Displaying publications 21 - 40 of 118 in total

Abstract:
Sort:
  1. Huang TT, Chen CM, Lan YW, Lin SS, Choo KB, Chong KY
    Int J Mol Sci, 2022 Nov 28;23(23).
    PMID: 36499211 DOI: 10.3390/ijms232314884
    E7050 is a potent inhibitor of c-Met receptor tyrosine kinase and has potential for cancer therapy. However, the underlying molecular mechanism involved in the anti-cancer property of E7050 has not been fully elucidated. The main objective of this study was to investigate the anti-tumor activity of E7050 in multidrug-resistant human uterine sarcoma MES-SA/Dx5 cells in vitro and in vivo, and to define its mechanisms. Our results revealed that E7050 reduced cell viability of MES-SA/Dx5 cells, which was associated with the induction of apoptosis and S phase cell cycle arrest. Additionally, E7050 treatment significantly upregulated the expression of Bax, cleaved PARP, cleaved caspase-3, p21, p53 and cyclin D1, while it downregulated the expression of survivin and cyclin A. On the other hand, the mechanistic study demonstrated that E7050 inhibited the phosphorylation of c-Met, Src, Akt and p38 in HGF-stimulated MES-SA/Dx5 cells. Further in vivo experiments showed that treatment of athymic nude mice carrying MES-SA/Dx5 xenograft tumors with E7050 remarkably suppressed tumor growth. E7050 treatment also decreased the expression of Ki-67 and p-Met, and increased the expression of cleaved caspase-3 in MES-SA/Dx5 tumor sections. Therefore, E7050 is a promising drug that can be developed for the treatment of multidrug-resistant uterine sarcoma.
    Matched MeSH terms: Drug Resistance, Neoplasm
  2. Mozar FS, Chowdhury EH
    Curr Drug Deliv, 2015;12(3):333-41.
    PMID: 25600981
    Substantial amount of research has been done in recent decades for the development of nanoparticle systems to selectively deliver drugs to cancer cells for concurrently enhancing and reducing anti-cancer and off-target effects, respectively. pH-sensitive carbonate apatite (CA) was originally developed for efficient and targeted delivery of DNA, siRNA and proteins to various cancer cell lines. Recently, the CA particles were employed to deliver anti-cancer drugs, cyclophosphamide, doxorubicin and methotrexate to cancer cells. Here, we report on the fabrication and characterization of gemcitabine- loaded CA particles, followed by the evaluation of their roles in enhancement of cytotoxicity in two human and one murine breast cancer cell lines. HPLC was performed to measure binding efficiency of the drug to the apatite particles whereas particle size and zeta potential were evaluated to characterize drug/apatite complex. Depending on the initial doses of the drug, its bind binding affinity towards the particles varied from 3.85% to 4.45%. The particle size was found to surprisingly decrease with an increase of the initial drug concentration. In vitro chemosensitivity assay revealed that apatite/drug nanoparticle complexes presented significantly higher cytotoxicity to breast cancer cells compared to free drugs, which could be correlated with the enhanced cellular uptake of the small size drug-loaded particles through endocytosis compared to the passive diffusion of the free drug.
    Matched MeSH terms: Drug Resistance, Neoplasm
  3. Fatemian T, Chowdhury EH
    Curr Cancer Drug Targets, 2014;14(7):599-609.
    PMID: 25308718
    Malfunctions in membrane transporters or disruptions in signaling cascades induce resistance to chemotherapy in cancer cells resulting in treatment failure. To adjust the genetic alterations leading to these cellular protective measures, dissection and verification of the contributing routes would be required. In justification of knockdown of the key genes, RNA interference provides a reliable probing tool, enabling exploration of phenotypic manifestation of targeted genes. Investigation of the non-transporter targets, predominantly oncogenes and tumor suppressor genes, by means of small interfering RNA with the aim to re-sensitize cancer cells to therapeutics will be discussed in this review.
    Matched MeSH terms: Drug Resistance, Neoplasm*
  4. Fatemian T, Othman I, Chowdhury EH
    Drug Discov Today, 2014 Jan;19(1):71-8.
    PMID: 23974068 DOI: 10.1016/j.drudis.2013.08.007
    Resistance of cancer cells to anticancer drugs is the main reason for the failure of traditional cancer treatments. Various cellular components and different loops within the signaling pathways contribute to drug resistance which could be modulated with the aim to restore drug efficacy. Unveiling the molecular mechanisms for cancer drug resistance has now paved the way for the development of novel approaches to regulate the response rates to anticancer drugs at the genetic level. The recent progress on identification and validation of the vital genes directly or indirectly involved in development of cancer drug resistance with the aid of the specific knock down ability of RNA interference technology is discussed in this review.
    Matched MeSH terms: Drug Resistance, Neoplasm*
  5. Li YT, Chua MJ, Kunnath AP, Chowdhury EH
    Int J Nanomedicine, 2012;7:2473-81.
    PMID: 22701315 DOI: 10.2147/IJN.S30500
