Displaying publications 21 - 40 of 228 in total

Abstract:
Sort:
  1. Chai TT, Koh JA, Wong CC, Sabri MZ, Wong FC
    Molecules, 2021 Dec 06;26(23).
    PMID: 34885982 DOI: 10.3390/molecules26237396
    Some seed-derived antioxidant peptides are known to regulate cellular modulators of ROS production, including those proposed to be promising targets of anticancer therapy. Nevertheless, research in this direction is relatively slow owing to the inevitable time-consuming nature of wet-lab experimentations. To help expedite such explorations, we performed structure-based virtual screening on seed-derived antioxidant peptides in the literature for anticancer potential. The ability of the peptides to interact with myeloperoxidase, xanthine oxidase, Keap1, and p47phox was examined. We generated a virtual library of 677 peptides based on a database and literature search. Screening for anticancer potential, non-toxicity, non-allergenicity, non-hemolyticity narrowed down the collection to five candidates. Molecular docking found LYSPH as the most promising in targeting myeloperoxidase, xanthine oxidase, and Keap1, whereas PSYLNTPLL was the best candidate to bind stably to key residues in p47phox. Stability of the four peptide-target complexes was supported by molecular dynamics simulation. LYSPH and PSYLNTPLL were predicted to have cell- and blood-brain barrier penetrating potential, although intolerant to gastrointestinal digestion. Computational alanine scanning found tyrosine residues in both peptides as crucial to stable binding to the targets. Overall, LYSPH and PSYLNTPLL are two potential anticancer peptides that deserve deeper exploration in future.
    Matched MeSH terms: Antioxidants/metabolism*
  2. Wee CL, Mokhtar SS, Banga Singh KK, Rasool AHG
    Microvasc Res, 2021 Nov;138:104227.
    PMID: 34324883 DOI: 10.1016/j.mvr.2021.104227
    This study examined the effects of vitamin D deficiency on vascular function and tissue oxidative status in the microcirculation; and whether or not these effects can be ameliorated with calcitriol, the active vitamin D metabolite. Three groups (n = 10 each) of male Sprague Dawley rats were fed for 10 weeks with control diet (CR), vitamin D-deficient diet without (DR), or with oral calcitriol supplementation (0.15 μg/kg) for the last four weeks (DSR). After 10 weeks, rats were sacrificed; mesenteric arterial rings were studied using wire myograph. Oxidative stress biomarkers malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured in the mesenteric arterial tissue. Vascular protein expression of endothelial nitric oxide synthase (eNOS) was determined by Western blotting. Acetylcholine-induced endothelium-dependent relaxation of DR was lower than CR. eNOS expression and SOD activity were lower in mesenteric arterial tissue of DR compared to CR. Calcitriol supplementation to DSR did not ameliorate the above parameters; in fact, augmented endothelium-dependent contraction was observed. Serum calcium was higher in DSR compared to CR and DR. In conclusion, vitamin D deficiency impaired microvascular vasodilation, associated with eNOS downregulation and reduced antioxidant activity. Calcitriol supplementation to vitamin D-deficient rats at the dosage used augmented endothelium-dependent contraction, possibly due to hypercalcaemia.
    Matched MeSH terms: Antioxidants/metabolism*
  3. Ait Abderrahim L, Taibi K, Boussaid M, Al-Shara B, Ait Abderrahim N, Ait Abderrahim S
    Toxicon, 2021 Sep;200:30-37.
    PMID: 34217748 DOI: 10.1016/j.toxicon.2021.06.018
    Microcystins (MCs) are hepatotoxic cyanotoxins implicated in several incidents of human and animal toxicity. Microcystin-(Lysine, Arginine) or MC-LR is the most toxic and encountered variant of MCs where oxidative stress plays a key role in its toxicity. This study investigated the oxidative damages induced in the liver and heart of Balb/C mice by an intraperitoneal injected acute dose of MC-LR. Thereafter, the potential protective effect of garlic (Allium sativum) extract supplementation against such damages was assessed through the evaluation of oxidative stress and cytotoxicity markers. Lipid peroxidation (LPO), carbonyl content (CC), glutathione content (GSH), alkaline phosphatase activity (ALP), lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH) activities were measured. Results showed important oxidative damages in hepatic and cardiac cells of mice injected with the toxin. However, these damages have been significantly reduced in mice supplemented with garlic extract. Thus, this study demonstrated for the first time the effective use of garlic as an antioxidant agent against oxidative damages induced by MC-LR. As well, this study supports the use of garlic as a potential remedy against pathologies related to toxic agents.
