Displaying publications 21 - 40 of 301 in total

Abstract:
Sort:
  1. Suzana S, Azhar Y, Fatimah A
    Malays J Nutr, 2004 Sep;10(2):173-82.
    PMID: 22691738 MyJurnal
    A case control study to determine the association of dietary fibre and cancer among Malaysians. It was conducted among 100 newly-diagnosed cancer patients admitted to the Radiotherapy and Oncology Ward, Hospital Kuala Lumpur. A total of 100 controls matched with the cases for age, sex and ethnic origin were selected from the Outpatient Health Clinic in Sentul. The subjects were interviewed to obtain information on their habitual dietary intakes and lifestyles. Family history of cancer, smoking habits, and alcohol consumption were found to be significant risk factors for cancer (p<0.05 for all parameters). The mean intake of total energy was higher among men with nasopharyngeal cancer and women with gastrointestinal cancer as compared to their controls (p<0.05 for both parameters). The percentage of energy contribution from fat was higher among cases (35%) than controls (32.1%). The mean dietary fibre intake among cases (10.86 ± 8.90 g/d) was apparently lower than the controls (13.22 ± 5.99 g/d), with significant differences noted for breast cancer and also nasopharyngeal cancer. Women with low fibre intake (<10g/d) had a 2.2 times higher risk of getting breast cancer. There is a need to educate the public to adhere to a wholesome diet, in particular to increase the consumption of high-fibre food for disease prevention.

    Study site: Radiotherapy and Oncology Ward, Hospital Kuala Lumpur and Outpatient Health Clinic in Sentu
    Matched MeSH terms: Dietary Fiber*
  2. Khodavandi A, Alizadeh F, Razis AFA
    Eur J Nutr, 2021 Jun;60(4):1707-1736.
    PMID: 32661683 DOI: 10.1007/s00394-020-02332-y
    PURPOSE: It is unclear how dietary intake influences the ovarian cancer. The present paper sets out to systematically review and meta-analyze research on dietary intake to identify cases having high- or low-risk ovarian cancer.

    METHODS: Scopus, PubMed, and Wiley Online Libraries were searched up to the date November 24, 2019. Two reviewers were requested to independently extract study characteristics and to assess the bias and applicability risks with reference to the study inclusion criteria. Meta-analyses were performed to specify the relationship between dietary intake and the risk of ovarian cancer identifying 97 cohort studies.

    RESULTS: No significant association was found between dietary intake and risk of ovarian cancer. The results of subgroup analyses indicated that green leafy vegetables (RR = 0.91, 95%, 0.85-0.98), allium vegetables (RR = 0.79, 95% CI 0.64-0.96), fiber (RR = 0.89, 95% CI 0.81-0.98), flavonoids (RR = 0.83, 95% CI 0.78-0.89) and green tea (RR = 0.61, 95% CI 0.49-0.76) intake could significantly reduce ovarian cancer risk. Total fat (RR = 1.10, 95% CI 1.02-1.18), saturated fat (RR = 1.11, 95% CI 1.01-1.22), saturated fatty acid (RR = 1.19, 95% CI 1.04-1.36), cholesterol (RR = 1.13, 95% CI 1.04-1.22) and retinol (RR = 1.14, 95% CI 1.00-1.30) intake could significantly increase ovarian cancer risk. In addition, acrylamide, nitrate, water disinfectants and polychlorinated biphenyls were significantly associated with an increased risk of ovarian cancer.

    CONCLUSION: These results could support recommendations to green leafy vegetables, allium vegetables, fiber, flavonoids and green tea intake for ovarian cancer prevention.

    Matched MeSH terms: Dietary Fiber
  3. Ahmad Sobri S, Whitehead D, Mohamed M, Mohamed JJ, Mohamad Amini MH, Hermawan A, et al.
    Polymers (Basel), 2020 Oct 23;12(11).
    PMID: 33114223 DOI: 10.3390/polym12112461
    Carbon fibre-reinforced polymer (CFRP) composite materials play an increasingly important role in modern manufacturing, and they are among the more prominent materials used in aircraft manufacturing today. However, CFRP is highly prone to delamination and other damage when drilled due to it being extremely strong with a good strength-to-weight ratio and high thermal conductivity. Because of this problem and CFRP's growing importance in aircraft manufacture, research has focused on the entry and exit holes as indicators of damage occurrence during drilling of screws, rivets, and other types of holes. The inside of the hole was neglected in past research and a proper way to quantify the internal side of a hole by combining the entry and exit hole should be included. To fill this gap and improve the use of CFRP, this paper reports a novel technique to measure the holes by using the extension of the adjusted delamination factor (SFDSR) for drilling thick CFRP composites in order to establish the influence of machining input variables on key output measures, i.e., delamination and other damages. The experimental results showed a significant difference in interpretation of the damage during the analysis. Improvement was made by providing better perspectives of identifying hole defects.
