Displaying publications 21 - 40 of 192 in total

Abstract:
Sort:
  1. Muhamad SA, Muhammad NS, Ismail NDA, Mohamud R, Safuan S, Nurul AA
    Exp Ther Med, 2019 May;17(5):3867-3876.
    PMID: 30988772 DOI: 10.3892/etm.2019.7416
    Asthma is a chronic inflammatory disorder in the airways that involves the activation of cells and mediators. Lignosus rhinocerotis (Cooke) Ryvardan or Tiger Milk mushroom is a medicinal mushroom that is traditionally used to treat inflammatory diseases including asthma. In this study, the protective effects of intranasal administration of L. rhinocerotis extract (LRE) in ovalbumin (OVA)-induced airway inflammation mouse model were investigated. Mice were sensitized by intraperitoneal (i.p) injection on days 0 and 14, followed by a daily challenge with 1% OVA from days 21 to 27. Following OVA challenge, LRE and dexamethasone were administered via intranasal and i.p. injection respectively. On day 28, the level of serum immunoglobulin (Ig)E, differential cell counts and T-helper (Th) 2 cytokines in bronchoalveolar lavage fluid (BALF) fluid, cell subset population in lung-draining lymph nodes (LNs), leukocytes infiltration and mucus production in the lungs of the animals was measured. Results demonstrated that intranasal administration of LRE significantly suppressed the level of inflammatory cell counts in BALF as well as populations of CD4+ T-cells in lung draining LNs. Apart from that, LRE also significantly reduced the level of Th2 cytokines in BALF and IgE in the serum in OVA-induced asthma. Histological analysis also demonstrated the amelioration of leukocytes infiltration and mucus production in the lungs. Overall, these findings demonstrated the attenuation of airway inflammation in the LRE-treated mice therefore suggesting a promising alternative for the management of allergic airway inflammation.
    Matched MeSH terms: Cell Count
  2. Shamsul BS, Chowdhury SR, Hamdan MY, Ruszymah BHI
    Indian J Med Res, 2019 05;149(5):641-649.
    PMID: 31417032 DOI: 10.4103/ijmr.IJMR_45_17
    Background & objectives: Seeding density is one of the major parameters affecting the quality of tissue-engineered cartilage. The objective of this study was to evaluate different seeding densities of osteoarthritis chondrocytes (OACs) to obtain the highest quality cartilage.

    Methods: The OACs were expanded from passage 0 (P0) to P3, and cells in each passage were analyzed for gross morphology, growth rate, RNA expression and immunochemistry (IHC). The harvested OACs were assigned into two groups: low (1×10[7] cells/ml) and high (3×10[7] cells/ml) cell density. Three-dimensional (3D) constructs for each group were created using polymerised fibrin and cultured for 7, 14 and 21 days in vitro using chondrocyte growth medium. OAC constructs were analyzed with gross assessments and microscopic evaluation using standard histology, IHC and immunofluorescence staining, in addition to gene expression and biochemical analyses to evaluate tissue development.

    Results: Constructs with a high seeding density of 3×10[7] cells/ml were associated with better quality cartilage-like tissue than those seeded with 1×10[7] cells/ml based on overall tissue formation, cell association and extracellular matrix distribution. The chondrogenic properties of the constructs were further confirmed by the expression of genes encoding aggrecan core protein and collagen type II.

    Interpretation & conclusions: Our results confirmed that cell density was a significant factor affecting cell behaviour and aggregate production, and this was important for establishing good quality cartilage.

    Matched MeSH terms: Cell Count*
  3. Fish-Low CY, Abubakar S, Othman F, Chee HY
    Malays J Pathol, 2019 Apr;41(1):41-46.
    PMID: 31025636
    INTRODUCTION: Dengue virus (DENV), the causative agent of dengue disease exists in sylvatic and endemic ecotypes. The cell morphological changes and viral morphogenesis of two dengue ecotypes were examined at the ultrastructural level to identify potential similarities and differences in the surrogate model of enzootic host.