    Matched MeSH terms: Antioxidants/metabolism
  4. Ishak NIM, Mohamed S, Madzuki IN, Mustapha NM, Esa NM
    Naunyn Schmiedebergs Arch Pharmacol, 2021 09;394(9):1907-1915.
    PMID: 34009457 DOI: 10.1007/s00210-021-02101-6
    Inflammation and compromised immune responses often increase colorectal cancer (CRC) risk. The immune-modulating effects of limonin on carcinogen/inflammation-induced colorectal cancer (CRC) were studied in mice. Male Balb/c mice were randomly assorted into three groups (n = 6): healthy control, non-treated CRC-induced (azoxymethane/dextran-sulfate-sodium AOM/DSS) control, and CRC-induced + 50 mg limonin/kg body weight. The CRC developments were monitored via macroscopic, histopathological, ELISA, and mRNA expression analyses. Limonin downregulated inflammation (TNF-α, tumor necrosis factor-α), enhanced the adaptive immune responses (CD8, CD4, and CD19), and upregulated antioxidant defense (Nrf2, SOD2) mRNA expressions. Limonin reduced serum malondialdehyde (MDA, lipid peroxidation biomarker), prostaglandin E2, and histopathology inflammation scores, while increasing reduced glutathione (GSH) in CRC-induced mice. Limonin significantly (p 
    Matched MeSH terms: Antioxidants/metabolism
  5. Nandini C, Madhunapantula SV, Bovilla VR, Ali M, Mruthunjaya K, Santhepete MN, et al.
    J Ethnopharmacol, 2021 Jul 15;275:114074.
    PMID: 33831466 DOI: 10.1016/j.jep.2021.114074
    ETHNOPHARMACOLOGICAL RELEVANCE: Carica papaya leaf juice/decoction has been in use in folk medicine in Srilanka, Malaysia and in few parts of India for enhancing the platelet counts in dengue. In Siddha medicine, a traditional form of medicine in India, papaya leaf juice has been used for increasing the platelet counts. Papaya leaf has been reported to enhance blood volume in ancient Ayurveda books in India. Carica papaya leaf is well known for its platelet enhancement activity. Although many preclinical and clinical studies have demonstrated the ability of papaya leaf juice for platelet enhancement, but the underlying mechanisms are still unclear.

    AIM OF THE STUDY: The study is aimed at identifying the key ingredients of papaya leaf extract and elucidate the mechanism (s) of action of the identified potent component in mitigating thrombocytopenia (Thp).

    MATERIALS AND METHODS: C. papaya leaf juice was subjected for sequential fractionation to identify the anti-thrombocytopenic phytochemicals. In vivo, stable thrombocytopenia was induced by subcutaneous injection of 70 mg/kg cyclophosphamide (Cyp). After induction, rats were treated with 200 and 400 mg/kg body weight papaya leaf juice and with identified fractions for 14 days. Serum thrombopoietin level was estimated using ELISA. CD110/cMpl, a receptor for thrombopoietin on platelets was measured by western blotting.

    RESULTS: Administration of cyclophosphamide for 6 days induced thrombocytopenia (210.4 ± 14.2 × 103 cells/μL) in rats. Treating thrombocytopenic rats with papaya leaf juice and butanol fraction for 14 days significantly increased the platelet count to 1073.50 ± 29.6 and 1189.80 ± 36.5 × 103 cells/μL, respectively. C.papaya extracts normalized the elevated bleeding and clotting time and decreased oxidative markers by increasing endogenous antioxidants. A marginal increase in the serum thrombopoietin (TPO) level was observed in Cyp treated group compared to normal and treatment groups. Low expression of CD110/cMpl receptor found in Cyp treated group was enhanced by C. papaya extracts (CPJ) and CPJ-BT. Furthermore, examination of the morphology of bone marrow megakaryocytes, histopathology of liver and kidneys revealed the ability of CPJ and fractions in mitigating Cyp-induced thrombocytopenia in rats.

    CONCLUSION: C. papaya leaf juice enhances the platelet count in chemotherapy-induced thrombocytopenia by increasing the expression of CD110 receptor on the megakaryocytes. Hence, activating CD110 receptor might be a viable strategy to increase the platelet production in individuals suffering from thrombocytopenia.

    Matched MeSH terms: Antioxidants/metabolism
  6. Kok AD, Wan Abdullah WMAN, Tang CN, Low LY, Yuswan MH, Ong-Abdullah J, et al.
    Sci Rep, 2021 06 24;11(1):13226.