    Multidrug resistance, a major impediment to successful cancer chemotherapy, is the result of overexpression of ATP-binding cassette (ABC) transporters extruding internalized drugs. Silencing of ABC transporter gene expression with small interfering RNA (siRNA) could be an attractive approach to overcome multidrug resistance of cancer, although delivery of siRNA remains a major hurdle to fully exploit the potential of siRNA-based therapeutics. Recently, we have developed pH-sensitive carbonate apatite nanoparticles to efficiently carry and transport siRNA across the cell membrane, enabling knockdown of the cyclin B1 gene and consequential induction of apoptosis in synergy with anti-cancer drugs.
    Matched MeSH terms: Drug Resistance, Neoplasm
  6. Tiash S, Chowdhury EH
    J Drug Target, 2019 03;27(3):325-337.
    PMID: 30221549 DOI: 10.1080/1061186X.2018.1525388
    Chemotherapy, the commonly favoured approach to treat cancer is frequently associated with treatment failure and recurrence of disease as a result of development of multidrug resistance (MDR) with concomitant over-expression of drug efflux proteins on cancer cells. One of the most widely used drugs, doxorubicin (Dox) is a substrate of three different ATP-binding cassette (ABC) transporters, namely, ABCB1, ABCG2 and ABCC1, predominantly contributing to MDR phenotype in cancer. To silence these transporter-coding genes and thus enhance the therapeutic efficacy of Dox, pH-sensitive carbonate apatite (CA) nanoparticles (NPs) were employed as a carrier system to co-deliver siRNAs against these genes and Dox in breast cancer cells and in a syngeneic breast cancer mouse model. siRNAs and Dox were complexed with NPs by incubation at 37 °C and used to treat cancer cell lines to check cell viability and caspase-mediated signal. 4T1 cells-induced breast cancer mouse model was used for treatment with the complex to confirm their action in tumour regression. Smaller (∼200 nm) and less polydisperse NPs that were taken up more effectively by tumour tissue could enhance Dox chemosensitivity, significantly reducing the tumour size in a very low dose of Dox (0.34 mg/kg), in contrast to the limited effect observed in breast cancer cell lines. The study thus proposes that simultaneous delivery of siRNAs against transporter genes and Dox with the help of CA NPs could be a potential therapeutic intervention in effectively treating MDR breast cancer.
    Matched MeSH terms: Drug Resistance, Neoplasm
  7. Aminuddin A, Ng PY, Leong CO, Chua EW
    Sci Rep, 2020 May 12;10(1):7885.
    PMID: 32398775 DOI: 10.1038/s41598-020-64664-3
    Cisplatin is the first-line chemotherapeutic agent for the treatment of oral squamous cell carcinoma (OSCC). However, the intrinsic or acquired resistance against cisplatin remains a major obstacle to treatment efficacy in OSCC. Recently, mitochondrial DNA (mtDNA) alterations have been reported in a variety of cancers. However, the role of mtDNA alterations in OSCC has not been comprehensively studied. In this study, we evaluated the correlation between mtDNA alterations (mtDNA content, point mutations, large-scale deletions, and methylation status) and cisplatin sensitivity using two OSCC cell lines, namely SAS and H103, and stem cell-like tumour spheres derived from SAS. By microarray analysis, we found that the tumour spheres profited from aberrant lipid and glucose metabolism and became resistant to cisplatin. By qPCR analysis, we found that the cells with less mtDNA were less responsive to cisplatin (H103 and the tumour spheres). Based on the findings, we theorised that the metabolic changes in the tumour spheres probably resulted in mtDNA depletion, as the cells suppressed mitochondrial respiration and switched to an alternative mode of energy production, i.e. glycolysis. Then, to ascertain the origin of the variation in mtDNA content, we used MinION, a nanopore sequencer, to sequence the mitochondrial genomes of H103, SAS, and the tumour spheres. We found that the lower cisplatin sensitivity of H103 could have been caused by a constellation of genetic and epigenetic changes in its mitochondrial genome. Future work may look into how changes in mtDNA translate into an impact on cell function and therefore cisplatin response.
    Matched MeSH terms: Drug Resistance, Neoplasm/drug effects*; Drug Resistance, Neoplasm/genetics
  8. Teoh SL, Das S
    Curr Drug Targets, 2017 Nov 30;18(16):1880-1892.
    PMID: 27628948 DOI: 10.2174/1389450117666160907153338
    BACKGROUND: The incidence of lung cancers has increased globally. Increased exposure to tobacco, passive smoking, less consumption of vegetables and fruits and occupational exposure to asbestos, arsenic and chromium are the main risk factors. The pathophysiology of lung cancer is complex and not well understood. Various microRNAs, genes and pathways are associated with lung cancers. The genes involved in lung cancers produce proteins involved in cell growth, differentiation, different cell cycles, apoptosis, immune modulation, tumor spread and progression. The Hippo pathway (also known as the Salvador-Warts-Hippo pathway) is the latest emerging concept in cancers. The Hippo pathway plays an important role in controlling the size of the tissue and organ by virtue of its action on cell proliferation and apoptosis.