    MATERIALS AND METHODS: Vero cells were inoculated with virus at a multiplicity of infection (MOI) of 0.1. Cell cultures were harvested over a time course and processed for transmission electron microscopic imaging.

    RESULTS: The filopodia protrusions on cell periphery preceded virus entry. Additionally, sylvatic DENV infection was found spreading slower than the endemic DENV. Morphogenesis of both dengue ecotypes was alike but at different level of efficiency in the permissive cells.

    CONCLUSIONS: This is the first ultrastructural study on sylvatic DENV and this comparative study revealed the similarities and differences of cellular responses and morphogenesis of two dengue ecotypes in vitro. The study revealed the weaker infectivity of sylvatic DENV in the surrogate model of enzootic host, which supposed to support better replication of enzootic DENV than endemic DENV.

    Matched MeSH terms: Cell Count
  4. Lee SY, George JH, Nagel DA, Ye H, Kueberuwa G, Seymour LW
    J Tissue Eng Regen Med, 2019 Mar;13(3):369-384.
    PMID: 30550638 DOI: 10.1002/term.2786
    Development of an optogenetically controllable human neural network model in three-dimensional (3D) cultures can provide an investigative system that is more physiologically relevant and better able to mimic aspects of human brain function. Light-sensitive neurons were generated by transducing channelrhodopsin-2 (ChR2) into human induced pluripotent stem cell (hiPSC) derived neural progenitor cells (Axol) using lentiviruses and cell-type specific promoters. A mixed population of human iPSC-derived cortical neurons, astrocytes and progenitor cells were obtained (Axol-ChR2) upon neural differentiation. Pan-neuronal promoter synapsin-1 (SYN1) and excitatory neuron-specific promoter calcium-calmodulin kinase II (CaMKII) were used to drive reporter gene expression in order to assess the differentiation status of the targeted cells. Expression of ChR2 and characterisation of subpopulations in differentiated Axol-ChR2 cells were evaluated using flow cytometry and immunofluorescent staining. These cells were transferred from 2D culture to 3D alginate hydrogel functionalised with arginine-glycine-aspartate (RGD) and small molecules (Y-27632). Improved RGD-alginate hydrogel was physically characterised and assessed for cell viability to serve as a generic 3D culture system for human pluripotent stem cells (hPSCs) and neuronal cells. Prior to cell encapsulation, neural network activities of Axol-ChR2 cells and primary neurons were investigated using calcium imaging. Results demonstrate that functional activities were successfully achieved through expression of ChR2- by both the CaMKII and SYN1 promoters. The RGD-alginate hydrogel system supports the growth of differentiated Axol-ChR2 cells whilst allowing detection of ChR2 expression upon light stimulation. This allows precise and non-invasive control of human neural networks in 3D.
    Matched MeSH terms: Cell Count
  5. Ng WH, Umar Fuaad MZ, Azmi SM, Leong YY, Yong YK, Ng AMH, et al.
    Cell Tissue Res, 2019 Feb;375(2):383-396.
    PMID: 30232595 DOI: 10.1007/s00441-018-2918-7