    PMID: 34168171 DOI: 10.1038/s41598-021-92401-x
    Lignosulfonate (LS) is a by-product obtained during sulfite pulping process and is commonly used as a growth enhancer in plant growth. However, the underlying growth promoting mechanism of LS on shoot growth remains largely unknown. Hence, this study was undertaken to determine the potential application of eco-friendly ion-chelated LS complex [sodium LS (NaLS) and calcium LS (CaLS)] to enhance recalcitrant indica rice MR 219 shoot growth and to elucidate its underlying growth promoting mechanisms. In this study, the shoot apex of MR 219 rice was grown on Murashige and Skoog medium supplemented with different ion chelated LS complex (NaLS and CaLS) at 100, 200, 300 and 400 mg/L The NaLS was shown to be a better shoot growth enhancer as compared to CaLS, with optimum concentration of 300 mg/L. Subsequent comparative proteomic analysis revealed an increase of photosynthesis-related proteins [photosystem II (PSII) CP43 reaction center protein, photosystem I (PSI) iron-sulfur center, PSII CP47 reaction center protein, PSII protein D1], ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), carbohydrate metabolism-related proteins (glyceraldehyde-3-phosphate dehydrogenase 3, fructose-bisphosphate aldolase) and stress regulator proteins (peptide methionine sulfoxide reductase A4, delta-1-pyrroline-5-carboxylate synthase 1) abundance in NaLS-treated rice as compared to the control (MSO). Consistent with proteins detected, a significant increase in biochemical analyses involved in photosynthetic activities, carbohydrate metabolism and protein biosynthesis such as total chlorophyll, rubisco activity, total sugar and total protein contents were observed in NaLS-treated rice. This implies that NaLS plays a role in empowering photosynthesis activities that led to plant growth enhancement. In addition, the increased in abundance of stress regulator proteins were consistent with low levels of peroxidase activity, malondialdehyde content and phenylalanine ammonia lyase activity observed in NaLS-treated rice. These results suggest that NaLS plays a role in modulating cellular homeostasis to provide a conducive cellular environment for plant growth. Taken together, NaLS improved shoot growth of recalcitrant MR 219 rice by upregulation of photosynthetic activities and reduction of ROS accumulation leading to better plant growth.
    Matched MeSH terms: Antioxidants/metabolism
  7. Kaha M, Iwamoto K, Yahya NA, Suhaimi N, Sugiura N, Hara H, et al.
    Sci Rep, 2021 06 03;11(1):11708.
    PMID: 34083633 DOI: 10.1038/s41598-021-91128-z
    Microalgae are important microorganisms which produce potentially valuable compounds. Astaxanthin, a group of xanthophyll carotenoids, is one of the most powerful antioxidants mainly found in microalgae, yeasts, and crustaceans. Environmental stresses such as intense light, drought, high salinity, nutrient depletion, and high temperature can induce the accumulation of astaxanthin. Thus, this research aims to investigate the effect of black light, also known as long-wave ultraviolet radiation or UV-A, as a stressor on the accumulation of astaxanthin as well as to screen the antioxidant property in two tropical green algal strains isolated from Malaysia, Coelastrum sp. and Monoraphidium sp. SP03. Monoraphidium sp. SP03 showed a higher growth rate (0.66 day-1) compared to that of Coelastrum sp. (0.22 day-1). Coelastrum sp. showed significantly higher accumulation of astaxanthin in black light (0.999 g mL culture-1) compared to that in control condition (0.185 g mL-1). Similarly, Monoraphidium sp. SP03 showed higher astaxanthin content in black light (0.476 g mL culture-1) compared to that in control condition (0.363 g mL culture-1). Coelastrum sp. showed higher scavenging activity (30.19%) when cultured in black light condition, indicating a correlation between the antioxidant activity and accumulation of astaxanthin. In this study, black light was shown to possess great potential to enhance the production of astaxanthin in microalgae.
    Matched MeSH terms: Antioxidants/metabolism
  8. Kusale SP, Attar YC, Sayyed RZ, Malek RA, Ilyas N, Suriani NL, et al.
    Molecules, 2021 Mar 26;26(7).
