METHODS: This was a 24-month, phase 4, open-label, single-arm, prospective, observational study conducted at 20 specialised retinal centres in Japan. Participants were 209 patients with DME and impaired VA, not previously treated with either intravitreal or systemic anti-vascular endothelial growth factor (anti-VEGF) agents, who initiated ranibizumab 0.5 mg per investigator discretion. Following ranibizumab administration, patients were treated per routine clinical practice. Other treatments were allowed. The main outcome measure was the mean change in best-corrected VA (BCVA) in logarithmic minimum angle of resolution (logMAR) from baseline to month 12. An exploratory objective was to assess patients' psychological status using the Hospital Anxiety and Depression Scale (HADS).
RESULTS: The mean ± standard deviation BCVA at baseline was 0.43 ± 0.39 logMAR. The mean number of injections of ranibizumab and anti-VEGF agents from baseline to month 11 was 3.2 ± 2.0 and 3.6 ± 2.4, respectively. The BCVA change from baseline to 12 months was - 0.08 ± 0.34 logMAR (p = 0.011), showing a significant improvement; the HADS-anxiety score also decreased significantly (p = 0.001) and the depression score decreased numerically (p = 0.080).
CONCLUSION: MERCURY study data confirm the effectiveness of real-world treatment initiated with ranibizumab in Japanese patients with DME. In addition, treatment was able to positively influence anxiety via VA improvement.
METHODS: Cross-sectional study involving a retrospective record review of diabetic macular oedema patients who received an induction treatment of three monthly 0.5 mg intravitreal ranibizumab injections between 2016 and 2019. Central macular thickness was measured at baseline and 3 months post-treatment. Linear regression was applied to identify the factors associated with the changes of central macular thickness.
RESULTS: A total of 153 diabetic macular oedema patients were involved in this study. Their mean age was 57.5 ± 7.7 years, 54.9% were female. The mean change of central macular thickness from baseline to 3 months after completed induction treatment of intravitreal ranibizumab was 155.5 ± 137.8 μm. Factors significantly associated with changes of central macular thickness were baseline central macular thickness [b = 0.73; 95% (CI): 0.63, 0.84; p = <0.001] and presence of subretinal fluid [b = 35.43; 95% CI: 3.70, 67.16; p = 0.029].
CONCLUSION: Thicker baseline central macular thickness and presence of subretinal fluid were the factors significantly associated with greater changes of central macular thickness in diabetic macular oedema patients after receiving three injections of intravitreal ranibizumab.
METHODS: Different parts of the plants were subjected to sequential extraction method. Cytotoxicity of the extracts was determined by dimethylthiazol-2-yl)- 2,5diphenyl tetrazolium bromide (MTT) assay on 2 human cancer (colon and breast) and normal (endothelial and colon fibroblast) cells. Anti-angiogenic potential was tested using ex vivo rat aortic ring assay. DPPH (1,1-diphenyl-2-picrylhydrazyl) assay was conducted to screen the antioxidant capabilities of the extracts. Finally, total phenolic and flavonoid contents were estimated in the extracts using colorimetric assays.
RESULTS: The results indicated that out of 6 plants tested, 4 plants (Nicotiana glauca, Tephrosia apollinea, Combretum hartmannianum and Tamarix nilotica) exhibited remarkable anti-angiogenic activity by inhibiting the sprouting of microvessels more than 60%. However, the most potent antiangiogenic effect was recorded by ethanol extract of T. apollinea (94.62%). In addition, the plants exhibited significant antiproliferative effects against human breast (MCF-7) and colon (HCT 116) cancer cells while being non-cytotoxic to the tested normal cells. The IC50 values determined for C. hartmannianum, N. gluaca and T. apollinea against MCF-7 cells were 8.48, 10.78 and 29.36 μg/ml, respectively. Whereas, the IC50 values estimated for N. gluaca, T. apollinea and C. hartmannianum against HCT 116 cells were 5.4, 20.2 and 27.2 μg/ml, respectively. These results were more or less equal to the standard reference drugs, tamoxifen (IC50 = 6.67 μg/ml) and 5-fluorouracil (IC50 = 3.9 μg/ml) tested against MCF-7 and HCT 116, respectively. Extracts of C. hartmannianum bark and N. glauca leaves demonstrated potent antioxidant effect with IC50s range from 9.4-22.4 and 13.4-30 μg/ml, respectively. Extracts of N. glauca leaves and T apollinea aerial parts demonstrated high amount of flavonoids range from 57.6-88.1 and 10.7-78 mg quercetin equivalent/g, respectively.
CONCLUSIONS: These results are in good agreement with the ethnobotanical uses of the plants (N. glauca, T. apollinea, C. hartmannianum and T. nilotica) to cure the oxidative stress and paraneoplastic symptoms caused by the cancer. These findings endorse further investigations on these plants to determine the active principles and their mode of action.
METHODS: Pharmacokinetics of KKA was studied after intravenous and oral administration in SD rats using HPLC. Anti-angiogenic efficacy of KKA was investigated in rat aorta, human endothelial cells (EA.hy926) and nude mice implanted with matrigel.