    Mesenchymal stem cells (MSCs) are known to secrete cardioprotective paracrine factors that can potentially activate endogenous cardiac c-kit cells (CCs). This study aims to optimise MSC growth conditions and medium formulation for generating the conditioned medium (CdM) to facilitate CC growth and expansion in vitro. The quality of MSC-CdM after optimisation of seeding density during MSC stabilisation and medium formulation used during MSC stimulation including glucose, ascorbic acid, serum and oxygen levels and the effects of treatment concentration and repeated CdM harvesting were assessed based on CC viability in vitro under growth factor- and serum-deprived condition. Our data showed that functional CdM can be produced from MSCs with a density of 20,000 cells/cm2, which were stimulated using high glucose (25 mM), ascorbic acid supplemented, serum-free medium under normoxic condition. The generated CdM, when applied to growth factor- and serum-deprived medium at 1:1 ratio, improved CC viability, migration and proliferation in vitro. Such an effect could further be augmented by generating CdM concentrates without compromising CC gene and protein expressions, while retaining its capability to undergo differentiation to form endothelial, smooth muscle and cardiomyocytes. Nevertheless, CdM could not be repeatedly harvested from the same MSC culture, as the protein content and its effect on CC viability deteriorated after the first harvest. In conclusion, this study provides a proof-of-concept strategy to standardise the production of CdM from MSCs based on rapid, stepwise assessment of CC viability, thus enabling production of CdM favourable to CC growth for in vitro or clinical applications.
    Matched MeSH terms: Cell Count
  6. Abdullah N, Al-Marzooq F, Mohamad S, Abd Rahman N, Chi Ngo H, Perera Samaranayake L
    J Oral Microbiol, 2019;11(1):1647757.
    PMID: 31489127 DOI: 10.1080/20002297.2019.1647757
    Background: Oral biofilms are the root cause of major oral diseases. As in vitro biofilms are not representative of the intraoral milieu, various devices have been manufactured over the years to develop Appliance Grown Oral Biofilm (AGOB). Objective: To review various intraoral appliances used to develop AGOB for microbiological analysis, and to judge the optimal means for such analyses. Design: Four databases (PubMed, Science Direct, Scopus and Medline) were searched by two independent reviewers, and articles featuring the key words 'device' OR 'splint' OR 'appliance'; 'Oral biofilm' OR 'dental plaque'; 'in vivo' OR 'in situ'; 'Microbiology' OR 'Bacteria' OR 'microbiome'; were included. The standard Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) were adopted for data gathering. Results: Of the 517 articles which met the initial inclusion criteria, 24 were deemed eligible for review. The age of the AGOB, sampled at various intervals, ranged from 30 min to 28 days. The most commonly used microbiome analytical methods were fluorescence microscopy, total cell count using conventional, and molecular tools including Next Generation Sequencing (NGS) platforms. Conclusions: No uniformly superior method for collecting AGOB could be discerned. NGS platforms are preferable for AGOB analyses.
    Matched MeSH terms: Cell Count
  7. Haque N, Widera D, Abu Kasim NH
    Adv Exp Med Biol, 2019;1084:175-186.
    PMID: 30771186 DOI: 10.1007/5584_2018_299
    BACKGROUND: The response of stem cells to paracrine factors within the host's body plays an important role in the regeneration process after transplantation. The aim of this study was to determine the viability and paracrine factor profile of stem cells from human extracted deciduous teeth (SHED) pre-cultivated in media supplemented with either foetal bovine serum (FBS) or pooled human serum (pHS) in the presence of individual human sera (iHS).