    PMID: 33810565 DOI: 10.3390/molecules26071894
    Bacteria that surround plant roots and exert beneficial effects on plant growth are known as plant growth-promoting rhizobacteria (PGPR). In addition to the plant growth-promotion, PGPR also imparts resistance against salinity and oxidative stress and needs to be studied. Such PGPR can function as dynamic bioinoculants under salinity conditions. The present study reports the isolation of phytase positive multifarious Klebsiella variicola SURYA6 isolated from wheat rhizosphere in Kolhapur, India. The isolate produced various plant growth-promoting (PGP), salinity ameliorating, and antioxidant traits. It produced organic acid, yielded a higher phosphorous solubilization index (9.3), maximum phytase activity (376.67 ± 2.77 U/mL), and copious amounts of siderophore (79.0%). The isolate also produced salt ameliorating traits such as indole acetic acid (78.45 ± 1.9 µg/mL), 1 aminocyclopropane-1-carboxylate deaminase (0.991 M/mg/h), and exopolysaccharides (32.2 ± 1.2 g/L). In addition to these, the isolate also produced higher activities of antioxidant enzymes like superoxide dismutase (13.86 IU/mg protein), catalase (0.053 IU/mg protein), and glutathione oxidase (22.12 µg/mg protein) at various salt levels. The isolate exhibited optimum growth and maximum secretion of these metabolites during the log-phase growth. It exhibited sensitivity to a wide range of antibiotics and did not produce hemolysis on blood agar, indicative of its non-pathogenic nature. The potential of K. variicola to produce copious amounts of various PGP, salt ameliorating, and antioxidant metabolites make it a potential bioinoculant for salinity stress management.
    Matched MeSH terms: Antioxidants/metabolism*
  9. Akhtar N, Ilyas N, Yasmin H, Sayyed RZ, Hasnain Z, A Elsayed E, et al.
    Molecules, 2021 Mar 12;26(6).
    PMID: 33809305 DOI: 10.3390/molecules26061569
    Plant growth-promoting rhizobacteria (PGPR) mediate heavy metal tolerance and improve phytoextraction potential in plants. The present research was conducted to find the potential of bacterial strains in improving the growth and phytoextraction abilities of Brassica nigra (L.) K. Koch. in chromium contaminated soil. In this study, a total of 15 bacterial strains were isolated from heavy metal polluted soil and were screened for their heavy metal tolerance and plant growth promotion potential. The most efficient strain was identified by 16S rRNA gene sequencing and was identified as Bacillus cereus. The isolate also showed the potential to solubilize phosphate and synthesize siderophore, phytohormones (indole acetic acid, cytokinin, and abscisic acid), and osmolyte (proline and sugar) in chromium (Cr+3) supplemented medium. The results of the present study showed that chromium stress has negative effects on seed germination and plant growth in B. nigra while inoculation of B. cereus improved plant growth and reduced chromium toxicity. The increase in seed germination percentage, shoot length, and root length was 28.07%, 35.86%, 19.11% while the fresh and dry biomass of the plant increased by 48.00% and 62.16%, respectively, as compared to the uninoculated/control plants. The photosynthetic pigments were also improved by bacterial inoculation as compared to untreated stress-exposed plants, i.e., increase in chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoid was d 25.94%, 10.65%, 20.35%, and 44.30%, respectively. Bacterial inoculation also resulted in osmotic adjustment (proline 8.76% and sugar 28.71%) and maintained the membrane stability (51.39%) which was also indicated by reduced malondialdehyde content (59.53% decrease). The antioxidant enzyme activities were also improved to 35.90% (superoxide dismutase), 59.61% (peroxide), and 33.33% (catalase) in inoculated stress-exposed plants as compared to the control plants. B. cereus inoculation also improved the uptake, bioaccumulation, and translocation of Cr in the plant. Data showed that B. cereus also increased Cr content in the root (2.71-fold) and shoot (4.01-fold), its bioaccumulation (2.71-fold in root and 4.03-fold in the shoot) and translocation (40%) was also high in B. nigra. The data revealed that B. cereus is a multifarious PGPR that efficiently tolerates heavy metal ions (Cr+3) and it can be used to enhance the growth and phytoextraction potential of B. nigra in heavy metal contaminated soil.
    Matched MeSH terms: Antioxidants/metabolism
  10. Ali LG, Nulit R, Ibrahim MH, Yien CYS
    Sci Rep, 2021 Feb 16;11(1):3864.
    PMID: 33594103 DOI: 10.1038/s41598-021-83434-3
    Rice is an important staple crop produced and consumed worldwide. However, poor seed emergence is one of the main impediments to obtaining higher yield of rice especially in hot and dry ecosystems of the world that are ravaged by drought. Therefore, this study was carried out to evaluate the effects of potassium nitrate (KNO3), salicylic acid (SA) and silicon dioxide (SiO2) priming in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44 rice under drought conditions. Rice seedlings primed with 2.5% and 5% KNO3, 3% and 3.5% SiO2, and 1 mM and 2.5 mM SA were subjected to three drought levels of low, moderate and severe under the greenhouse. Seed emergence, seedling growth, biochemical attributes and antioxidant activities were thereafter evaluated. Seed priming experiments were laid in a completely randomized design with five replicates per treatment. The results found that rice seedlings responded differently to different priming treatments. However, all primed rice seedlings had significantly (P ≤ 0.05) improved emergence percentage (72-92%), seedling growth, seedling vigor, seedling fresh and dry biomass and shorter emergence time compared with controls. Likewise, total soluble protein content, activities of catalase, ascorbate peroxidase and superoxide dismutase, carbohydrate, soluble sugar and total chlorophyll contents of rice seedlings were increased by more than two-folds by seed priming compared with control. Salicylic acid showed less effect in increasing emergence, seedling growth, antioxidant activities and biochemical attributes of rice. Thus, this study established that seed priming with KNO3 (2.5% and 5%) and SiO2 (3% and 3.5%) were more effective in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44. Thus, priming of FARO44 rice with this chemical is recommended for fast emergence, seedling growth and drought resistance in dry ecosystems.
