Displaying publications 21 - 40 of 78 in total

Abstract:
Sort:
  1. Wu M, Lu Y, Yang W, Wong SY
    Front Comput Neurosci, 2020;14:564015.
    PMID: 33469423 DOI: 10.3389/fncom.2020.564015
    Cardiovascular diseases (CVDs) are the leading cause of death today. The current identification method of the diseases is analyzing the Electrocardiogram (ECG), which is a medical monitoring technology recording cardiac activity. Unfortunately, looking for experts to analyze a large amount of ECG data consumes too many medical resources. Therefore, the method of identifying ECG characteristics based on machine learning has gradually become prevalent. However, there are some drawbacks to these typical methods, requiring manual feature recognition, complex models, and long training time. This paper proposes a robust and efficient 12-layer deep one-dimensional convolutional neural network on classifying the five micro-classes of heartbeat types in the MIT- BIH Arrhythmia database. The five types of heartbeat features are classified, and wavelet self-adaptive threshold denoising method is used in the experiments. Compared with BP neural network, random forest, and other CNN networks, the results show that the model proposed in this paper has better performance in accuracy, sensitivity, robustness, and anti-noise capability. Its accurate classification effectively saves medical resources, which has a positive effect on clinical practice.
    Matched MeSH terms: Arrhythmias, Cardiac
  2. Mak WW, Raja Nurazni RA, Mohamed Badrulnizam LB
    Med J Malaysia, 2018 10;73(5):349-350.
    PMID: 30350825 MyJurnal
    Thyroid disease is common and can have various systemic manifestations including cardiac diseases. Hypothyroidism is commonly associated with sinus bradycardia, low QRS complexes, prolonged QT interval and conduction blocks but rarely may cause arrhythmias. We present a patient who presented with presyncope and supraventricular tachycardia with severe hypothyroidism. Patient responded well to thyroxine replacement with biochemical improvement, the disappearance of arrhythmia after restoration of euthyroidism suggests that hypothyroidism might be the cause of supraventricular tachycardia. The aim of this report is to underline the possible aetiological link between supraventricular tachycardia and hypothyroidism, although supraventricular arrhythmias are ordinary features of hyperthyroidism.
    Matched MeSH terms: Arrhythmias, Cardiac
  3. Atrah AB, Ab-Rahman MS, Salleh H, Nuawi MZ, Mohd Nor MJ, Jamaludin NB
    Micromachines (Basel), 2017 Jul 21;8(7).
    PMID: 30400418 DOI: 10.3390/mi8070227
    This study presents the creation of a Karman vortex for a fluttering electromagnetic energy harvester device using a cylinder. The effects of two parameters, which are the diameter and the position of the cylinder, were investigated on the Karman vortex profile and the amplitude of the fluttering belt, respectively. A simulation was conducted to determine the effect of the creation of the Karman vortex, and an experiment was performed to identify influence of the position of the cylinder on the fluttering belt amplitude. The results demonstrated that vortex-induced vibration occurred at the frequency of the first natural mode for the belt at 3 cm and 10 cm for the diameter and position of the cylinder, respectively. Under such configuration, an electromagnetic energy harvester was attached and vibrated via the fluttering belt inside the turbulent boundary layers. This vibration provides a measured output voltage and can be used in wireless sensors.
    Matched MeSH terms: Arrhythmias, Cardiac
  4. Ng WH
    Med J Malaysia, 1982 Mar;37(1):66-9.
    PMID: 7121350
    Mortality in the early phase of acute myocardial infarction occurs both during the pre-hospital period and after admission to the Coronary Care Unit. This report is an analysis of deaths that occurred in the Coronary Care Unit within a 3 year period. Forty percent of 304 patients (13 percent) unth. acute myocardial infarction died in the Coronary Care Unit, Fifty percent of the deaths were due to cardiac arrhythmias and 45 percent attributable to myocardial pump failure. Mean delay in hospital admission from onset of symptoms was 15 hours. Factors affecting early mortality and their prevention are discussed.
    Matched MeSH terms: Arrhythmias, Cardiac/etiology; Arrhythmias, Cardiac/mortality
  5. Chadda KR, Jeevaratnam K, Lei M, Huang CL
    Pflugers Arch., 2017 06;469(5-6):629-641.
    PMID: 28265756 DOI: 10.1007/s00424-017-1959-1
    Arrhythmias arise from breakdown of orderly action potential (AP) activation, propagation and recovery driven by interactive opening and closing of successive voltage-gated ion channels, in which one or more Na+ current components play critical parts. Early peak, Na+ currents (I Na) reflecting channel activation drive the AP upstroke central to cellular activation and its propagation. Sustained late Na+ currents (I Na-L) include contributions from a component with a delayed inactivation timecourse influencing AP duration (APD) and refractoriness, potentially causing pro-arrhythmic phenotypes. The magnitude of I Na-L can be analysed through overlaps or otherwise in the overall voltage dependences of the steady-state properties and kinetics of activation and inactivation of the Na+ conductance. This was useful in analysing repetitive firing associated with paramyotonia congenita in skeletal muscle. Similarly, genetic