    METHODS: SHED (n = 3) from passage 4 were expanded in FBS (FBS-SHED) or pHS (pHS-SHED) supplemented media until passage 7. During expansion, the proliferation of SHED was determined. Cells at passage 7 were further expanded in human serum from four individual donors (iHS) for 120 h followed by assessment of cell viability and profiling of the secreted paracrine factors.

    RESULTS: Proliferation of SHED was significantly higher (p cell culture supernatants from FBS-SHED were profiled 120 h post-incubation.

    CONCLUSION: SHED expanded in pHS instead of FBS have higher proliferative capacity and show an altered secretion profile. Further studies are needed to determine whether these differences could result in better engraftment and regeneration following transplantation.

    Matched MeSH terms: Cell Count
  8. Thoha H, Muawanah, Bayu Intan MD, Rachman A, Sianturi OR, Sidabutar T, et al.
    Front Microbiol, 2019;10:306.
    PMID: 30846977 DOI: 10.3389/fmicb.2019.00306
    Margalefidinium polykrikoides, an unarmored dinoflagellate, was suspected to be the causative agent of the harmful algal blooms - associated with massive fish mortalities - that have occurred continually in Lampung Bay, Indonesia, since the first bloom event in October 2012. In this study, after examination of the morphology of putative M. polykrikoides-like cysts sampled in bottom sediments, cyst bed distribution of this harmful species was explored in the inner bay. Sediment samples showed that resting cysts, including several morphotypes previously reported as M. polykrikoides, were most abundant on the northern coast of Lampung Bay, ranging from 20.6 to 645.6 cysts g-1 dry sediment. Molecular phylogeny inferred from LSU rDNA revealed that the so-called Mediterranean ribotype was detected in the sediment while M. polykrikoides motile cells, four-cell chain forming in bloom conditions, belonged to the American-Malaysian ribotype. Moreover, hyaline cysts, exclusively in the form of four-cell chains, were also recorded. Overall, these results unequivocally show that the species M. polykrikoides is abundantly present, in the form of vegetative cells, hyaline and resting cysts in an Indonesian area.
    Matched MeSH terms: Cell Count
  9. Yap HY, Siow TS, Chow SK, Teow SY
    Adv Virol, 2019;2019:6464521.
    PMID: 31049064 DOI: 10.1155/2019/6464521
    Epstein-Barr virus (EBV) is one of the common human herpesvirus types in the world. EBV is known to infect more than 95% of adults in the world. The virus mainly infects B lymphocytes and could immortalize and transform the cells into EBV-bearing lymphoblastoid cell lines (LCLs). Limited studies have been focused on characterizing the surface marker expression of the immortalized LCLs. This study demonstrates the generation of 15 LCLs from sixteen rheumatoid arthritis (RA) patients and a healthy volunteer using B95-8 marmoset-derived EBV. The success rate of LCL generation was 88.23%. All CD19+ LCLs expressed CD23 (16.94-58.9%) and CD27 (15.74-80.89%) on cell surface. Our data demonstrated two distinct categories of LCLs (fast- and slow-growing) (p<0.05) based on their doubling time. The slow-growing LCLs showed lower CD23 level (35.28%) compared to fast-growing LCLs (42.39%). In contrast, the slow-growing LCLs showed higher percentage in both CD27 alone and CD23+CD27+ in combination. Overall, these findings may suggest the correlations of cellular CD23 and CD27 expression with the proliferation rate of the generated LCLs. Increase expression of CD23 may play a role in EBV immortalization of B-cells and the growth and maintenance of the EBV-transformed LCLs while CD27 expression might have inhibitory effects on LCL proliferation. Further investigations are warranted to these speculations.