    Matched MeSH terms: Antioxidants/metabolism
  11. Guru A, Lite C, Freddy AJ, Issac PK, Pasupuleti M, Saraswathi NT, et al.
    Dev Comp Immunol, 2021 Jan;114:103863.
    PMID: 32918928 DOI: 10.1016/j.dci.2020.103863
    Antioxidant peptides are naturally present in food, especially in fishes, and are considered to contain rich source of various bioactive compounds that are structurally heterogeneous. This study aims to identify and characterize the antioxidant property of the WL15 peptide, derived from Cysteine and glycine-rich protein 2 (CSRP2) identified from the transcriptome of a freshwater food fish, Channa striatus. C. striatus is already studied to contain high levels of amino acids and fatty acids, besides traditionally known for its pharmacological benefits in the Southeast Asian region. In our study, in vitro analysis of WL15 peptide exhibited strong free radical scavenging activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), superoxide anion radical and hydrogen peroxide (H2O2) scavenging assay. Further, to evaluate the cytotoxicity and dose-response, the Human dermal fibroblast (HDF) cells were used. Results showed that the treatment of HDF cells with varying concentrations (10, 20, 30, 40 and 50 μM) of WL15 peptide was not cytotoxic. However, the treatment concentrations showed enhanced antioxidant properties by significantly inhibiting the levels of free radicals. For in vivo assessment, we have used zebrafish larvae for evaluating the developmental toxicity and for determining the antioxidant property of the WL15 peptide. Zebrafish embryos were treated with the WL15 peptide from 4 h of post-fertilization (hpf) to 96 hpf covering the embryo-larval developmental period. At the end of the exposure period, the larvae were exposed to H2O2 (1 mM) for inducing generic oxidative stress. The exposure of WL15 peptide during the embryo-larval period showed no developmental toxicity even in higher concentrations of the peptide. Besides, the WL15 peptide considerably decreased the intracellular reactive oxygen species (ROS) levels induced by H2O2 exposure. WL15 peptide also inhibited the H2O2-induced caspase 3-dependent apoptotic response in zebrafish larvae was observed using the whole-mount immunofluorescence staining. Overall results from our study showed that the pre-treatment of WL15 (50 μM) in the H2O2-exposed zebrafish larvae, attenuated the expression of activated caspase 3 expressions, reduced Malondialdehyde (MDA) levels, and enhanced antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT). The gene expression of antioxidant enzymes such as glutathione S-transferase (GST), glutathione peroxide (GPx) and γ-glutamyl cysteine synthetase (GCS) was found to be upregulated. In conclusion, it can be conceived that pre-treatment with WL15 could mitigate H2O2-induced oxidative injury by elevating the activity and expression of antioxidant enzymes, thereby decreasing MDA levels and cellular apoptosis by enhancing the antioxidant response, demonstrated by the in vitro and in vivo experiments.
    Matched MeSH terms: Antioxidants/metabolism
  12. Atia A, Alrawaiq NS, Abdullah A
    Curr Pharm Biotechnol, 2021;22(8):1085-1098.
    PMID: 32988349 DOI: 10.2174/1389201021666200928095950
    BACKGROUND: The most common preparation of tocotrienols is the Tocotrienol-Rich Fraction (TRF). This study aimed to investigate whether TRF induced liver Nrf2 nuclear translocation and influenced the expression of Nrf2-regulated genes.

    METHODS: In the Nrf2 induction study, mice were divided into control, 2000 mg/kg TRF and diethyl maleate treated groups. After acute treatment, mice were sacrificed at specific time points. Liver nuclear extracts were prepared and Nrf2 nuclear translocation was detected through Western blotting. To determine the effect of increasing doses of TRF on the extent of liver nuclear Nrf2 translocation and its implication on the expression levels of several Nrf2-regulated genes, mice were divided into 5 groups (control, 200, 500 and 1000 mg/kg TRF, and butylated hydroxyanisole-treated groups). After 14 days, mice were sacrificed and liver RNA was extracted for qPCR assay.

