogen fosfat, kalium nitrat dan natrum nitrat telah diubahsuai di dalam kaldu International Streptomyces Project 4 (ISP4) untuk pertumbuhan Streptomyces SUK 02. Pengekstrakan dilakukan dengan menggunakan etil asetat dan aktiviti antifungus ditentukan dengan menggunakan teknik serapan agar. Fungus ujian yang digunakan adalah Aspergillus fumigatus dan Fusarium solani. Hasil kajian menunjukkan peratusan berat (w/v) ekstrak kasar maksima didapati daripada kaldu yang mengandungi natrium nitrat (3.30%), diikuti oleh ammonium dihidrogen fosfat (2.24%), ammonium sulfat (1.46%) dan kalium nitrat (1.20%). Aktiviti antifungus dikesan daripada ekstrak bersumberkan nitrogen ammonium sulfat.Peratus perencatan ekstrak tersebut terhadap Aspergillus fumigatus dan Fusarium solani adalah 33.0-35.0% dan 17.4-30.0%, masing-masing. Manakala nilai MIC terhadap Aspergillus fumigatus adalah 1.5 mg/ml. Sebagai kesimpulan, natrium nitrat merupakan sumber nitrogen yang sesuai bagi partumbuhan optimum Streptomyces SUK 02 manakala kehadiran ammonium sulfat boleh meningkatkan aktiviti antifungus.
    Matched MeSH terms: Ammonium Compounds
  4. Jamaliah Sharif, Khairul Zaman Mohd Dahlan, Wan Md Zin Wan Yunus
    MyJurnal
    Effects of organoclay concentration on the properties of radiation crosslinked natural rubber (NR)/ ethylene vinyl acetate (EVA)/clay nanocomposites were investigated. The NR/EVA blend with a ratio of 40/60 was melt blended with different concentration of either dodecyl ammonium montmorillonite (DDA-MMT) or dimethyl dihydrogenated tallow quarternary ammonium montmorillonite (C20A). Composite of NR/EVA blend with unmodified clay (Na-MMT) was also prepared for comparison purposes. The composites were irradiated with electron beam (EB) at an optimum irradiation dose. The formation of radiation-induced crosslinking depends on the type and concentration of the organoclay used in the preparation of nanocomposites as measured by gel content. Changes in the interlayer distance of the silicate layers with the increase of organoclay concentration were shown by the XRD results. Variation in the tensile properties of the nanocomposites with the increase of organoclay concentration depends on the formation of crosslinking as well as reinforcement effect of the organoclay. Improvement in thermal stability of the NR/EVA blend was also observed with the presence of organoclay.
    Matched MeSH terms: Ammonium Compounds
  5. Jamulidin, S.N.K., Manogaran. M., Yakasai, M.H., Rahman, M.F.A., Shukor, M.Y.
    MyJurnal
    In this study, a novel glyphosate-degrading shows the ability to reduce molybdenum to
    molybdenum blue. The enzyme from this bacterium was partially purified and partially
    characterized to ascertain whether the Mo-reducing enzyme from this bacterium shows better or
    lower efficiency in reducing molybdenum compared to other Mo-reducing bacterium that only
    exhibits a single biotransformation activity. The enzyme was partially purified using ammonium
    sulphate fractionation. The Vmax for the electron donating substrate or NADH was at 1.905 nmole
    Mo blue/min while the Km was 6.146 mM. The regression coefficient was 0.98. Comparative
    assessment with the previously characterized Mo-reducing enzyme from various bacteria showed
    that the Mo-reducing enzyme from Burkholderia vietnamiensis strain AQ5-12 showed a lower
    enzyme activity.
    Matched MeSH terms: Ammonium Compounds
  6. Rudhziah S, Muda N, Ibrahim S, Rahman A, Mohamed N
    Sains Malaysiana, 2011;40:1179-1186.
    In the present work, polymer electrolytes of poly(vinylidene fluoride co-hexafluoroproplyne) (PVDF-HFP) and PVDF-HFP/poly(ethyl methacrylate) (PVDF-HFP/PEMA) blend complexed with different concentrations of ammonium triflate (NH4CF3SO3) were prepared and characterized. The structural and thermal properties of the electrolytes were studied by XRD and DSC while the electrical properties were investigated by impedance spectroscopy. Ionic transference number measurements were done by D.C polarization technique. The results of these study showed that the PVDF-HFP/PEMA based electrolytes exhibit higher ionic conductivity as compared to PVDF-HFP based electrolytes. This could be attributed to the higher degree of amorphicity in the PVDF-HFP/PEMA based electrolytes. The results of ionic transference number measurements showed that the charge transport in these electrolytes was mainly due to ions and only negligible contribution comes from electrons.