    Study site: Sunway Medical Centre, Malaysia
    Matched MeSH terms: Cell Count
  10. Lim, L. N., Yu, K. S., Chua, S. M., George, E., Lai, M. I., Wong, L., et al.
    MyJurnal
    Introduction: Filipino β°-deletion is predominant among the β-thalassaemia patients in the indigenous population of Sabah, Malaysia particularly among the Kadazandusun. Individuals who co-inherit with α- and β-thalassaemia will demonstrate milder clinical symptoms with modified complete blood count (CBC) and Hb subtype parameters. HBS1L-MYB variants act as one of the key regulator of haematopoiesis and erythropoiesis and display strong association
    with variation of HbF levels. Therefore, this study aims to evaluate the association between genetic variants in HBS1L-MYB with Hb subtypes level among Filipino β°-deletion carriers co-inherited with -α3.7 deletion. Methods: Filipino β°-deletion and -α3.7 deletion were identified using gap-polymerase chain reaction (PCR). A total of 34 subjects found with coinheritance of Filipino β°-deletion and -α3.7 deletion were subjected for HBS1L-MYB intergenic polymorphisms (HMIP) analysis. Hb subtypes level were quantified using BioRad Variant II Hb analyser. Genotyping of HBS1L-MYB variants rs9399137 and rs11759553 was done using own designed tetra primer ARMS-PCR. Results: The minor allele frequencies (MAF) of the two HMIP is found more than 0.05 (rs11759553, MAF=0.18 and rs9399137, MAF=0.15), indicating the significance of these variants among the study subjects. Significant difference was found between HbF level and HBS1L-MYB variant rs11759553 with p-value less than 0.05 (p=0.001). Subjects with homozygous genotype for rs11759553 (T/T) was found with higher HbF, followed by heterozygous (A/T) and wild type (A/A). rs11759553 and rs9399137 was found did not influence the level of HbA and HbA2. HMIP of rs11759553 and rs9399137 are found significant among Filipino β°-deletion carriers co-inherited with -α3.7deletion with its high minor allelic frequency and high HbF level. Strong association with HbF level was demonstrated when
    coinheritance of rs11759553. Conclusion: This study demonstrates that there are significant associations between certain genetic variants in HBS1L-MYB with Hb subtypes level among Filipino β°-deletion carriers co-inherited with -α3.7 deletion.
    Matched MeSH terms: Blood Cell Count
  11. Wahid W, Ahmad Fahmi NA, Mohd Salleh AF, Mohd Yasin '
    Respir Med Case Rep, 2019;28:100939.
    PMID: 31667075 DOI: 10.1016/j.rmcr.2019.100939
    Bronchopulmonary lophomoniasis is rare but immunocompromised individual is susceptible to this infection. We reported a case of bronchopulmonary lophomoniasis in a Malaysian female with systemic lupus erythromatosus. She presented with productive cough, shortness of breath and high-grade fever for 2 weeks. Physical examination revealed bronchial sound and crackles over the left lung with, reduced expansion and dull percussion in lower left lobe. Chest radiography showed consolidation of the left lung. Routine laboratory tests revealed general low cell count. Blood and sputum culture were negative. Bronchoalveolar lavage stain and culture for bacterial and fungal were negative. Bronchoalveolar lavage for Lophomonas blattarum was positive. Patient was treated with antiprotozoal drug, metronidazole. All her clinical problems resolved and she was discharged 14 days after admission.
    Matched MeSH terms: Cell Count
  12. Tiong KH, Chang JK, Pathmanathan D, Hidayatullah Fadlullah MZ, Yee PS, Liew CS, et al.
    Biotechniques, 2018 12;65(6):322-330.
    PMID: 30477327 DOI: 10.2144/btn-2018-0072