    OBJECTIVE: In the present review, we highlight the mammalian Hippo pathway, role of its core members, its upstream regulators, downstream effectors and the resistance cases in lung cancers.

    RESULTS: Specific interaction of Mer with cell surface hyaluronan receptor CD44 is vital in cell contact inhibition, thereby activating Hippo pathway. Both transcription co-activators YAP and TAZ (also known as WWTR1, being homologs of Drosophila Yki) are important regulators of proliferation and apoptosis, and serve as major downstream effectors of the Hippo pathway. Mutation of NF2, the upstream regulator of Hippo pathway is linked to the cancers.

    CONCLUSION: Targeting YAP and TAZ may be important for future drug delivery and treatment.

    Matched MeSH terms: Drug Resistance, Neoplasm*
  9. Teoh SL, Das S
    Curr Pharm Des, 2017;23(12):1845-1859.
    PMID: 28231756 DOI: 10.2174/1381612822666161027120043
    The incidence and mortality due to breast cancer is increasing worldwide. There is a constant quest to know the underlying molecular biology of breast cancer in order to arrive at diagnosis and plan better treatment options. MicroRNAs (miRNAs) are small non-coding and single stranded RNAs which influence the gene expression and physiological condition in any tumor. The miRNAs may act on different pathways in various cancers. Recently, there are research reports on various miRNAs being linked to breast cancers. The important miRNAs associated with breast cancers include miR-21, miR-155, miR-27a, miR-205, miR-145 and miR-320a. In the present review we discuss the role of miRNAs in breast cancer, its importance as diagnostic markers, prognosis and metastasis markers. We also highlight the role of miRNAs with regard to resistance to few anticancerous drugs such as Tamoxifen and Trastuzumab. The role of miRNA in resistance to treatment is one of the core issues discussed in the present review. Much information on the miRNA roles is available particularly in the neoadjuvant chemotherapy setting, because this protocol allows the rapid association of miRNA expression with the treatment response. This review opens the door for designing better therapeutic options in drug resistance cases in breast cancer.
    Matched MeSH terms: Drug Resistance, Neoplasm/genetics*
  10. Teh LK, Mohamed NI, Salleh MZ, Rohaizak M, Shahrun NS, Saladina JJ, et al.
    AAPS J, 2012 Mar;14(1):52-9.
    PMID: 22183189 DOI: 10.1208/s12248-011-9313-6
    CYP2D6 plays a major role in the metabolism of tamoxifen, and polymorphism of P-glycoprotein has been associated with resistance of many drug therapies. This study investigates the clinical impact of genetic variants of CYP2D6 and ABCB1 in breast cancer patients treated with tamoxifen. Blood samples from 95 breast cancer patients treated with tamoxifen were collected and genotyped for CYP2D6 and ABCB1 variants using allele-specific PCR method. Recurrence risks were calculated using Kaplan-Meier analysis and compared using the log-rank test. Patients carrying CYP2D6*10/*10 and heterozygous null allele (IM) showed higher risks of developing recurrence and metastasis (OR 13.14; 95% CI 1.57-109.94; P = 0.004) than patients with CYP2D6*1/*1 and *1/*10 genotypes. Patients with homozygous CC genotypes of ABCB1 C3435T showed a shorter time to recurrence. Patients who were CYP2D6 IM and homozygous CC genotype of C3435T have statistically significant higher risks of recurrence (P = 0.002). Similarly, median time to recurrence in these patients was only 12 months (95% CI = 0.79-23.2) compared to those without this combination which was 48 months (95% CI = 14.7-81.2). Patients with CYP2D6 IM and homozygous CC genotype of ABCB1 C3435T have shorter times to recurrence. The results confirmed the findings of previous studies and support FDA recommendation to perform pre-genotyping in patients before the choice of therapy is determined in breast cancer patients.
    Matched MeSH terms: Drug Resistance, Neoplasm
  11. Saeed MEM, Boulos JC, Elhaboub G, Rigano D, Saab A, Loizzo MR, et al.
    Phytomedicine, 2019 Sep;62:152945.
    PMID: 31132750 DOI: 10.1016/j.phymed.2019.152945
    BACKGROUND: Cucurbitacin E (CuE) is an oxygenated tetracyclic triterpenoid isolated from the fruits of Citrullus colocynthis (L.) Schrad.