cardiac Na+ channel abnormalities increasing I Na-L are implicated in triggering phenomena of automaticity, early and delayed afterdepolarisations and arrhythmic substrate. This review illustrates a wide range of situations that may accentuate I Na-L. These include (1) overlaps between steady-state activation and inactivation increasing window current, (2) kinetic deficiencies in Na+ channel inactivation leading to bursting phenomena associated with repetitive channel openings and (3) non-equilibrium gating processes causing channel re-opening due to more rapid recoveries from inactivation. All these biophysical possibilities were identified in a selection of abnormal human SCN5A genotypes. The latter presented as a broad range of clinical arrhythmic phenotypes, for which effective therapeutic intervention would require specific identification and targeting of the diverse electrophysiological abnormalities underlying their increased I Na-L.
    Matched MeSH terms: Arrhythmias, Cardiac/genetics; Arrhythmias, Cardiac/metabolism*
  6. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, et al.
    Comput Biol Med, 2017 10 01;89:389-396.
    PMID: 28869899 DOI: 10.1016/j.compbiomed.2017.08.022
    The electrocardiogram (ECG) is a standard test used to monitor the activity of the heart. Many cardiac abnormalities will be manifested in the ECG including arrhythmia which is a general term that refers to an abnormal heart rhythm. The basis of arrhythmia diagnosis is the identification of normal versus abnormal individual heart beats, and their correct classification into different diagnoses, based on ECG morphology. Heartbeats can be sub-divided into five categories namely non-ectopic, supraventricular ectopic, ventricular ectopic, fusion, and unknown beats. It is challenging and time-consuming to distinguish these heartbeats on ECG as these signals are typically corrupted by noise. We developed a 9-layer deep convolutional neural network (CNN) to automatically identify 5 different categories of heartbeats in ECG signals. Our experiment was conducted in original and noise attenuated sets of ECG signals derived from a publicly available database. This set was artificially augmented to even out the number of instances the 5 classes of heartbeats and filtered to remove high-frequency noise. The CNN was trained using the augmented data and achieved an accuracy of 94.03% and 93.47% in the diagnostic classification of heartbeats in original and noise free ECGs, respectively. When the CNN was trained with highly imbalanced data (original dataset), the accuracy of the CNN reduced to 89.07%% and 89.3% in noisy and noise-free ECGs. When properly trained, the proposed CNN model can serve as a tool for screening of ECG to quickly identify different types and frequency of arrhythmic heartbeats.
    Matched MeSH terms: Arrhythmias, Cardiac/diagnosis; Arrhythmias, Cardiac/physiopathology*
  7. Hussein AF, Hashim SJ, Aziz AFA, Rokhani FZ, Adnan WAW
    J Med Syst, 2017 Nov 29;42(1):15.
    PMID: 29188389 DOI: 10.1007/s10916-017-0871-8
    The non-stationary and multi-frequency nature of biomedical signal activities makes the use of time-frequency distributions (TFDs) for analysis inevitable. Time-frequency analysis provides simultaneous interpretations in both time and frequency domain enabling comprehensive explanation, presentation and interpretation of electrocardiogram (ECG) signals. The diversity of TFDs and specific properties for each type show the need to determine the best TFD for ECG analysis. In this study, a performance evaluation of five TFDs in term of ECG abnormality detection is presented. The detection criteria based on extracted features from most important ECG signal components (QRS) to detect normal and abnormal cases. This is achieved by estimating its energy concentration magnitude using the TFDs. The TFDs analyse ECG signals in one-minute interval instead of conventional time domain approach that analyses based on beat or frame containing several beats. The MIT-BIH normal sinus rhythm ECG database total records of 18 long-term ECG sampled at 128 Hz have been analysed. The tested TFDs include Dual-Tree Wavelet Transform, Spectrogram, Pseudo Wigner-Ville, Choi-Williams, and Born-Jordan. Each record is divided into one-minute slots, which is not considered previously, and analysed. The sample periods (slots) are randomly selected ten minutes interval for each record. This result with 99.44% detection accuracy for 15,735 ECG beats shows that Choi-Williams distribution is most reliable to be used for heart problem detection especially in automated systems that provide continuous monitoring for long time duration.
    Matched MeSH terms: Arrhythmias, Cardiac/diagnosis*; Arrhythmias, Cardiac/physiopathology
  8. Coromilas EJ, Kochav S, Goldenthal I, Biviano A, Garan H, Goldbarg S, et al.
    Circ Arrhythm Electrophysiol, 2021 03;14(3):e009458.
    PMID: 33554620 DOI: 10.1161/CIRCEP.120.009458
    [Figure: see text].
    Matched MeSH terms: Arrhythmias, Cardiac/mortality; Arrhythmias, Cardiac/epidemiology*; Arrhythmias, Cardiac/physiopathology; Arrhythmias, Cardiac/therapy
  9. Ahmad S, Valli H, Chadda KR, Cranley J, Jeevaratnam K, Huang CL
    Mech Ageing Dev, 2018 Jul;173:92-103.
    PMID: 29763629 DOI: 10.1016/j.mad.2018.05.004
    INTRODUCTION: Ageing and age-related bioenergetic conditions including obesity, diabetes mellitus and heart failure constitute clinical ventricular arrhythmic risk factors.