    We describe a novel automated cell detection and counting software, QuickCount® (QC), designed for rapid quantification of cells. The Bland-Altman plot and intraclass correlation coefficient (ICC) analyses demonstrated strong agreement between cell counts from QC to manual counts (mean and SD: -3.3 ± 4.5; ICC = 0.95). QC has higher recall in comparison to ImageJauto, CellProfiler and CellC and the precision of QC, ImageJauto, CellProfiler and CellC are high and comparable. QC can precisely delineate and count single cells from images of different cell densities with precision and recall above 0.9. QC is unique as it is equipped with real-time preview while optimizing the parameters for accurate cell count and needs minimum hands-on time where hundreds of images can be analyzed automatically in a matter of milliseconds. In conclusion, QC offers a rapid, accurate and versatile solution for large-scale cell quantification and addresses the challenges often faced in cell biology research.
    Matched MeSH terms: Cell Count/economics; Cell Count/methods*
  13. Lim BH, Majlan EH, Daud WRW, Rosli MI, Husaini T
    Heliyon, 2018 Oct;4(10):e00845.
    PMID: 30338304 DOI: 10.1016/j.heliyon.2018.e00845
    The flow distribution of a proton exchange membrane fuel cell within a manifold plays an important role on its performance. This study presents a numerical analysis of the flow distribution behavior within different manifold configurations. A two-dimensional model with 75 cells was employed to study the flow behavior. The variation in the stoichiometry and number of cells was also studied. Three different flow configurations were considered with different numbers of flow inlets and outlets. The flow characteristics, such as the pressure and velocity variations in the manifold and cells, were measured to determine the effects of the different flow configurations. The results indicated that the double inlet/outlet configuration had the best flow distribution when using 75 cells. Moreover, increasing the stoichiometry resulted in a better flow distribution to the cells in a stack.
    Matched MeSH terms: Cell Count
  14. Abdalla YOA, Nyamathulla S, Shamsuddin N, Arshad NM, Mun KS, Awang K, et al.
    Toxicol Appl Pharmacol, 2018 10 01;356:204-213.
    PMID: 30138658 DOI: 10.1016/j.taap.2018.08.014
    1'-S-1'-acetoxychavicol acetate (ACA) has been previously reported to reduce tumor volume in nude mice, at an effective dose of 1.56 mg/kg body weight. However, the detailed toxicological profile for ACA has not yet been performed. Herein, we investigated the toxicity of intravenous administration of ACA in male and female Sprague-Dawley rats, both acutely (with single doses of 2.00, 4.00 and 6.66 mg/kg body weight, for 14 days), and sub-acutely (with weekly injections of 0.66, 1.33, and 2.22 mg/kg, for 28 days). In both toxicity studies, treatment with ACA did not affect behavior, food/water intake or body weight, nor did it induce any changes in clinically relevant hematological and biochemical parameters or mortality, suggesting that the LD50 of ACA was higher than 6.66 mg/kg body weight, regardless of sex. Sub-acutely, there was however, mild focal inflammation of kidneys and lobular hepatitis, but these were not associated with significant functional adverse effects. Therefore, the no-observed-adverse-effect level (NOAEL) for intravenous administration of ACA in the present 28-day sub-acute study was 2.22 mg/kg body weight, in both male and female rats. These findings provide useful information regarding the safety of ACA use in a healthy, non-tumor-bearing rat model.
    Matched MeSH terms: Blood Cell Count
  15. Sultan S, Irfan SM, Zaidi SM
    Med J Malaysia, 2018 08;73(4):185-189.
    PMID: 30121679
    BACKGROUND: It is being increasingly recognised that thalassemia major patients, like intermedia, have increased propensity for thromboembolism. Deficiency of natural anticoagulants is more recently defined finding contributing to the hypercoagulable state. The aim this study is to determine natural anticoagulants levels and their correlation with maternal characteristics, haematological and biochemical markers.