    PURPOSE: This study outlines CuE's cytotoxic activity against drug-resistant tumor cell lines. Three members of ABC transporters superfamily, P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and ABCB5 were investigated, whose overexpression in tumors is tightly linked to multidrug resistance. Further factors of drug resistance studied were the tumor suppressor TP53 and the epidermal growth factor receptor (EGFR).

    METHODS: Cytotoxicity assays (resazurin assays) were used to investigate the activity of Citrullus colocynthis and CuE towards multidrug resistant cancer cells. Molecular docking (In silico) has been carried out to explore the CuE's mode of binding to ABC transporters (P-gp, BCRP and ABCB5). The visualization of doxorubicin uptake was done by a Spinning Disc Confocal Microscope. The assessment of proteins expression was done by western blotting analysis. COMPARE and hierarchical cluster analyses were applied to identify, which genes correlate with sensitivity or resistance to cucurbitacins (CuA, CuB, CuE, CuD, CuI, and CuK).

    RESULTS: Multidrug-resistant cells overexpressing P-gp or BCRP were cross-resistant to CuE. By contrast, TP53 knock-out cells were sensitive to CuE. Remarkably, resistant cells transfected with oncogenic ΔEGFR or ABCB5 were hypersensitive (collateral sensitive) to CuE. In silico analyses demonstrated that CuE is a substrate for P-gp and BCRP. Immunoblot analyses highlighted that CuE targeted EGFR and silenced its downstream signaling cascades. The most striking result that emerged from the doxorubicin uptake by ABCB5 overexpressing cells is that CuE is an effective inhibitor for ABCB5 transporter when compared with verapamil. The COMPARE analyses of transcriptome-wide expression profiles of tumor cell lines of the NCI identified common genes involved in cell cycle regulation, cellular adhesion and intracellular communication for different cucurbitacins.

    CONCLUSION: CuE represents a potential therapeutic candidate for the treatment of certain types of refractory tumors. To best of our knowledge, this is the first time to identify CuE and verapamil as inhibitors for ABCB5 transporter.