    Matched MeSH terms: Ammonium Compounds
  7. Abdul-Rahman R, Tsuno H, Zainol N
    Water Sci Technol, 2002;45(12):197-204.
    PMID: 12201103
    Elevated levels of nutrients in agroindustry wastewaters, and higher reliance on chlorination pose health threats due to formation of chlorinated organics as well as increased chlorination costs. Removals of ammonium and nitrate compounds were studied using activated carbon from palm shells, as adsorbent and support media. Experiments were carried out at several loadings, F:M from 0.31 to 0.58, and hydraulic residence times (HRT) of 24 h, 12 h and 8 h. Results show that the wastewater treatment process achieved removals of over 90% for COD and 62% for Total-N. Studies on removals from river water were carried out in sequencing batch reactor (SBR) and activated carbon biofilm (ACB) reactor. Removals achieved by the SBR adsorption-biodegradation combination were 67.0% for COD, 58.8% for NH3-N and 25.5% for NO3-N while for adsorption alone the removals were only 37.0% for COD, 35.2% for NH3-N and 13.8% for NO3-N. In the ACB reactor, at HRT of 1.5 to 6 h, removals ranged from 12.5 to 100% for COD, 16.7 to 100% for NO3-N and 13.5 to 100% for NH3-N. Significant decrease in removals was shown at lower HRT. The studies have shown that substantial removals of COD, NO3-N and NH3-N from both wastewater and river water may be achieved via adsorption-biodegradation by biofilm on activated carbon processes.
    Matched MeSH terms: Quaternary Ammonium Compounds/metabolism; Quaternary Ammonium Compounds/chemistry*
  8. Daood U, Gopinath D, Pichika MR, Mak KK, Seow LL
    Molecules, 2021 Apr 12;26(8).
    PMID: 33921378 DOI: 10.3390/molecules26082214
    To determine whether quaternary ammonium (k21) binds to Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) spike protein via computational molecular docking simulations, the crystal structure of the SARS-CoV-2 spike receptor-binding domain complexed with ACE-2 (PDB ID: 6LZG) was downloaded from RCSB PD and prepared using Schrodinger 2019-4. The entry of SARS-CoV-2 inside humans is through lung tissues with a pH of 7.38-7.42. A two-dimensional structure of k-21 was drawn using the 2D-sketcher of Maestro 12.2 and trimmed of C18 alkyl chains from all four arms with the assumption that the core moiety k-21 was without C18. The immunogenic potential of k21/QA was conducted using the C-ImmSim server for a position-specific scoring matrix analyzing the human host immune system response. Therapeutic probability was shown using prediction models with negative and positive control drugs. Negative scores show that the binding of a quaternary ammonium compound with the spike protein's binding site is favorable. The drug molecule has a large Root Mean Square Deviation fluctuation due to the less complex geometry of the drug molecule, which is suggestive of a profound impact on the regular geometry of a viral protein. There is high concentration of Immunoglobulin M/Immunoglobulin G, which is concomitant of virus reduction. The proposed drug formulation based on quaternary ammonium to characterize affinity to the SARS-CoV-2 spike protein using simulation and computational immunological methods has shown promising findings.
    Matched MeSH terms: Quaternary Ammonium Compounds/metabolism*; Quaternary Ammonium Compounds/chemistry
  9. Mousavi S, Ibrahim S, Aroua MK
    Bioresour Technol, 2012 Dec;125:256-66.
    PMID: 23026342 DOI: 10.1016/j.biortech.2012.08.075
    In this study, a twin-chamber upflow bio-electrochemical reactor packed with palm shell granular activated carbon as biocarrier and third electrode was used for sequential nitrification and denitrification of nitrogen-rich wastewater under different operating conditions. The experiments were performed at a constant pH value for the denitrification compartment. The effect of variables, namely, electric current (I) and hydraulic retention time (HRT), on the pH was considered in the nitrification chamber. The response surface methodology was used based on three levels to develop empirical models for the study on the effects of HRT and current values as independent operating variables on NH(4)(+)-N removal. The results showed that ammonium was reduced within the function of an extensive operational range of electric intensity (20-50 mA) and HRT (6-24h). The optimum condition for ammonium oxidation (90%) was determined with an I of 32 mA and HRT of 19.2h.