    MATERIALS AND METHODS: Pro-arrhythmic properties in electrocardiographic and intracellular recordings were compared in young and aged, peroxisome proliferator-activated receptor-γ coactivator-1β knockout (Pgc-1β-/-) and wild type (WT), Langendorff-perfused murine hearts, during regular and programmed stimulation (PES), comparing results by two-way ANOVA.

    RESULTS AND DISCUSSION: Young and aged Pgc-1β-/- showed higher frequencies and durations of arrhythmic episodes through wider PES coupling-interval ranges than WT. Both young and old, regularly-paced, Pgc-1β-/- hearts showed slowed maximum action potential (AP) upstrokes, (dV/dt)max (∼157 vs. 120-130 V s-1), prolonged AP latencies (by ∼20%) and shortened refractory periods (∼58 vs. 51 ms) but similar AP durations (∼50 ms at 90% recovery) compared to WT. However, Pgc-1β-/- genotype and age each influenced extrasystolic AP latencies during PES. Young and aged WT ventricles displayed distinct, but Pgc-1β-/- ventricles displayed similar dependences of AP latency upon (dV/dt)max resembling aged WT. They also independently increased myocardial fibrosis. AP wavelengths combining activation and recovery terms paralleled contrasting arrhythmic incidences in Pgc-1β-/- and WT hearts. Mitochondrial dysfunction thus causes pro-arrhythmic Pgc-1β-/- phenotypes by altering AP conduction through reducing (dV/dt)max and causing age-dependent fibrotic change.