    RESULTS: 2000 mg/kg TRF administration initiated Nrf2 nuclear translocation within 30 min, reached a maximum level of around 1 h and dropped to half-maximal levels by 24 h. Incremental doses of TRF resulted in dose-dependent increases in liver Nrf2 nuclear levels, along with concomitant dosedependent increases in the expressions of Nrf2-regulated genes.

    CONCLUSION: TRF activated the liver Nrf2 pathway resulting in increased expression of Nrf2-regulated cytoprotective genes.

    Matched MeSH terms: Antioxidants/metabolism*
  13. Sattar A, Wang X, Abbas T, Sher A, Ijaz M, Ul-Allah S, et al.
    PLoS One, 2021;16(10):e0256984.
    PMID: 34618822 DOI: 10.1371/journal.pone.0256984
    Wheat is an important global staple food crop; however, its productivity is severely hampered by changing climate. Erratic rain patterns cause terminal drought stress, which affect reproductive development and crop yield. This study investigates the potential and zinc (Zn) and silicon (Si) to ameliorate terminal drought stress in wheat and associated mechanisms. Two different drought stress levels, i.e., control [80% water holding capacity (WHC) was maintained] and terminal drought stress (40% WHC maintained from BBCH growth stage 49 to 83) combined with five foliar-applied Zn-Si combinations (i.e., control, water spray, 4 mM Zn, 40 mM Si, 4 mM Zn + 40 mM Si applied 7 days after the initiation of drought stress). Results revealed that application of Zn and Si improved chlorophyll and relative water contents under well-watered conditions and terminal drought stress. Foliar application of Si and Zn had significant effect on antioxidant defense mechanism, proline and soluble protein, which showed that application of Si and Zn ameliorated the effects of terminal drought stress mainly by regulating antioxidant defense mechanism, and production of proline and soluble proteins. Combined application of Zn and Si resulted in the highest improvement in growth and antioxidant defense. The application of Zn and Si improved yield and related traits, both under well-watered conditions and terminal drought stress. The highest yield and related traits were recorded for combined application of Zn and Si. For grain and biological yield differences among sole and combined Zn-Si application were statistically non-significant (p>0.05). In conclusion, combined application of Zn-Si ameliorated the adverse effects of terminal drought stress by improving yield through regulating antioxidant mechanism and production of proline and soluble proteins. Results provide valuable insights for further cross talk between Zn-Si regulatory pathways to enhance grain biofortification.
    Matched MeSH terms: Antioxidants/metabolism
  14. Ma Z, Zhang F, Ma H, Chen X, Yang J, Yang Y, et al.
    PLoS One, 2021;16(4):e0248329.
    PMID: 33857162 DOI: 10.1371/journal.pone.0248329
    The elderly usually suffer from many diseases. Improving the quality of life of the elderly is an urgent social issue. In this present study, D-galactose treated aging mice models were used to reveal the effects of different animal sources and different doses of whey protein (WP) on the immune indexes organs and intestinal flora. A total of 9 groups were set up, including normal control (NC), negative control (NS), positive control (Vc), low-, medium- and high-doses of cow WP intervention groups (CL, CM and CH for short, correspondingly) and low-, medium- and high-doses of goat WP intervention groups (GL, GM and GH for short, correspondingly). The body weight gain, thymus/body weight ratio, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, spleen immunoglobulins G (IgG), spleen interleukin-2 (IL-2) and spleen interleukin-2 (IL-6) were measured. Then, the intestinal contents were collected, and 16s genes of intestinal bacteria were sequenced to reveal the changes in bacterial flora structure. WP intervention significantly increased the weight gain, thymus/body ratio and SOD activity, but decrease the content of MDA. WP intervention increased some immune indicators. All the WP treated aging mice showed similar values of physiological indexes to that of the Vc group, even better. The relative abundance of Lactobacillus and Stenotrophomonas was increased and decreased, respectively, by both cow and goat WP. Lactobacillus may be involved in regulating the functional repair of organisms. In contrast, Stenotrophomonas might play a negative role in the immune and antioxidant capacity of the body. Combining physiological indicators and intestinal flora structure, low-concentration WP for cow and goat might be optimal for aging models.
    Matched MeSH terms: Antioxidants/metabolism
  15. Abdullah A, Mohd Murshid N, Makpol S
    Mol Neurobiol, 2020 Dec;57(12):5193-5207.