    Matched MeSH terms: Quaternary Ammonium Compounds/isolation & purification*; Quaternary Ammonium Compounds/chemistry
  10. Wong SP, Lim WH, Cheng SF, Chuah CH
    Colloids Surf B Biointerfaces, 2012 Jan 1;89:48-52.
    PMID: 21937202 DOI: 10.1016/j.colsurfb.2011.08.021
    Quaternary ammonium compounds (QACs) are commonly used as disinfectant in medical care, food industry, detergents and glue industries. This is due to a small concentration of QACs is sufficient to inhibit the growth of various bacteria strains. In this work, the inhibitive power of cationic surfactants, alkyltrimethylammonium bromide (C(n)TAB) in the presence of anionic surfactants, sodium alkyl methyl ester α-sulfonate (C(n)MES) was studied. The growth inhibition test with gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria were used to determine the toxicity of single and mixed surfactants. Results from this work showed that certain mixed surfactants have lower minimum inhibition concentration (MIC) as compared to the single C(n)TAB surfactants. Besides that, it was also found that alkyl chain length and the mixing ratios of the surfactants play a significant role in determining the mixture inhibitive power.
    Matched MeSH terms: Quaternary Ammonium Compounds/pharmacology; Quaternary Ammonium Compounds/chemistry*
  11. Zhou F, Cui J, Zhou J, Yang J, Li Y, Leng Q, et al.
    Sci Total Environ, 2018 Aug 15;633:776-784.
    PMID: 29602116 DOI: 10.1016/j.scitotenv.2018.03.217
    Atmospheric deposition nitrogen (ADN) increases the N content in soil and subsequently impacts microbial activity of soil. However, the effects of ADN on paddy soil microbial activity have not been well characterized. In this study, we studied how red paddy soil microbial activity responses to different contents of ADN through a 10-months ADN simulation on well managed pot experiments. Results showed that all tested contents of ADN fluxes (27, 55, and 82kgNha-1 when its ratio of NH4+/NO3--N (RN) was 2:1) enhanced the soil enzyme activity and microbial biomass carbon and nitrogen and 27kgNha-1 ADN had maximum effects while comparing with the fertilizer treatment. Generally, increasing of both ADN flux and RN (1:2, 1:1 and 2:1 with the ADN flux of 55kgNha-1) had similar reduced effects on microbial activity. Furthermore, both ADN flux and RN significantly reduced soil bacterial alpha diversity (p<0.05) and altered bacterial community structure (e.g., the relative abundances of genera Dyella and Rhodoblastus affiliated to Proteobacteria increased). Redundancy analysis demonstrated that ADN flux and RN were the main drivers in shaping paddy soil bacteria community. Overall, the results have indicated that increasing ADN flux and ammonium reduced soil microbial activity and changed the soil bacterial community. The finding highlights how paddy soil microbial community response to ADN and provides information for N management in paddy soil.
    Matched MeSH terms: Ammonium Compounds/analysis*; Ammonium Compounds/toxicity
  12. Qureshi MS, Mohd Yusoff AR, Shah A, Nafady A, Sirajuddin
    Talanta, 2015 Jan;132:541-7.