RESULTS: Pharmacokinetic study revealed that KKA was readily absorbed into blood and stayed for a long time in the body with Tmax 2.89 ± 0.12 h, Cmax 7.24 ± 0.36 μg/mL and T1/2 1.46 ± 0.03 h. The pharmacological results showed that KKA significantly suppressed sprouting of microvessels in rat aorta with IC50 18.4 ± 4.2 μM and demonstrated remarkable inhibition of major endothelial functions such as migration, differentiation and VEGF expression in endothelial cells. Further, KKA significantly inhibited vascularization in matrigel plugs implanted in nude mice.
CONCLUSIONS: The results indicate that bioabsorption of KKA from oral route was considerably efficient with longer retention in body than compared to that of the intravenous route. Further, improved antiangiogenic activity of KKA was recorded which could probably be due to its increased solubility and bioavailability. The results revealed that KKA inhibits angiogenesis by suppressing endothelial functions and expression of VEGF.
METHODS: The cross-sectional study included 322 children between 3 and 11 years of age born term or preterm, with or without ROP, and with or without treatment for ROP. The ROP treatments were laser therapy, intravitreal injection (IVI) of anti-vascular endothelial growth factor, or their combination. Stereoacuity was measured using the Titmus Stereo Test, and the results among various age groups were analyzed.
RESULTS: Stereopsis was found to improve with increasing age at testing (P 0.05). No significant differences in stereopsis were identified between children with ROP treated with laser versus with IVI (P > 0.05). From multivariate analysis, younger age at testing (P = 0.001) and younger gestational age (P
METHODS: This 5-year, prospective, multicenter, observational, study enrolled 30,138 patients across all approved ranibizumab indications from outpatient ophthalmology clinics. 297 consenting patients (≥18 years) with mCNV who were treatment-naïve or prior-treated with ranibizumab or other ocular treatments were enrolled, and treated with ranibizumab according to the local product label. The main outcomes are visual acuity (VA; Early Treatment Diabetic Retinopathy Study letters or equivalent), adverse events during the study, and treatment exposure over 1 year. Results are presented by prior treatment status of the study eye and injection frequency.
RESULTS: Of the 297 mCNV patients recruited in the study, 108 were treatment-naïve and 175 were prior ranibizumab-treated. At baseline, the mean age of patients was 57.6 years, and 59.0 years and 80.6% and 65.7% were female in the treatment-naïve and prior ranibizumab-treated groups, respectively. Most were Caucasian (treatment-naïve, 88.9%; prior ranibizumab-treated, 86.9%). The mean (±standard deviation [SD]) VA letter changes to 1 year were +9.7 (±17.99) from 49.5 (±20.51) and +1.5 (±13.15) from 58.5 (±19.79) and these were achieved with a mean (SD) of 3.0 (±1.58) and 2.6 (±2.33) injections in the treatment-naïve and prior ranibizumab-treated groups, respectively. Presented by injection frequencies 1-2, 3-4 and ≥5 injections in Year 1, the mean (SD) VA changes were +15.0 (±14.70), +7.7 (±19.91) and -0.7 (±16.05) in treatment-naïve patients and +1.5 (±14.57), +3.1 (±11.53) and -3.6 (±11.97) in prior ranibizumab-treated patients, respectively. The safety profile was comparable with previous ranibizumab studies.
CONCLUSIONS: Ranibizumab treatment for mCNV showed robust VA gains in treatment-naïve patients and VA maintenance in prior ranibizumab-treated patients in a clinical practice setting, consisting mainly of Caucasians. No new safety signals were observed during the study.
METHODS: PARACHUTE is a phase IV, prospective, non-interventional, observational study. Primary endpoint was the proportion of patients remaining progression free at 12 months. Secondary endpoints were ORR, PFS, safety and tolerability, and relative dose intensity (RDI).
RESULTS: Overall, 190 patients with a median age of 61 years (range: 22.0-96.0) were included. Most patients were Asian (70%), clear-cell type RCC was the most common (81%), with a favourable (9%), intermediate (47%), poor (10%), and unknown (34%) MSKCC risk score. At the end of the observational period, 78 patients completed the observational period and 112 discontinued the study; 60% of patients had the starting dose at 800 mg. Median RDI was 82%, with 52% of patients receiving 10%) TEAEs related to pazopanib included diarrhoea (30%), palmar-plantar erythrodysesthesia syndrome (15%), and hypertension (14%).
CONCLUSIONS: Results of the PARACHUTE study support the use of pazopanib in patients with advanced or mRCC who are naive to VEGF-TKI therapy. The safety profile is consistent with that previously reported by pivotal and real-world evidence studies.
RESULTS: Both single nucleotide polymorphisms (SNPs) recorded a significant association between nAMD and controls with HTRA1 rs11200638 at P = 0.018 (OR = 1.52, 95% CI = 1.07-215) and ARMS2 rs10490924 at P