    Matched MeSH terms: Drug Resistance, Neoplasm/drug effects
  12. Hussain Z, Arooj M, Malik A, Hussain F, Safdar H, Khan S, et al.
    Artif Cells Nanomed Biotechnol, 2018;46(sup2):1015-1024.
    PMID: 29873531 DOI: 10.1080/21691401.2018.1478420
    Development and formulation of an efficient and safe therapeutic regimen for cancer theranostics are dynamically challenging. The use of mono-therapeutic cancer regimen is generally restricted to optimal clinical applications, on account of drug resistance and cancer heterogeneity. Combinatorial treatments can employ multi-therapeutics for synergistic anticancer efficacy whilst reducing the potency of individual moieties and diminishing the incidence of associated adverse effects. The combo-delivery of nanotherapeutics can optimize anti-tumor efficacy while reversing the incidence of drug resistance, aiming to homogenize pharmacological profile of drugs, enhance circulatory time, permit targeted drug accumulation, achieve multi-target dynamic approach, optimize target-specific drug binding and ensure sustained drug release at the target site. Numerous nanomedicines/nanotherapeutics have been developed by having dynamic physicochemical, pharmaceutical and pharmacological implications. These innovative delivery approaches have displayed specialized treatment effects, alone or in combination with conventional anticancer approaches (photodynamic therapy, radiotherapy and gene therapy), while reversing drug resistance and potential off-target effects. The current review presents a comprehensive overview of nanocarrier aided multi-drug therapies alongside recent advancements, future prospects, and the pivotal requirements for interdisciplinary research.
    Matched MeSH terms: Drug Resistance, Neoplasm/drug effects*
  13. Tippett VL, Tattersall L, Ab Latif NB, Shah KM, Lawson MA, Gartland A
    Oncogene, 2023 Jan;42(4):259-277.
    PMID: 36434179 DOI: 10.1038/s41388-022-02529-x
    Over the last 40 years osteosarcoma (OS) survival has stagnated with patients commonly resistant to neoadjuvant MAP chemotherapy involving high dose methotrexate, adriamycin (doxorubicin) and platinum (cisplatin). Due to the rarity of OS, the generation of relevant cell models as tools for drug discovery is paramount to tackling this issue. Four literature databases were systematically searched using pre-determined search terms to identify MAP resistant OS cell lines and patients. Drug exposure strategies used to develop cell models of resistance and the impact of these on the differential expression of resistance associated genes, proteins and non-coding RNAs are reported. A comparison to clinical studies in relation to chemotherapy response, relapse and metastasis was then made. The search retrieved 1891 papers of which 52 were relevant. Commonly, cell lines were derived from Caucasian patients with epithelial or fibroblastic subtypes. The strategy for model development varied with most opting for continuous over pulsed chemotherapy exposure. A diverse resistance level was observed between models (2.2-338 fold) with 63% of models exceeding clinically reported resistance levels which may affect the expression of chemoresistance factors. In vitro p-glycoprotein overexpression is a key resistance mechanism; however, from the available literature to date this does not translate to innate resistance in patients. The selection of models with a lower fold resistance may better reflect the clinical situation. A comparison of standardised strategies in models and variants should be performed to determine their impact on resistance markers. Clinical studies are required to determine the impact of resistance markers identified in vitro in poor responders to MAP treatment, specifically with respect to innate and acquired resistance. A shift from seeking disputed and undruggable mechanisms to clinically relevant resistance mechanisms may identify key resistance markers that can be targeted for patient benefit after a 40-year wait.
    Matched MeSH terms: Drug Resistance, Neoplasm*
  14. Stebbing J, Shah K, Lit LC, Gagliano T, Ditsiou A, Wang T, et al.
    Oncogene, 2018 06;37(23):3113-3130.
    PMID: 29540829 DOI: 10.1038/s41388-018-0197-0
    Lemur tyrosine kinase 3 (LMTK3) is an oncogenic kinase that is involved in different types of cancer (breast, lung, gastric, colorectal) and biological processes including proliferation, invasion, migration, chromatin remodeling as well as innate and acquired endocrine resistance. However, the role of LMTK3 in response to cytotoxic chemotherapy has not been investigated thus far. Using both 2D and 3D tissue culture models, we found that overexpression of LMTK3 decreased the sensitivity of breast cancer cell lines to cytotoxic (doxorubicin) treatment. In a mouse model we showed that ectopic overexpression of LMTK3 decreases the efficacy of doxorubicin in reducing tumor growth. Interestingly, breast cancer cells overexpressing LMTK3 delayed the generation of double strand breaks (DSBs) after exposure to doxorubicin, as measured by the formation of γH2AX foci. This effect was at least partly mediated by decreased activity of ataxia-telangiectasia mutated kinase (ATM) as indicated by its reduced phosphorylation levels. In addition, our RNA-seq analyses showed that doxorubicin differentially regulated the expression of over 700 genes depending on LMTK3 protein expression levels. Furthermore, these genes were found to promote DNA repair, cell viability and tumorigenesis processes / pathways in LMTK3-overexpressing MCF7 cells. In human cancers, immunohistochemistry staining of LMTK3 in pre- and post-chemotherapy breast tumor pairs from four separate clinical cohorts revealed a significant increase of LMTK3 following both doxorubicin and docetaxel based chemotherapy. In aggregate, our findings show for the first time a contribution of LMTK3 in cytotoxic drug resistance in breast cancer.
    Matched MeSH terms: Drug Resistance, Neoplasm/drug effects; Drug Resistance, Neoplasm/physiology*
  15. Choudhury H, Pandey M, Yin TH, Kaur T, Jia GW, Tan SQL, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Aug;101:596-613.
    PMID: 31029353 DOI: 10.1016/j.msec.2019.04.005
    Multidrug resistance (MDR) is one of the key barriers in chemotherapy, leading to the generation of insensitive cancer cells towards administered therapy. Genetic and epigenetic alterations of the cells are the consequences of MDR, resulted in drug resistivity, which reflects in impaired delivery of cytotoxic agents to the cancer site. Nanotechnology-based nanocarriers have shown immense shreds of evidence in overcoming these problems, where these promising tools handle desired dosage load of hydrophobic chemotherapeutics to facilitate designing of safe, controlled and effective delivery to specifically at tumor microenvironment. Therefore, encapsulating drugs within the nano-architecture have shown to enhance solubility, bioavailability, drug targeting, where co-administered P-gp inhibitors have additionally combat against developed MDR. Moreover, recent advancement in the stimuli-sensitive delivery of nanocarriers facilitates a tumor-targeted release of the chemotherapeutics to reduce the associated toxicities of chemotherapeutic agents in normal cells. The present article is focused on MDR development strategies in the cancer cell and different nanocarrier-based approaches in circumventing this hurdle to establish an effective therapy against deadliest cancer disease.
    Matched MeSH terms: Drug Resistance, Neoplasm
  16. Varshney P, Sharma V, Yadav D, Kumar Y, Singh A, Kagithala NR, et al.
    Curr Drug Metab, 2023;24(12):787-802.
    PMID: 38141188 DOI: 10.2174/0113892002266408231207150547
    BACKGROUND: Cancer drug resistance remains a difficult barrier to effective treatment, necessitating a thorough understanding of its multi-layered mechanism.