    Matched MeSH terms: Arrhythmias, Cardiac/genetics; Arrhythmias, Cardiac/metabolism*; Arrhythmias, Cardiac/pathology; Arrhythmias, Cardiac/physiopathology
  10. Yildirim O, Baloglu UB, Tan RS, Ciaccio EJ, Acharya UR
    Comput Methods Programs Biomed, 2019 Jul;176:121-133.
    PMID: 31200900 DOI: 10.1016/j.cmpb.2019.05.004
    BACKGROUND AND OBJECTIVE: For diagnosis of arrhythmic heart problems, electrocardiogram (ECG) signals should be recorded and monitored. The long-term signal records obtained are analyzed by expert cardiologists. Devices such as the Holter monitor have limited hardware capabilities. For improved diagnostic capacity, it would be helpful to detect arrhythmic signals automatically. In this study, a novel approach is presented as a candidate solution for these issues.

    METHODS: A convolutional auto-encoder (CAE) based nonlinear compression structure is implemented to reduce the signal size of arrhythmic beats. Long-short term memory (LSTM) classifiers are employed to automatically recognize arrhythmias using ECG features, which are deeply coded with the CAE network.

    RESULTS: Based upon the coded ECG signals, both storage requirement and classification time were considerably reduced. In experimental studies conducted with the MIT-BIH arrhythmia database, ECG signals were compressed by an average 0.70% percentage root mean square difference (PRD) rate, and an accuracy of over 99.0% was observed.

    CONCLUSIONS: One of the significant contributions of this study is that the proposed approach can significantly reduce time duration when using LSTM networks for data analysis. Thus, a novel and effective approach was proposed for both ECG signal compression, and their high-performance automatic recognition, with very low computational cost.

    Matched MeSH terms: Arrhythmias, Cardiac/classification; Arrhythmias, Cardiac/diagnosis*
  11. Ahmad S, Valli H, Edling CE, Grace AA, Jeevaratnam K, Huang CL
    Pflugers Arch., 2017 Dec;469(12):1579-1590.
    PMID: 28821956 DOI: 10.1007/s00424-017-2054-3
    A range of chronic clinical conditions accompany cardiomyocyte energetic dysfunction and constitute independent risk factors for cardiac arrhythmia. We investigated pro-arrhythmic and arrhythmic phenotypes in energetically deficient C57BL mice with genetic ablation of the mitochondrial promoter peroxisome proliferator-activated receptor-γ coactivator-1β (Pgc-1β), a known model of ventricular arrhythmia. Pro-arrhythmic and cellular action potential (AP) characteristics were compared in intact Langendorff-perfused hearts from young (12-16 week) and aged (> 52 week), wild-type (WT) and Pgc-1β -/- mice. Simultaneous electrocardiographic and intracellular microelectrode recordings were made through successive trains of 100 regular stimuli at progressively incremented heart rates. Aged Pgc-1β -/- hearts displayed an increased incidence of arrhythmia compared to other groups. Young and aged Pgc-1β -/- hearts showed higher incidences of alternans in both AP activation (maximum AP upshoot velocity (dV/dt)max and latency), recovery (action potential duration (APD90) and resting membrane potential (RMP) characteristics compared to WT hearts. This was particularly apparent at lower pacing frequencies. These findings accompanied reduced (dV/dt)max and increased AP latency values in the Pgc-1β -/- hearts. APs observed prior to termination of the protocol showed lower (dV/dt)max and longer AP latencies, but indistinguishable APD90 and RMPs in arrhythmic compared to those in non-arrhythmic hearts. APD restitution analysis showed that Pgc-1β -/- and WT hearts showed similar limiting gradients. However, Pgc-1β -/- hearts had shortened plateau AP wavelengths, particularly in aged Pgc-1β -/- hearts. Pgc-1β -/- hearts therefore show pro-arrhythmic instabilities attributable to altered AP conduction and activation rather than recovery characteristics.
    Matched MeSH terms: Arrhythmias, Cardiac/metabolism*; Arrhythmias, Cardiac/physiopathology
  12. Salvage SC, Chandrasekharan KH, Jeevaratnam K, Dulhunty AF, Thompson AJ, Jackson AP, et al.
    Br J Pharmacol, 2018 Apr;175(8):1260-1278.
    PMID: 28369767 DOI: 10.1111/bph.13807
    Flecainide suppresses cardiac tachyarrhythmias including paroxysmal atrial fibrillation, supraventricular tachycardia and arrhythmic long QT syndromes (LQTS), as well as the Ca2+ -mediated, catecholaminergic polymorphic ventricular tachycardia (CPVT). However, flecainide can also exert pro-arrhythmic effects most notably following myocardial infarction and when used to diagnose Brugada syndrome (BrS). These divergent actions result from its physiological and pharmacological actions at multiple, interacting levels of cellular organization. These were studied in murine genetic models with modified Nav channel or intracellular ryanodine receptor (RyR2)-Ca2+ channel function. Flecainide accesses its transmembrane Nav 1.5 channel binding site during activated, open, states producing a use-dependent antagonism. Closing either activation or inactivation gates traps flecainide within the pore. An early peak INa related to activation of Nav channels followed by rapid de-activation, drives action potential (AP) upstrokes and their propagation. This is diminished in pro-arrhythmic conditions reflecting loss of function of Nav 1.5 channels, such as BrS, accordingly exacerbated by flecainide challenge. Contrastingly, pro-arrhythmic effects attributed to prolonged AP recovery by abnormal late INaL following gain-of-function modifications of Nav 1.5 channels in LQTS3 are reduced by flecainide. Anti-arrhythmic effects of flecainide that reduce triggering in CPVT models mediated by sarcoplasmic reticular Ca2+ release could arise from its primary actions on Nav channels indirectly decreasing [Ca2+ ]i through a reduced [Na+ ]i and/or direct open-state RyR2-Ca2+ channel antagonism. The consequent [Ca2+ ]i alterations could also modify AP propagation velocity and therefore arrhythmic substrate through its actions on Nav 1.5 channel function. This is consistent with the paradoxical differences between flecainide actions upon Na+ currents, AP conduction and arrhythmogenesis under circumstances of normal and increased RyR2 function.