    PMID: 25476342 DOI: 10.1016/j.talanta.2014.10.005
    Vanadium(IV) and vanadium(V) can be determined by using differential pulse cathodic stripping voltammetry technique (DPCSV). Cupferron (ammonium N-nitrosophenylhydroxylamine) was used as ligand to form complex compounds with vanadium ions in Britton-Robinson buffer (BRB) solution. At concentration lower than 1.0×10(-6) M, both V(IV) and V(V) cupferron complexes showed a single cathodic peak at -0.576 V in BRB of pH 4; thus V(IV) and V(V) ions cannot be differentiated at low concentration. However, the ionic species of vanadium can be differentiated at high concentration in the presence of cupferron. Parameters including pH of BRB solution, initial potential and accumulation potential were optimized. Under the optimized parameters, the limit of detection (LOD) was 0.09 nM, and the peak current was linear in the concentration range 0.01-0.9 µM total vanadium ions. The determination of V(IV) and V(V) ions was carried out at higher concentration in the sample using calibration plot method. At higher concentration range of 10-60 µM V(IV) and V(V) ions were determined with LOD of 1.2 and 1.1 µM, respectively. The developed method was successfully applied to 10,00,000 fold diluted Benfield sample and 0.6227 M total vanadium ions were determined. The determination of V(IV) and V(V) ions were also successfully carried out in artificial sample as well as Benfield sample (dilution factor, 10,000). The concentration of V(IV) and V(V) ions was 22.52 µM and 38.91 µM, respectively, giving total vanadium concentration of 0.6143 M in Benfield sample.
    Matched MeSH terms: Ammonium Compounds
  13. Ooi ZY, Harruddin N, Othman N
    Biotechnol Prog, 2015 Sep-Oct;31(5):1305-14.
    PMID: 26101101 DOI: 10.1002/btpr.2129
    Kraft lignin (KL) is a renewable source of many valuable intermediate biochemical products currently derived from petroleum. An excessive of lignin comes from pulping wastewater caused an adverse pollution problems hence affecting human and aquatic life. A comprehensive study pertaining to emulsion liquid membrane (ELM) extraction of lignin from pulping wastewater was presented. ELM formulation contains Aliquat 336 as carrier, kerosene as diluent, sodium bicarbonate (NaHCO3 ) as stripping agent and Span 80 as surfactant. The emulsion stability was investigated at different surfactant concentrations, homogenizer speed and emulsification time. Modifier (2-ethyl-1-hexanol) was added to avoid segregation of third phase while improving the emulsion stability. At optimum conditions, 95% and 56% of lignin were extracted and recovered, respectively at 10 min of extraction time, 0.007 M of Aliquat 336, 0.1 M of NaHCO3 and 1:5 of treat ratio. Additional of modifier was contributed to highest recovery up to 98%. The ELM process was found to be equally feasible and quite effective in the recovery of KL from real pulping wastewater. Therefore, ELM process provides a promising alternative technology to recover KL from pulping wastewater while solving the environmental problems simultaneously.
    Matched MeSH terms: Quaternary Ammonium Compounds
  14. Liu Y, Sairi M, Neusser G, Kranz C, Arrigan DW
    Anal Chem, 2015 Jun 2;87(11):5486-90.
    PMID: 25962586 DOI: 10.1021/acs.analchem.5b01162
    In this work, independent radial diffusion at arrayed nanointerfaces between two immiscible electrolyte solutions (nanoITIES) was achieved. The arrays were formed at nanopores fabricated by focused ion beam milling of silicon nitride (SiN) membranes, enabling the reproducible and systematic design of five arrays with different ratios of pore center-to-center distance (rc) to pore radius (ra). Voltammetry across water-1,6-dichlorohexane nanoITIES formed at these arrays was examined by the interfacial transfer of tetrapropylammonium ions. The diffusion-limited ion-transfer current increased with the ratio rc/ra, reaching a plateau for rc/ra ≥ 56, which was equivalent to the theoretical current for radial diffusion to an array of independent nanoITIES. As a result, mass transport to the nanoITIES arrays was greatly enhanced due to the decreased overlap of diffusion zones at adjacent nanoITIES, allowing each interface in the array to behave independently. When the rc/ra ratio increased from 13 to 56, the analytical performance parameters of sensitivity and limit of detection were improved from 0.50 (±0.02) A M(-1) to 0.76 (±0.02) A M(-1) and from 0.101 (±0.003) μM to 0.072 (±0.002) μM, respectively. These results provide an experimental basis for the design of arrayed nanointerfaces for electrochemical sensing.
    Matched MeSH terms: Quaternary Ammonium Compounds
  15. Sohaimy MIHA, Isa MINM
    Polymers (Basel), 2020 Oct 26;12(11).