    Matched MeSH terms: Dietary Fiber
  4. Kannan Rassiah, Megat Ahmad, M.M.H, Aidy Ali
    MyJurnal
    This paper presents an overview topic of layered and laminated fibre composites. The review presents an investigation on the effect of varying the properties of fibre and the matrix of layered and laminated composites and identifies the fundamental parameters determining ballistic impact protection. The advantages of layered and laminated reinforced composites with different thicknesses for further enhancing ballistic penetration resistance of the laminated fibre composite have been reviewed. Lamination of multiple layers of composite material can give better ballistic performance.
    Matched MeSH terms: Dietary Fiber
  5. Wahid R, Ward AJ, Møller HB, Søegaard K, Eriksen J
    Bioresour Technol, 2015 Dec;198:124-32.
    PMID: 26386414 DOI: 10.1016/j.biortech.2015.08.154
    This study investigated the potentials of forbs; caraway, chicory, red clover and ribwort plantain as substrates for biogas production. One-, two- and four-cut systems were implemented and the influence on dry matter yields, chemical compositions and methane yields were examined. The two- and four-cut systems resulted in higher dry matter yields (kg [total solid, TS] ha(-1)) compared to the one-cut system. The effect of plant compositions on biogas potentials was not evident. Cumulative methane yields (LCH4kg(-1) [volatile solid, VS]) were varied from 279 to 321 (chicory), 279 to 323 (caraway), 273 to 296 (ribwort plantain), 263 to 328 (red clover) and 320 to 352 (grass-clover mixture), respectively. Methane yield was modelled by modified Gompertz equation for comparison of methane production rate. Near infrared spectroscopy showed potential as a tool for biogas and chemical composition prediction. The best prediction models were obtained for methane yield at 29 days (99 samples), cellulose, acid detergent fibre, neutral detergent fibre and crude protein, (R(2)>0.9).
    Matched MeSH terms: Dietary Fiber
  6. Rupani PF, Embrandiri A, Ibrahim MH, Shahadat M, Hansen SB, Mansor NNA
    3 Biotech, 2017 Jul;7(3):155.
    PMID: 28623493 DOI: 10.1007/s13205-017-0770-1
    Several technologies are being applied for treatment of palm oil mill wastes. Among them, the biological treatments (vermicomposting) have widely been recognized as one of the most efficient and eco-friendly methods for converting organic waste materials into valuable products. The present study focuses on vermicomposting of acidic palm oil mill effluent (POME) mixed with the palm pressed fibre (PPF) which are found difficult to decompose in the environment. The industrial waste (POME) was vermicomposted using Lumbricus rubellus under laboratory conditions for a period of 45 days. A significant improvement in nitrogen, phosphorus, and potassium content was monitored during vermicomposting process. In addition, the decline in C:N ratio of vermicompost (up to 17.20 ± 0.60) reflects the degree of stabilization of POME-PPF mixture. Different percentages of the vermicompost extract obtained from POME-PPF mixture were also examined for the germination of mung bean (Vigna radiata) seed. The results showed that 75% vermicompost extract demonstrated better performance for the seed germination. On the basis of significant findings, POME-PPF mixture can be successfully used as a feeding material for the earthworms, while on the other hand, it can also be used as a cost-effective fertilizer for the germination and the proper growth of mung bean.
    Matched MeSH terms: Dietary Fiber
  7. Pradeep Puligundla, Chulkyoon Mok, Sang Eun Oh, Vijaya Sarathi Reddy Obulam
    Sains Malaysiana, 2014;43:1901-1906.
    In recent years, by-products of fruit processing have received a great deal of attention, which is primarily due to their nutritional and economic exploitation through utilization of emerging technologies. Mango peel waste, a by-product from pulp processing units, is an important source of high quality antioxidant dietary fibre, pectin, polyphenols and carotenoids. It also possess significant biotechnological potential since it has been found suitable for several bioprocesses including ethanol, biogas, lactic acid, enzymes and single cell production. Valorization of mango peel through different routes not only can increase the profitability of fruit processing industries, but also help reduce environmental pollution. This review intends to provide a broad view on available technologies for mango peel waste utilization, with an emphasis on its biotechnological conversion into added value products beside other ways of utilization.