    METHODS: This is a prospective case-control study. We registered 80 patients and 60 healthy controls from Jan 2009 to Dec 2013. Complete blood counts, prothrombin time, activated partial thromboplastin time, protein C, protein S, antithrombin, serum ferritin, liver enzymes; HbsAg and Anti- HCV were evaluated.

    RESULT: There were 42 males and 38 females with mean age of 12.30±5.50 years. The mean protein C, protein S and antithrombin in patients and control were 58.25±22.5 versus 110.67±22.60, 67.90±19.58 versus 98.70±21.54 and 89.73±18.09 versus 104.0±10.98 (p<0.001) respectively. Protein C was predominantly deficient in 65% followed by protein S and antithrombin in 35% and 20% respectively. Protein C deficiency divulged positive correlation with protein S deficiency (p = 0.035) and antithrombin deficiency with hemoglobin of ≤8gm% (p<0.0025). No significant correlation of prothrombotic markers was established with maternal characteristics, hepatic dysfunction, hepatitis and serum ferritin.

    CONCLUSION: Substantial decrement in prothrombotic markers, primarily protein C, may be implicated in elevated thrombosis; however follow-up data is required to establish definitive thromboembolic events.

    Matched MeSH terms: Blood Cell Count
  16. Ho J, Hamizan AW, Alvarado R, Rimmer J, Sewell WA, Harvey RJ
    Am J Rhinol Allergy, 2018 Jul;32(4):252-257.
    PMID: 29862828 DOI: 10.1177/1945892418779451
    Background Eosinophilic chronic rhinosinusitis (eCRS) is linked with skewed T-helper 2 or immunoglobulin E (IgE)-mediated allergic responses, with differing diagnosis, prognosis, and management to non-eCRS. Objective The association between biomarkers and eCRS was investigated to assess the predictors of eCRS. Methods A cross-sectional study of adult patients with chronic rhinosinusitis (CRS) undergoing endoscopic sinus surgery was conducted. eCRS was defined by histopathological assessment showing >10 eosinophils/high-power field on sinus mucosal biopsy. Blood tests were performed preoperatively and assessed for a full blood count including eosinophils and a white cell count (WCC) as well as biochemical markers of inflammation and atopy including Immunoglobulin E (IgE), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and ImmunoCAP testing for serum-specific IgE. Comparisons between eCRS and non-eCRS patients were performed. Results 345 patients (48.1% female, age 48.72 ± 15.06 years) were recruited, with 206 (59.7%) identified as eCRS, 41% with asthma and 47% CRS with nasal polyps. eCRS patients were more likely to have asthma ( P 0.24 × 109/L), eosinophil ratio (>4.27% of total WCC), and lower ESR when compared with non-eCRS.
    Matched MeSH terms: Cell Count
  17. Yusof NZ, Abd Gani SS, Azizul Hasan ZA, Idris Z
    Int J Toxicol, 2018 05 07;37(4):335-343.
    PMID: 29734825 DOI: 10.1177/1091581818773979
    Many types of phytochemicals have been found to be present in oil palm leaf and could potentially be used as functional ingredients for skincare product. However, as of today, there is no published report on hazard identification and safety assessment of oil palm ( Elaeis guineensis) leaf extract (OPLE), particularly on skin and eye irritation. In this study, potential hazard of OPLE on skin and eye irritation was evaluated as an initial step to the safety assessment of OPLE. In vitro cell viability study of OPLE on normal human dermal fibroblasts showed that OPLE was nontoxic to the cells with percentage viability more than 90% after 24 and 48 hours of incubation. Skin irritation potential of OPLE was evaluated using in vitro SkinEthic reconstructed human epidermis (RHE) model (Organization for Economic Cooperation and Development [OECD] Test Guideline 439, 2015), while eye irritation potential was evaluated using in vitro SkinEthic Human corneal epithelium (HCE) model (OECD test guideline 492, 2017). Hazard identification results showed that OPLE at 1%, 5%, and 10% (wt/wt) was classified as nonirritant to the skin and eye where mean tissue viabilities of SkinEthic RHE and SkinEthic HCE were more than 50% and 60%, respectively. Therefore, we recommend a further safety assessment, such as human patch testing, to confirm the nonirritant of OPLE.
    Matched MeSH terms: Cell Count
  18. Lassale C, Curtis A, Abete I, van der Schouw YT, Verschuren WMM, Lu Y, et al.
    Sci Rep, 2018 02 19;8(1):3290.
    PMID: 29459661 DOI: 10.1038/s41598-018-21661-x