    PMID: 33114745 DOI: 10.3390/polym12112487
    Green and safer materials in energy storage technology are important right now due to increased consumption. In this study, a biopolymer electrolyte inspired from natural materials was developed by using carboxymethyl cellulose (CMC) as the core material and doped with varied ammonium carbonate (AC) composition. X-ray diffraction (XRD) shows the prepared CMC-AC electrolyte films exhibited low crystallinity content, Xc (~30%) for sample AC7. A specific wavenumber range between 900-1200 cm-1 and 1500-1800 cm-1 was emphasized in Fourier transform infrared (FTIR) testing, as this is the most probable interaction to occur. The highest ionic conductivity, σ of the electrolyte system achieved was 7.71 × 10-6 Scm-1 and appeared greatly dependent on ionic mobility, µ and diffusion coefficient, D. The number of mobile ions, η, increased up to the highest conducting sample (AC7) but it became less prominent at higher AC composition. The transference measurement, tion showed that the electrolyte system was predominantly ionic with sample AC7 having the highest value (tion = 0.98). Further assessment also proved that the H+ ion was the main conducting species in the CMC-AC electrolyte system, which presumably was due to protonation of ammonium salt onto the complexes site and contributed to the overall ionic conductivity enhancement.
    Matched MeSH terms: Ammonium Compounds
  16. Tayeb MA, Ismail BS, Khairiatul Mardiana J, Goh CT
    Sains Malaysiana, 2016;45:237-245.
    Glufosinate ammonium or ammonium salt (ammonium-(2RS)-2-amino-4- (methylphosphinato) butyric acid; C5H15N2O4P) is a commonly used polar herbicide in Malaysia and present in a variety of environmental waters at the sub-ppb level. Thus, glufosinate ammonium is analyzed in soil and water using high-performance liquid chromatography (HPLC), which is a complex yet the most powerful analysis tool. HPLC is tremendously sensitive and highly automated and HPLC instrumentation and machinery have improved over the years. However, typical problems are still encountered. HPLC users and advanced learners require help in identifying, separating and correcting typical problems. All HPLC systems consist of similar basic components. Although it is a modular system, trouble can occur in each component and change the overall performance. Resolving these problems may be expensive. This review describes the different aspects of HPLC, particularly troubleshooting, common problems and easy guidelines for maintenance.
    Matched MeSH terms: Ammonium Compounds
  17. Md Saad SK, Ali Umar A, Ali Umar MI, Tomitori M, Abd Rahman MY, Mat Salleh M, et al.
    ACS Omega, 2018 Mar 31;3(3):2579-2587.
    PMID: 31458546 DOI: 10.1021/acsomega.8b00109
    This paper reports the synthesis of two-dimensional, hierarchical, porous, and (001)-faceted metal (Ag, Zn, and Al)-doped TiO2 nanostructures (TNSs) and the study of their photocatalytic activity. Two-dimensional metal-doped TNSs were synthesized using the hydrolysis of ammonium hexafluorotitanate in the presence of hexamethylenetetramine and metal precursors. Typical morphology of metal-doped TNSs is a hierarchical nanosheet that is composed of randomly stacked nanocubes (dimensions of up to 5 μm and 200 nm in edge length and thickness, respectively) and has dominant (001) facets exposed. Raman analysis and X-ray photoelectron spectroscopy results indicated that the Ag doping, compared to Zn and Al, much improves the crystallinity degree and at the same time dramatically lowers the valence state binding energy of the TNS and provides an additional dopant oxidation state into the system for an enhanced electron-transfer process and surface reaction. These are assumed to enhance the photocatalytic of the TNS. In a model of photocatalytic reaction, that is, rhodamine B degradation, the AgTNS demonstrates a high photocatalytic activity by converting approximately 91% of rhodamine B within only 120 min, equivalent to a rate constant of 0.018 m-1 and ToN and ToF of 94 and 1.57 min-1, respectively, or 91.1 mmol mg-1 W-1 degradation when normalized to used light source intensity, which is approximately 2 times higher than the pristine TNS and several order higher when compared to Zn- and Al-doped TNSs. Improvement of the crystallinity degree, decrease in the defect density and the photogenerated electron and hole recombination, and increase of the oxygen vacancy in the AgTNS are found to be the key factors for the enhancement of the photocatalytic properties. This work provides a straightforward strategy for the preparation of high-energy (001) faceted, two-dimensional, hierarchical, and porous Ag-doped TNSs for potential use in photocatalysis and photoelectrochemical application.