    OBJECTIVE: This study aims to comprehensively explore the diverse mechanisms of cancer drug resistance, assess the evolution of resistance detection methods, and identify strategies for overcoming this challenge. The evolution of resistance detection methods and identification strategies for overcoming the challenge.

    METHODS: A comprehensive literature review was conducted to analyze intrinsic and acquired drug resistance mechanisms, including altered drug efflux, reduced uptake, inactivation, target mutations, signaling pathway changes, apoptotic defects, and cellular plasticity. The evolution of mutation detection techniques, encompassing clinical predictions, experimental approaches, and computational methods, was investigated. Strategies to enhance drug efficacy, modify pharmacokinetics, optimizoptimizee binding modes, and explore alternate protein folding states were examined.

    RESULTS: The study comprehensively overviews the intricate mechanisms contributing to cancer drug resistance. It outlines the progression of mutation detection methods and underscores the importance of interdisciplinary approaches. Strategies to overcome drug resistance challenges, such as modulating ATP-binding cassette transporters and developing multidrug resistance inhibitors, are discussed. The study underscores the critical need for continued research to enhance cancer treatment efficacy.

    CONCLUSION: This study provides valuable insights into the complexity of cancer drug resistance mechanisms, highlights evolving detection methods, and offers potential strategies to enhance treatment outcomes.