    LINKED ARTICLES: This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.

    Matched MeSH terms: Arrhythmias, Cardiac/drug therapy; Arrhythmias, Cardiac/physiopathology*
  13. Wan Adlina Wan Yusuf, Amelia Alias, Wan Hanifah Wan Hussin1, Mohd Nasir Abdul Kadir, Abdul Rahim Wong
    MyJurnal
    Primary cardiac tumours (PCT) are rare in the paediatric population. They can present in a variety of ways – from being asymptomatic, obstructive with heart failure, strokes, arrhythmias or sudden death. We present a 2-month-old child who was admitted because of heart failure from varying types of arrhythmias and was found on echocardiography to have a large left ventricular tumour. A high clinical suspicion in any infant or child who presents with an unexplained heart murmur, arrhythmias or congestive heart failure should prompt relevant investigations ruling out this entity.
    Matched MeSH terms: Arrhythmias, Cardiac
  14. Shamala N., Faizal, A.H.
    Medicine & Health, 2018;13(2):195-201.
    MyJurnal
    Electrocardiographic abnormalities can be associated with acute pancreatitis. However, data regarding the actual causative factor still remains elusive. Many previous cases were reported on non-specific ST and T wave abnormalities concurrent with acute pancreatitis but rarely with an increasing trend of cardiac markers. We describe the case of a 70-year-old female who presented with one such conundrum. Our patient had typical presentation of acute pancreatitis but had dynamic ECG changes with markedly increased cardiac markers. Subsequently after initiation of treatment for acute pancreatitis and observation for the course of several days, the ECG returned to the baseline as pre admission. This substantiates the fact that acute pancreatitis can mimic both biochemical and electrical manifestation of an acute coronary syndrome. Thus, Emergency Physicians should consider acute pancreatitis as a possible diagnosis in patients who present with abnormal electrocardiograms.
    Matched MeSH terms: Arrhythmias, Cardiac
  15. Ngow, H.A., Wan Khairina, W.M.N.
    MyJurnal
    A 43-year-old man presented with acute extensive anterior ST-segment elevation myocardial infarction. During coronary angiogram, a segment of myocardial bridging was noted in the mid-segment of left anterior descending artery. The association of myocardial bridging and an anterior ST segment elevation is rarely reported in the medical literature. Myocardial bridging is caused by systolic compression of a coronary artery by overlying myocardium tissue. It is a rare coronary artery anomaly, which usually has a benign prognosis despite some case reports of myocardial ischemia leading to myocardial infarction, lethal arrhythmias and sudden cardiac death. We report one such case of myocardial bridging that was complicated with acute extensive anterior myocardial infarction.
    Matched MeSH terms: Arrhythmias, Cardiac
  16. Valli H, Ahmad S, Jiang AY, Smyth R, Jeevaratnam K, Matthews HR, et al.
    Mech Ageing Dev, 2018 01;169:1-9.
    PMID: 29197478 DOI: 10.1016/j.mad.2017.11.016
    INTRODUCTION: Recent studies reported that energetically deficient murine Pgc-1β-/- hearts replicate age-dependent atrial arrhythmic phenotypes associated with their corresponding clinical conditions, implicating action potential (AP) conduction slowing consequent upon reduced AP upstroke rates.