    Matched MeSH terms: Ammonium Compounds
  18. Wardell JL, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):579-585.
    PMID: 28435725 DOI: 10.1107/S2056989017004352
    In the anion of the title salt hydrate, H5N2(+)·C7H5N2O4(-)·2H2O, the carboxyl-ate and nitro groups lie out of the plane of the benzene ring to which they are bound [dihedral angles = 18.80 (10) and 8.04 (9)°, respectively], and as these groups are conrotatory, the dihedral angle between them is 26.73 (15)°. An intra-molecular amino-N-H⋯O(carboxyl-ate) hydrogen bond is noted. The main feature of the crystal packing is the formation of a supra-molecular chain along the b axis, with a zigzag topology, sustained by charge-assisted water-O-H⋯O(carboxyl-ate) hydrogen bonds and comprising alternating twelve-membered {⋯OCO⋯HOH}2 and eight-membered {⋯O⋯HOH}2 synthons. Each ammonium-N-H atom forms a charge-assisted hydrogen bond to a water mol-ecule and, in addition, one of these forms a hydrogen bond with a nitro-O atom. The amine-N-H atoms form hydrogen bonds to carboxyl-ate-O and water-O atoms, and the amine N atom accepts a hydrogen bond from an amino-H atom. The hydrogen bonds lead to a three-dimensional architecture. An analysis of the Hirshfeld surface highlights the major contribution of O⋯H/H⋯O hydrogen bonding to the overall surface, i.e. 46.8%, compared with H⋯H contacts (32.4%).
    Matched MeSH terms: Ammonium Compounds
  19. Ali Khan M, Govindasamy R, Ahmad A, Siddiqui MR, Alshareef SA, Hakami AAH, et al.
    Polymers (Basel), 2021 Jan 28;13(3).
    PMID: 33525497 DOI: 10.3390/polym13030419
    Agglomeration and restacking can reduce graphene oxide (GO) activity in a wide range of applications. Herein, GO was synthesized by a modified Hummer's method. To minimize restacking and agglomeration, in situ chemical oxidation polymerization was carried out to embed polyaniline (PANI) chains at the edges of GO sheets, to obtain GO-PANI nanocomposite. The GO-PANI was tested for the adsorptive removal of brilliant green (BG) from an aqueous solution through batch mode studies. Infrared (FT-IR) analysis revealed the dominance of hydroxyl and carboxylic functionalities over the GO-PANI surface. Solution pH-dependent BG uptake was observed, with maximum adsorption at pH 7, and attaining equilibrium in 30 min. The adsorption of BG onto GO-PANI was fit to the Langmuir isotherm, and pseudo-second-order kinetic models, with a maximum monolayer adsorption capacity (qm) of 142.8 mg/g. An endothermic adsorption process was observed. Mechanistically, π-π stacking interaction and electrostatic interaction played a critical role during BG adsorption on GO-PANI.
    Matched MeSH terms: Quaternary Ammonium Compounds
  20. Wan Mohd Zamri WMI, Sjahrir F, Yaacob NS, Dzulkafli NF, Ahmad MF, Abdullah H, et al.
    Molecules, 2021 Apr 23;26(9).
    PMID: 33922872 DOI: 10.3390/molecules26092480
    The assessment of water-extractable organic matter using an autoclave can provide useful information on physical, chemical, and biological changes within the soil. The present study used virgin forest soils from Chini Forest Reserve, Langkawi Island, and Kenyir Forest Reserve (Malaysia), extracted using different extraction methods. The dissolved organic carbon (DOC), total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), and ammonium-nitrate content were higher in the autoclave treatments, up to 3.0, 1.3, 1.2, and 1.4 times more than by natural extraction (extracted for 24 h at room temperature). Overall, the highest extractable DOC, TDN, TDP, ammonium and nitrate could be seen under autoclaved conditions 121 °C 2×, up to 146.74 mg C/L, 8.97 mg N/L, 0.23 mg P/L, 5.43 mg N mg/L and 3.47 N mg/L, respectively. The soil extracts became slightly acidic with a higher temperature and longer duration. Similar trends were observed in the humic and nonhumic substances, where different types of soil extract treatments influenced the concentrations of the fractions. Different soil extraction methods can provide further details, thus widening the application of soil extracts, especially in microbes.
    Matched MeSH terms: Ammonium Compounds
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links