    Matched MeSH terms: Dietary Fiber
  8. Koo HC, Abdul Jalil SN, Ruzita AT
    Malays J Med Sci, 2015;22(1):32-9.
    PMID: 25892948
    BACKGROUND: Studies from the West have demonstrated that ready-to-eat cereals (RTECs) are a common form of breakfast and more likely to be consumed by children. This study aimed to investigate the breakfast eating pattern and RTECs consumption among schoolchildren in Kuala Lumpur.
    METHODS: In this cross-sectional study, a total of 382 schoolchildren, aged 10 and 11 years old, were recruited from seven randomly selected primary schools in Kuala Lumpur. Information on socio-demographics, breakfast eating patterns, and perceptions of RTECs and dietary intake (24-hour dietary recalls) were obtained.
    RESULTS: Among the respondents, only 22% of them consumed breakfast on a regular basis. The most commonly eaten food by children at breakfast was bread (27.2%), followed by biscuits (22.2%) and RTECs (20.5%). The majority of them (93%) reported that they consumed RTECs sometimes during the week. Chocolate RTECs (34.1%), corn flake RTECs (30.3%), and RTECs coated with honey (25.1%) were the most popular RTECs chosen by children. Respondents who consumed RTECs showed a significantly higher intake in calories, carbohydrate, vitamin A, vitamin B1, vitamin B2, vitamin B3, folate, vitamin C, calcium, iron, and fibre (P < 0.05), compared to those who skipped breakfast and those who had breakfast foods other than RTECs.
    CONCLUSION: The lower levels of breakfast consumption among schoolchildren in Kuala Lumpur need serious attention. RTEC is a nutritious food which is well accepted by a majority of the schoolchildren in Kuala Lumpur. Nutrition intervention should be conducted in the future to include a well-balanced breakfast with the utilisation of RTECs for schoolchildren.
    KEYWORDS: Malaysia; breakfast; calorie; cereals; children
    Matched MeSH terms: Dietary Fiber
  9. Syarifah SM, Mohd Kassim AS, Mohd Aripin A, Chan CM, Zainulabidin MH, Ishak N, et al.
    Data Brief, 2021 Jun;36:107030.
    PMID: 34026964 DOI: 10.1016/j.dib.2021.107030
    This article presents experimental data on oil palm biomass (oil palm leaves, oil palm trunk and empty fruit bunch) handsheet production characterization by biodelignification treatment using Bacillus cereus extracted from termite gut (Coptotermus curvignathus). It associates the lignocellulose chemical composition obtained via technical association pulp and paper industry TAPPI T 222 om-02 testing on lignin content reduction determination, holocellulose and hemicellulose content determination (Kurscher-Hoffner method). Several data obtained for handsheet characterization presents brightness, opacity, contrast ratio, din transparency, thickness, bursting and tearing indexes are collected. Handsheet surface morphology was also observed on ratio of gaps differences between fiber bonding conducted using scanning electron microscope (SEM) and ImageJ software. The raw data findings supplement chemical composition analysis for both untreated and treated substrates on handsheet quality performance check as presented in the research article "Bio-Mechanical Pulping of Bacteria Pre-Treatment on Oil Palm Biomass for Handsheet Production" [1]. For understanding correlations into the difference among lignocellulose content composition which affect the handsheet formation and mechanical strength refer to article from this research [1]. This dataset is made publicly available for optimizing alternative waste material reuse in the pulp and paper industrial section.
    Matched MeSH terms: Dietary Fiber
  10. Zamzuri AK, Md Ali MI, Ahmad A, Mohamad R, Mahdi MA
    Opt Lett, 2006 Apr 01;31(7):918-20.
    PMID: 16599211
    We demonstrate a multiple-wavelength Brillouin comb laser with cooperative Rayleigh scattering that uses Raman amplification in dispersion-compensating fiber. The laser resonator is a linear cavity formed by reflector at each end of the dispersion-compensating fiber to improve the reflectivity of the Brillouin Stokes comb. Multiple Brillouin Stokes generation has been improved in terms of optical signal-to-noise ratio and power-level fluctuation between neighboring channels. Furthermore, the linewidth of the Brillouin Stokes is uniform within the laser output bandwidth.