    All blood cells (white blood cells [WBC], red blood cells [RBC] and platelets) can play a role in atherosclerosis. Complete blood count (CBC) is widely available in clinical practice but utility as potential risk factors for cardiovascular disease (CVD) is uncertain. Our aim was to assess the associations of pre-diagnostic CBC with incidence of CVD in 14,362 adults free of CVD and aged 47.8 (±11.7) years at baseline, followed-up for 11.4 years (992 incident cases). Cox proportional hazards regressions were used to estimate HRs and 95%CI. Comparing the top (T3) to bottom (T1) tertile, increased total WBC, lymphocyte, monocyte and neutrophil counts were associated with higher CVD risk: 1.31 (1.10; 1.55), 1.20 (1.02; 1.41), 1.21 (1.03; 1.41) and 1.24 (1.05; 1.47), as well as mean corpuscular volume (MCV: 1.23 [1.04; 1.46]) and red cell distribution width (RDW: 1.22 [1.03; 1.44]). Platelets displayed an association for count values above the clinically normal range: 1.49 (1.00; 2.22). To conclude, total and differential WBC count, MCV, RDW and platelet count likely play a role in the aetiology of CVD but only WBC provide a modest improvement for the prediction of 10-year CVD risk over traditional CVD risk factors in a general population.
    Matched MeSH terms: Blood Cell Count
  19. Hamid, H., Ngu, P.A.H., Alipiah, F.M.
    MyJurnal
    The issue of classifying objects into groups when measured variables in an experiment are mixed has attracted the attention of statisticians. The Smoothed Location Model (SLM) appears to be a popular classification method to handle data containing both continuous and binary variables simultaneously. However, SLM is infeasible for a large number of binary variables due to the occurrence of numerous empty cells. Therefore, this study aims to construct new SLMs by integrating SLM with two variable extraction techniques, Principal Component Analysis (PCA) and two types of Multiple Correspondence Analysis (MCA) in order to reduce the large number of mixed variables, primarily the binary ones. The performance of the newly constructed models, namely the SLM+PCA+Indicator MCA and SLM+PCA+Burt MCA are examined based on misclassification rate. Results from simulation studies for a sample size of n=60 show that the SLM+PCA+Indicator MCA model provides perfect classification when the sizes of binary variables (b) are 5 and 10. For b=20, the SLM+PCA+Indicator MCA model produces misclassification rates of 0.3833, 0.6667 and 0.3221 for n=60, n=120 and n=180, respectively. Meanwhile, the SLM+PCA+Burt MCA model provides a perfect classification when the sizes of the binary variables are 5, 10, 15 and 20 and yields a small misclassification rate as 0.0167 when b=25. Investigations into real dataset demonstrate that both of the newly constructed models yield low misclassification rates with 0.3066 and 0.2336 respectively, in which the SLM+PCA+Burt MCA model performed the best among all the classification methods compared. The findings reveal that the two new models of SLM integrated with two variable extraction techniques can be good alternative methods for classification purposes in handling mixed variable problems, mainly when dealing with large binary variables.
    Matched MeSH terms: Cell Count
  20. Wan Nordiana W Abd Rahman, Raizulnasuha Ab Rashid, Mahfuzah Muhammad, Khairunisak Abdul Razak, Norhayati Dollah, Moshi Geso
    MyJurnal
    Gold nanoparticles (AuNPs) have been extensively investigated as dose enhancement agent to increase the lethal dose to the tumours while minimizing dose to the normal tissue. Their intriguing properties and characteristics such as small size and shape provide favorable option in increasing radiotherapy therapeutic efficiency. In this study, the effects of AuNPs size on the dose enhancement effects irradiated under megavoltage photon beams were investigated. The study was conducted in-vitro on HeLa cells using AuNPs of 5 nm and 15 nm sizes. The cells samples were incubated with AuNPs and irradiated with photon beam of energy 6 MV and 10 MV at 100 cm SSD and 10 cm x 10 cm field size. Clonogenic assay were performed to observe the dose enhancement effects on cell survival. Dose enhancement factor (DEF) were extrapolated and evaluated from the cell survival curves. The results show that both sizes of AuNPs produce dose enhancement with the larger size AuNPs of 15 nm produce more dose enhancement compare to 5 nm AuNPs for 6 MV photon beam. Dose enhancements were observed for 10 MV photon beams but DEF for both sizes AuNPs shows no differences. In conclusion, larger size AuNPs produce higher dose enhancement compare to small size of AuNPs which conclude that nanoparticles size is important factor that need to be taken into account for AuNPs to be applied in radiotherapy.
    Matched MeSH terms: Cell Count
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links