    MATERIALS AND METHODS: We tested a hypothesis implicating Na+ current alterations as a mechanism underlying these electrophysiological phenotypes. We applied loose patch-clamp techniques to intact young and aged, WT and Pgc-1β-/-, atrial cardiomyocyte preparations preserving their in vivo extracellular and intracellular conditions.

    RESULTS AND DISCUSSION: Depolarising steps activated typical voltage-dependent activating and inactivating inward (Na+) currents whose amplitude increased or decreased with the amplitudes of the activating, or preceding inactivating, steps. Maximum values of peak Na+ current were independently influenced by genotype but not age or interacting effects of genotype and age on two-way ANOVA. Neither genotype, nor age, whether independently or interactively, influenced voltages at half-maximal current, or steepness factors, for current activation and inactivation, or time constants for recovery from inactivation following repolarisation. In contrast, delayed outward (K+) currents showed similar activation and rectification properties through all experimental groups. These findings directly demonstrate and implicate reduced Na+ in contrast to unchanged K+ current, as a mechanism for slowed conduction causing atrial arrhythmogenicity in Pgc-1β-/- hearts.

    Matched MeSH terms: Arrhythmias, Cardiac/genetics; Arrhythmias, Cardiac/metabolism; Arrhythmias, Cardiac/pathology
  17. Valli H, Ahmad S, Fraser JA, Jeevaratnam K, Huang CL
    Exp Physiol, 2017 12 01;102(12):1619-1634.
    PMID: 28960529 DOI: 10.1113/EP086589
    NEW FINDINGS: What is the central question of this study? Can we experimentally replicate atrial pro-arrhythmic phenotypes associated with important chronic clinical conditions, including physical inactivity, obesity, diabetes mellitus and metabolic syndrome, compromising mitochondrial function, and clarify their electrophysiological basis? What is the main finding and its importance? Electrocardiographic and intracellular cardiomyocyte recording at progressively incremented pacing rates demonstrated age-dependent atrial arrhythmic phenotypes in Langendorff-perfused murine Pgc1β-/- hearts for the first time. We attributed these to compromised action potential conduction and excitation wavefronts, whilst excluding alterations in recovery properties or temporal electrophysiological instabilities, clarifying these pro-arrhythmic changes in chronic metabolic disease. Atrial arrhythmias, most commonly manifesting as atrial fibrillation, represent a major clinical problem. The incidence of atrial fibrillation increases with both age and conditions associated with energetic dysfunction. Atrial arrhythmic phenotypes were compared in young (12-16 week) and aged (>52 week) wild-type (WT) and peroxisome proliferative activated receptor, gamma, coactivator 1 beta (Ppargc1b)-deficient (Pgc1β-/- ) Langendorff-perfused hearts, previously used to model mitochondrial energetic disorder. Electrophysiological explorations were performed using simultaneous whole-heart ECG and intracellular atrial action potential (AP) recordings. Two stimulation protocols were used: an S1S2 protocol, which imposed extrasystolic stimuli at successively decremented intervals following regular pulse trains; and a regular pacing protocol at successively incremented frequencies. Aged Pgc1β-/- hearts showed greater atrial arrhythmogenicity, presenting as atrial tachycardia and ectopic activity. Maximal rates of AP depolarization (dV/dtmax ) were reduced in Pgc1β-/- hearts. Action potential latencies were increased by the Pgc1β-/- genotype, with an added interactive effect of age. In contrast, AP durations to 90% recovery (APD90 ) were shorter in Pgc1β-/- hearts despite similar atrial effective recovery periods amongst the different groups. These findings accompanied paradoxical decreases in the incidence and duration of alternans in the aged and Pgc1β-/- hearts. Limiting slopes of restitution curves of APD90 against diastolic interval were correspondingly reduced interactively by Pgc1β-/- genotype and age. In contrast, reduced AP wavelengths were associated with Pgc1β-/- genotype, both independently and interacting with age, through the basic cycle lengths explored, with the aged Pgc1β-/- hearts showing the shortest wavelengths. These findings thus implicate AP wavelength in possible mechanisms for the atrial arrhythmic changes reported here.
    Matched MeSH terms: Arrhythmias, Cardiac/genetics; Arrhythmias, Cardiac/metabolism*; Arrhythmias, Cardiac/physiopathology
  18. Hasamnis AA, Arya A
    J Pharm Bioallied Sci, 2017 Oct-Dec;9(4):282-283.
    PMID: 29456381 DOI: 10.4103/jpbs.JPBS_96_17
    Cardiac arrhythmias are a major cause of morbidity and mortality across the world. Learning the science behind the use of antiarrhythmic drugs is essential for all medical graduates. However, many antiarrhythmic drugs are available, and most of them have complex pharmacodynamic and pharmacokinetic profiles. We tried to improvise our teaching by conducting interactive, worksheet-based, small-group discussion on antiarrhythmic drugs with preclinical students of School of Medicine, Taylor's University, Malaysia. This survey was conducted to analyze the outcomes of worksheet-based, small-group discussion.
    Matched MeSH terms: Arrhythmias, Cardiac
  19. Ahmad S, Valli H, Smyth R, Jiang AY, Jeevaratnam K, Matthews HR, et al.
    J Cell Physiol, 2019 Apr;234(4):3921-3932.
    PMID: 30146680 DOI: 10.1002/jcp.27183
    Peroxisome proliferator-activated receptor-γ coactivator-1 deficient (Pgc-1β-/- ) murine hearts model the increased, age-dependent, ventricular arrhythmic risks attributed to clinical conditions associated with mitochondrial energetic dysfunction. These were accompanied by compromised action potential (AP) upstroke rates and impaired conduction velocities potentially producing arrhythmic substrate. We tested a hypothesis implicating compromised Na+ current in these electrophysiological phenotypes by applying loose patch-clamp techniques in intact young and aged, wild-type (WT) and Pgc-1β-/- , ventricular cardiomyocyte preparations for the first time. This allowed conservation of their in vivo extracellular and intracellular conditions. Depolarising steps elicited typical voltage-dependent activating and inactivating inward Na+ currents with peak amplitudes increasing or decreasing with their respective activating or preceding inactivating voltage steps. Two-way analysis of variance associated Pgc-1β-/- genotype with independent reductions in maximum peak ventricular Na+ currents from -36.63 ± 2.14 (n = 20) and -35.43 ± 1.96 (n = 18; young and aged WT, respectively), to -29.06 ± 1.65 (n = 23) and -27.93 ± 1.63 (n = 20; young and aged Pgc-1β-/- , respectively) pA/μm2 (p 
    Matched MeSH terms: Arrhythmias, Cardiac/genetics; Arrhythmias, Cardiac/metabolism*; Arrhythmias, Cardiac/physiopathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links