    Matched MeSH terms: Dietary Fiber
  11. Ainun Zuriyati Mohamed, Sarani Zakaria, Roslinda Shamsudin, Mustaffa Abdullah
    Sains Malaysiana, 2010;39:239-242.
    The mechanical strength of magnetic lumen loaded handsheets was reported to be lower than the unloaded handsheets. This effect is due to the deposition of filler inside the fiber lumen and some on the fibre surface which interfere with the fibre to fibre bonding. Hence, in order to improve the handsheets strength, cationic starch is used as a dry strength additive. In this study, mixed tropical hardwood pulps were used throughout the experiment. The magnetite particles were deposited in the fibre lumen via the lumen loading technique. The addition of cationic starch was found to increase the handsheet strength. However, it disturbed and influenced the location and distribution of the magnetic fillers. Some of the magnetite particles were observed to be displaced from the fiber lumen and pit apertures. The charges of the filler particles and cationic starch played an important role in producing charge repulsion and pulling effect which lead to filler dislocation.
    Matched MeSH terms: Dietary Fiber
  12. Hanan F, Jawaid M, Paridah MT, Naveen J
    Polymers (Basel), 2020 Sep 09;12(9).
    PMID: 32916779 DOI: 10.3390/polym12092052
    In this research, the physical, mechanical and morphological properties of oil palm empty fruit bunch (EFB) mat/woven kenaf fabric-reinforced epoxy composites have been investigated. The oil palm EFB/woven kenaf fabrics were varied, with weight ratios of 50/0 (T1), 35/15 (T2), 25/25 (T3), 15/35 (T4) and 0/50 (T5). The composites were fabricated using a simple hand lay-up technique followed by hot pressing. The result obtained shows that an increase in kenaf fiber content exhibited higher tensile and flexural properties. On the other hand, the opposite trend was observed in the impact strength of hybrid composites, where an increase in kenaf fiber content reduced the impact strength. This can be corroborated with the physical properties analysis, where a higher void content, water absorption and thickness swelling were observed for pure oil palm EFB (T1) composites compared to other samples. The scanning electron microscopy analysis results clearly show the different failure modes of the tensile fractured samples. Statistical analysis was performed using one-way ANOVA and shows significant differences between the obtained results.
    Matched MeSH terms: Dietary Fiber
  13. Fouad H, Kian LK, Jawaid M, Alotaibi MD, Alothman OY, Hashem M
    Polymers (Basel), 2020 Dec 07;12(12).
    PMID: 33297332 DOI: 10.3390/polym12122926
    Conocarpus fiber is an abundantly available and sustainable cellulosic biomass. With its richness in cellulose content, it is potentially used for manufacturing microcrystalline cellulose (MCC), a cellulose derivative product with versatile industrial applications. In this work, different samples of bleached fiber (CPBLH), alkali-treated fiber (CPAKL), and acid-treated fiber (CPMCC) were produced from Conocarpus through integrated chemical process of bleaching, alkaline cooking, and acid hydrolysis, respectively. Characterizations of samples were carried out with Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), Fourier Transform Infrared-Ray (FTIR), X-ray Diffraction (XRD), Thermogravimetric (TGA), and Differential Scanning Calorimetry (DSC). From morphology study, the bundle fiber feature of CPBLH disintegrated into micro-size fibrils of CPMCC, showing the amorphous compounds were substantially removed through chemical depolymerization. Meanwhile, the elemental analysis also proved that the traces of impurities such as cations and anions were successfully eliminated from CPMCC. The CPMCC also gave a considerably high yield of 27%, which endowed it with great sustainability in acting as alternative biomass for MCC production. Physicochemical analysis revealed the existence of crystalline cellulose domain in CPMCC had contributed it 75.7% crystallinity. In thermal analysis, CPMCC had stable decomposition behavior comparing to CPBLH and CPAKL fibers. Therefore, Conocarpus fiber could be a promising candidate for extracting MCC with excellent properties in the future.
    Matched MeSH terms: Dietary Fiber
  14. Fung WY, Yuen KH, Liong MT
    J Agric Food Chem, 2010 Jul 14;58(13):8077-84.