    PMID: 32865663 DOI: 10.1007/s12035-020-02083-1
    In the human body, cell division and metabolism are expected to transpire uneventfully for approximately 25 years. Then, secondary metabolism and cell damage products accumulate, and ageing phenotypes are acquired, causing the progression of disease. Among these age-related diseases, neurodegenerative diseases have attracted considerable attention because of their irreversibility, the absence of effective treatment and their relationship with social and economic pressures. Mechanistic (formerly mammalian) target of rapamycin (mTOR), sirtuin (SIRT) and insulin/insulin growth factor 1 (IGF1) signalling pathways are among the most important pathways in ageing-associated conditions, such as neurodegeneration. These longevity-related pathways are associated with a diversity of various processes, including metabolism, cognition, stress reaction and brain plasticity. In this review, we discuss the roles of sirtuin and mTOR in ageing and neurodegeneration, with an emphasis on their regulation of autophagy, apoptosis and mitochondrial energy metabolism. The intervention of neurodegeneration using potential antioxidants, including vitamins, phytochemicals, resveratrol, herbals, curcumin, coenzyme Q10 and minerals, specifically aimed at retaining mitochondrial function in the treatment of Alzheimer's disease, Parkinson's disease and Huntington's disease is highlighted.
    Matched MeSH terms: Antioxidants/metabolism*
  16. Sannasimuthu A, Ramani M, Pasupuleti M, Saraswathi NT, Arasu MV, Al-Dhabi NA, et al.
    Cell Biol Int, 2020 Nov;44(11):2231-2242.
    PMID: 32716104 DOI: 10.1002/cbin.11431
    This study demonstrates both the antioxidant and anticancer potential of the novel short molecule YT12 derived from peroxiredoxin (Prx) of spirulina, Arthrospira platensis (Ap). ApPrx showed significant reduction in reactive oxygen species (ROS) against hydrogen peroxide (H2 O2 ) stress. The complementary DNA sequence of ApPrx contained 706 nucleotides and its coding region possessed 546 nucleotides between position 115 and 660. Real-time quantitative reverse transcription polymerase chain reaction analysis confirmed the messenger RNA expression of ApPrx due to H2 O2 exposure in spirulina cells at regular intervals, in which the highest expression was noticed on Day 20. Cytotoxicity assay was performed using human peripheral blood mononuclear cells, and revealed that at 10 μM, the YT12 did not exhibit any notable toxicity. Furthermore, ROS scavenging activity of YT12 was performed using DCF-DA assay, in which YT12 scavenged a significant amount of ROS at 25 μM in H2 O2 -treated blood leukocytes. The intracellular ROS in human colon adenocarcinoma cells (HT-29) was regulated by oxidative stress, where the YT12 scavenges ROS in HT-29 cells at 12.5 μM. Findings show that YT12 peptide has anticancer activity, when treated against HT-29 cells. Through the MTT assay, YT12 showed vital cytotoxicity against HT-29 cells. These finding suggested that YT12 is a potent antioxidant molecule which defends ROS against oxidative stress and plays a role in redox balance.
    Matched MeSH terms: Antioxidants/metabolism
  17. Tan TK, Lim YAL, Chua KH, Chai HC, Low VL, Bathmanaban P, et al.
    Parasitol Res, 2020 Sep;119(9):2851-2862.
    PMID: 32651637 DOI: 10.1007/s00436-020-06790-5
    The field strain of Haemonchus contortus has a long history of anthelmintic resistance. To understand this phenomenon, the benzimidazole resistance profile was characterized from the Malaysian field-resistant strain by integrating phenotypic, genotypic and proteomic approaches. The faecal egg count reduction test (FECRT) demonstrated that benzimidazole resistance was at a critical level in the studied strain. The primary resistance mechanism was attributed to F200Y mutation in the isotype 1 β-tubulin gene as revealed by AS-PCR and direct sequencing. Furthermore, the protein response of the resistant strain towards benzimidazole (i.e., albendazole) treatment was investigated via two-dimensional difference gel electrophoresis (2D-DIGE) and tandem liquid chromatography-mass spectrometry (LC-MS/MS). These investigations illustrated an up-regulation of antioxidant (i.e., ATP-binding region and heat-shock protein 90, superoxide dismutase) and metabolic (i.e., glutamate dehydrogenase) enzymes and down-regulation of glutathione S-transferase, malate dehydrogenase, and other structural and cytoskeletal proteins (i.e., actin, troponin T). Findings from this study are pivotal in updating the current knowledge on anthelmintic resistance and providing new insights into the defence mechanisms of resistant nematodes towards drug treatment.
    Matched MeSH terms: Antioxidants/metabolism
  18. Nadarajah KK
    Int J Mol Sci, 2020 Jul 23;21(15).