    PMID: 20568772 DOI: 10.1021/jf1012506
    Oil palm trunk (OPT), oil palm frond (OPF), and okara are agrowastes generated abundantly by the palm oil and soy industries. There are vast potentials for these fibrous biomass rather than disposal at landfills or incineration. Fibrous materials (FM) and alkali-treated fibrous residues (FR) were produced from the selected wastes and subsequently characterized. Functional properties such as emulsifying properties, mineral-binding capacity, and free radical scavenging activity were also evaluated for possible development of functional products. Supernatants (FS) generated from the alkaline treatment contained soluble fractions of fibers and were also characterized and used for the production of nanofibers. Okara FM had the highest (P < 0.05) protein (31.5%) and fat (12.2%) contents, which were significantly reduced following alkali treatment. The treatment also increased total dietary fiber (TDF) in okara by 107.9%, in OPT by 67.2%, and in OPF by 25.1%. The increased fiber fractions in FR enhanced functional properties such as water-holding capacities and oil-holding capacities. Okara displayed the highest (P < 0.05) emulsifying properties compared to OPT and OPF. High IDF content of OPT and OPF contributed to high antioxidant activities (377.2 and 367.8% higher than that of okara, respectively; P < 0.05). The soluble fraction from alkali treatment of fibers was successfully electrospun into nanofibers, which can be further developed into nanoencapsulants for bioactive compound or drug delivery.
    Matched MeSH terms: Dietary Fiber/analysis*
  15. Kian LK, Saba N, Jawaid M, Fouad H
    Int J Biol Macromol, 2020 Aug 01;156:347-353.
    PMID: 32278601 DOI: 10.1016/j.ijbiomac.2020.04.015
    Olive fiber is a renewable natural fiber which has potential as an alternative biomass for extraction of microcrystalline cellulose (MCC). MCC has been widely applied in various industries owing to its small dimensional size for ease of reactive fabrication process. At present study, a serial treatments of bleaching, alkaline and acid hydrolysis was employed to extract OL-BLF, OL-PUF, and OL-MCC respectively from olive stem fiber. In morphology examination, a feature of short micro-crystallite particles was obtained for OL-MCC. The particle size was found gradually reducing from OL-PUF (305.31 μm) to OL-MCC (156.06 μm) due to the disintegration of cellulose fibrils. From physicochemical analysis, most lignin and hemicellulose components had been removed from OL-BLF to form OL-PUF with individually fibril structure. The elemental analysis revealed that highly pure cellulose component was obtained for OL-MCC. Also, the rigidity had been improved from OL-BLF to OL-PUF, while with the highest for OL-MCC with 74.2% crystallinity, endowing it as a reliable load-bearing agent. As for thermal analysis, OL-MCC had the most stable heat resistance in among the chemically-treated fibers. Therefore, olive MCC could act as a promising reinforcing agent to withstand harsh conditions for variety fields of composite applications.
    Matched MeSH terms: Dietary Fiber/analysis*
  16. Sarani Zakaria, Rasidi Roslan, Umar Adli Amran, Chia CH, Saiful Bahari Bakaruddin
    Sains Malaysiana, 2014;43:429-435.
    Different type of fibers which is EFB and KC were liquefied in phenol with the presence of sulphuric acid as a catalyst. The liquefied residue was characterized by using Fourier transform infrared (FTIR) to determine the functional groups presents in both residues, X-ray diffraction (XRD) to determine the degree of crystallinity in the residue, thermogravimetric analysis (TGA) to analyze the thermal properties of the residue and scanning electron microscope (SEM) to investigate the structure and morphology of the residue. Phenol-to-EFB/KC ratio shows great effect on the amount of residue in the liquefaction process. Peak appearance can be observed in the FTIR analysis at 810 and 750 cm-1 which is attributed to the para and meta benzene, respectively or to be specific its associated to the p-alkyl phenol and m-alkyl phenol. In the XRD analysis, CrI of lignocellulosic materials increased after liquefaction process. Liquefaction process caused chemical penetration across the grain of the fiber, thus the fiber bundles started to separate into individual fibers shown in the SEM micrograph and the weights lost curve for both liquefied EFB and KC experienced three region decompositions.
    Matched MeSH terms: Dietary Fiber
  17. Kuan YH, Liong MT
    J Agric Food Chem, 2008 Oct 8;56(19):9252-7.
    PMID: 18788708 DOI: 10.1021/jf802011j
    The objective of this study was to evaluate the chemical, physicochemical, and functional properties of agrowastes derived from okara ( Glycine max), corn cob ( Zea mays sp.), wheat straw ( Triticum sp.), and rice husk ( Oryza sativa) for potential applications in foods. The fibrous materials (FM) were treated with alkali to yield fibrous residues (FR). Rice husk contained the highest ash content (FM, 8.56%; FR, 9.04%) and lowest lightness in color (FM, 67.63; FR, 63.46), possibly due to the abundance of mineral constituents. Corn cob contained the highest amount of soluble dietary fiber (SDF), whereas okara had the highest total dietary fiber (TDF). The high dietary fiber fractions of corn cob and okara also contributed to the highest water- and oil-holding capacities, emulsifying activities, and emulsion stabilities for both FM and FR samples. These results indicate that these agrowastes could be utilized as functional ingredients in foods.
    Matched MeSH terms: Dietary Fiber/analysis
  18. Haslinda WH, Cheng LH, Chong LC, Noor Aziah AA
    Int J Food Sci Nutr, 2009;60 Suppl 4:232-9.
    PMID: 19449278 DOI: 10.1080/09637480902915525
    Flour was prepared from peeled and unpeeled banana Awak ABB. Samples prepared were subjected to analysis for determination of chemical composition, mineral, dietary fibre, starch and total phenolics content, antioxidant activity and pasting properties. In general, flour prepared from unpeeled banana was found to show enhanced nutrition values with higher contents of mineral, dietary fibre and total phenolics. Hence, flour fortified with peel showed relatively higher antioxidant activity. On the other hand, better pasting properties were shown when banana flour was blended with peel. It was found that a relatively lower pasting temperature, peak viscosity, breakdown, final viscosity and setback were evident in a sample blended with peel.
    Matched MeSH terms: Dietary Fiber/analysis
  19. Lau BF, Abdullah N, Aminudin N
    J Agric Food Chem, 2013 May 22;61(20):4890-7.
    PMID: 23597270 DOI: 10.1021/jf4002507
    The chemical composition of the tiger's milk mushroom (Lignosus rhinocerotis) from different developmental stages, i.e., the fruit body, sclerotium, and mycelium, was investigated for the first time. The fruit body and sclerotium of L. rhinocerotis were rich in carbohydrates and dietary fibers but low in fat. Protein levels in L. rhinocerotis were moderate, and all essential amino acids, except tryptophan, were present. The mycelium contained high levels of potassium, phosphorus, magnesium, riboflavin, and niacin and appreciable amounts of essential fatty acids. The results indicated that the sclerotium of L. rhinocerotis that was used in ethnomedicine was not superior to the fruit body and mycelium with regard to the nutritional content and bioactive constituents. Our findings provide some insights into the selection of appropriate mushroom part(s) of L. rhinocerotis and proper cultivation techniques for the development of new nutraceuticals or dietary supplements.
    Matched MeSH terms: Dietary Fiber/analysis
  20. Nazarudin MF, Alias NH, Balakrishnan S, Wan Hasnan WNI, Noor Mazli NAI, Ahmad MI, et al.
    Molecules, 2021 Aug 27;26(17).
    PMID: 34500650 DOI: 10.3390/molecules26175216
    Recent increased interest in seaweed is motivated by attention generated in their bioactive components that have potential applications in the functional food and nutraceutical industries. In the present study, nutritional composition, metabolite profiles, phytochemical screening and physicochemical properties of freeze-dried brown seaweed, Sargassum polycystum were evaluated. Results showed that the S. polycystum had protein content of 8.65 ± 1.06%, lipid of 3.42 ± 0.01%, carbohydrate of 36.55 ± 1.09% and total dietary fibre content of 2.75 ± 0.58% on dry weight basis. The mineral content of S. polycystum including Na, K, Ca, Mg Fe, Se and Mn were 8876.45 ± 0.47, 1711.05 ± 0.07, 1079.75 ± 0.30, 213.85 ± 0.02, 277.6 ± 0.12, 4.70 ± 0.00 and 4.45 ± 0.00 mg 100/g DW, respectively. Total carotenoid, chlorophyll a and b content in S. polycystum were detected at 45.28 ± 1.77, 141.98 ± 1.18 and 111.29 µg/g respectively. The total amino acid content was 74.90 ± 1.45%. The study revealed various secondary metabolites and major constituents of S. polycystum fibre to include fucose, mannose, galactose, xylose and rhamnose. The metabolites extracted from the seaweeds comprised n-hexadecanoic acid, 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester, benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy- methyl ester, 1-dodecanol, 3,7,11-trimethyl-, which were the most abundant. The physicochemical properties of S. polycystum such as water-holding and swelling capacity were comparable to several commercial fibre-rich products. In conclusion, results of this study indicate that S. polycystum is a potential candidate as functional food sources for human consumption and its cultivation needs to be encouraged.
    Matched MeSH terms: Dietary Fiber
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links