    PMID: 32717820 DOI: 10.3390/ijms21155208
    Climate change-induced abiotic stress results in crop yield and production losses. These stresses result in changes at the physiological and molecular level that affect the development and growth of the plant. Reactive oxygen species (ROS) is formed at high levels due to abiotic stress within different organelles, leading to cellular damage. Plants have evolved mechanisms to control the production and scavenging of ROS through enzymatic and non-enzymatic antioxidative processes. However, ROS has a dual function in abiotic stresses where, at high levels, they are toxic to cells while the same molecule can function as a signal transducer that activates a local and systemic plant defense response against stress. The effects, perception, signaling, and activation of ROS and their antioxidative responses are elaborated in this review. This review aims to provide a purview of processes involved in ROS homeostasis in plants and to identify genes that are triggered in response to abiotic-induced oxidative stress. This review articulates the importance of these genes and pathways in understanding the mechanism of resistance in plants and the importance of this information in breeding and genetically developing crops for resistance against abiotic stress in plants.
    Matched MeSH terms: Antioxidants/metabolism
  19. Safdar A, Zakaria R, Aziz CBA, Rashid U, Azman KF
    Biogerontology, 2020 04;21(2):203-216.
    PMID: 31792648 DOI: 10.1007/s10522-019-09854-x
    One of the most significant hallmarks of aging is cognitive decline. D-galactose administration may impair memory and mimic the effects of natural aging. In this study, the efficiency of goat milk to protect against memory decline was tested. Fifty-two male Sprague-Dawley rats were randomly divided into four groups: (i) control group, (ii) goat milk treated group, (iii) D-galactose treated group, and (iv) goat milk plus D-galactose treated group. Subcutaneous injections of D-galactose at 120 mg/kg and oral administrations of goat milk at 1 g/kg were chosen for the study. Goat milk and D-galactose were administered concomitantly for 6 weeks, while the control group received saline. After 6 weeks, novel object recognition and T-maze tests were performed to evaluate memory of rats. Following behavioral tests, the animals were sacrificed, and right brain homogenates were analyzed for levels of lipid peroxidation, antioxidant enzymes and neurotrophic factors. The left brain hemisphere was used for histological study of prefrontal cortex and hippocampus. There was a significant memory impairment, an increase in oxidative stress and neurodegeneration and a reduction in antioxidant enzymes and neurotrophic factors levels in the brain of D-galactose treated rats compared to controls. Goat milk treatment attenuated memory impairment induced by D-galactose via suppressing oxidative stress and neuronal damage and increasing neurotrophic factors levels, thereby suggesting its potential role as a geroprotective food.
    Matched MeSH terms: Antioxidants/metabolism
  20. Khawory MH, Amat Sain A, Rosli MAA, Ishak MS, Noordin MI, Wahab HA
    Appl Radiat Isot, 2020 Mar;157:109013.
    PMID: 31889674 DOI: 10.1016/j.apradiso.2019.109013
    BACKGROUND AND AIM: The aim of this study is to evaluate the effects of gamma radiation treatment on three medicinal plants, namely Euodia malayana, Gnetum gnemon and Khaya senegalensis at two different forms; methanol leaf extracts and dried leaves respectively.

    EXPERIMENTAL PROCEDURE: The microbial limit test (MLT) studies indicated the suitable dosage of minimum and maximum gamma irradiation for leaf extracts as well as dried leaves of all the tested medicinal plants. Quantitative analysis of total phenolic content (TPC) analysis is based on calorimetric measurements determined using the Folin-Ciocalteu reagent with gallic acid (GA) used as the reference. In vitro cytotoxicity assay by using fibroblast (L929) cell lines was performed on each plant to determine the toxicity effect which sodium dodecyl sulfate (SDS) as the positive control. DPPH (2,2-diphenyl-1-picryl-hydrazyl) assay was conducted by using vitamin C and GA as the positive controls to determine the antioxidant property of each plant.

    RESULTS AND CONCLUSION: The MLT analysis indicated that the suitable dosage gamma irradiation for leaf extracts was 6-12 kGy and dried leaves were 9-13 kGy. The amount of GA concentration in each plant increased significantly from 30-51 mg GAE g-1 before treatment to 57-103 mg GAE g-1 after treatment with gamma radiation. This showed no significant effect of in vitro cytotoxicity activity before and after treatment with gamma irradiation in this study. Effective concentration (EC50) values of Khaya senegalensis plant reduced significantly (P ≤ 0.005) from 44.510 μg/ml before treatment to 24.691 μg/ml after treatment with gamma radiation, which indicate an increase of free radical scavenging activity.

    Matched MeSH terms: Antioxidants/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links