    Matched MeSH terms: Drug Resistance, Neoplasm
  17. Zhang Y, Xu W, Guo H, Zhang Y, He Y, Lee SH, et al.
    Cancer Res, 2017 Apr 17.
    PMID: 28416482 DOI: 10.1158/0008-5472.CAN-16-1633
    Cancer stem-like cells (CSC) are thought to drive tumor initiation, metastasis, relapse and therapeutic resistance, but their specific pathogenic characters in many cancers including non-small cell lung cancer (NSCLC) have yet to be well defined. Here we develop findings that the growth factor HGF promotes CSC sphere formation in NSCLC cell populations. In patient-derived sphere-forming assays (PD-SFA) with HGF, CD49f and CD104 were defined as novel markers of lung CSC (LCSC). In particular, we isolated a subpopulation of CD166(+)CD49f(hi)CD104(-)Lin(-) LCSC present in all human specimens of NSCLC examined, regardless of their histological subtypes or genetic driver mutations. This specific cell population was tumorigenic and capable of self-renewal, giving rise to tumor spheres in vitro and orthotopic lung tumors in immune-compromised mice. Mechanistic investigations established that NOTCH1 was preferentially expressed in this cell subpopulation and required for self-renewal via the transcription factor HES1. Through a distinct HES1-independent pathway, NOTCH1 also protected LCSCs from cisplatin-induced cell death. Notably, treatment with a γ-secretase inhibitor that blunts NOTCH1 function ablated self-renewing LCSC activity and restored platinum sensitivity in vitro and in vivo Overall, our results define the pathogenic characters of a cancer stem-like subpopulation in lung cancer, the targeting of which may relieve platinum resistance in this disease.
    Matched MeSH terms: Drug Resistance, Neoplasm
  18. Ahmad R, Kaus NHM, Hamid S
    Adv Exp Med Biol, 2020;1292:65-82.
    PMID: 30560443 DOI: 10.1007/5584_2018_302
    INTRODUCTION: Drug resistance has been a continuous challenge in cancer treatment. The use of nanotechnology in the development of new cancer drugs has potential. One of the extensively studied compounds is thymoquinone (TQ), and this work aims to compare two types of TQ-nanoformulation and its cytotoxicity toward resistant breast cancer cells.

    METHOD: TQ-nanoparticles were prepared and optimized by using two different formulations with different drugs to PLGA-PEG ratio (1:20 and 1:7) and different PLGA-PEG to Pluronic F68 ratio (10:1 and 2:1). The morphology and size were determined using TEM and DLS. Characterization of particles was done using UV-VIS, ATR-IR, entrapment efficiency, and drug release. The effects of drug, polymer, and surfactants were compared between the two formulations. Cytotoxicity assay was performed using MTS assay.

    RESULTS: TEM finding showed 96% of particles produced with 1:7 drug to PLGA-PEG were less than 90 nm in size and spherical in shape. This was confirmed with DLS which showed smaller particle size than those formed with 1:20 drug to PLGA-PEG ratio. Further analysis showed zeta potential was negatively charged which could facilitate cellular uptake as reported previously. In addition, PDI value was less than 0.1 in both formulations indicating monodispersed and less broad in size distribution. The absorption peak of PLGA-PEG-TQ-Nps was at 255 nm. The 1:7 drug to polymer formulation was selected for further analysis where the entrapment efficiency was 79.9% and in vitro drug release showed a maximum release of TQ of 50%. Cytotoxicity result showed IC50 of TQ-nanoparticle at 20.05 μM and free TQ was 8.25 μM.

    CONCLUSION: This study showed that nanoparticle synthesized with 1:7 drug to PLGA-PEG ratio and 2:1 PLGA-PEG to Pluronic F68 formed nanoparticles with less than 100 nm and had spherical shape as confirmed with DLS. This could facilitate its transportation and absorption to reach its target. There was conserved TQ stability as exhibited slow release of this volatile oil. The TQ-nanoparticles showed selective cytotoxic effect toward UACC 732 cells compared to MCF-7 breast cancer cells.

    Matched MeSH terms: Drug Resistance, Neoplasm/drug effects*
  19. Fazlina N, Maha A, Jamal R, Zarina AL, Cheong SK, Hamidah H, et al.
    Hematology, 2007 Feb;12(1):33-7.
    PMID: 17364990
    The expression of the multidrug resistance (MDR) proteins may influence the outcome of treatment in patients with acute leukemia. The aim of this study was to determine the IC50 of cytotoxic drugs (cytosine arabinoside, ara-C and daunorubicin, dnr) using the in vitro 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)2H-tetrazolium, inner salt (MTS) assay method. A total of 82 newly diagnosed acute leukemia cases (43 adult myeloid leukaemia, AML cases and 39 acute lymphoblastic leukaemia, ALL cases) and 16 relapsed cases (8 AML cases and 8 ALL cases) were studied. The MTS assay was performed using two cytotoxic drugs, dnr and ara-C. Cells were incubated with different concentrations of drugs for 4 days and the IC50 was extrapolated from the viability curve. In newly diagnosed cases, we found that childhood ALL samples showed higher IC50 values of dnr (0.040 +/- 2.320) compared to adult AML samples (0.021 +/- 0.158). In contrast, newly diagnosed adult AML samples showed higher IC50 values of ara-C (0.157 +/- 0.529) compared to childhood ALL samples (0.100 +/- 2.350). In relapsed cases, two samples of childhood ALL showed IC50 values of dnr (0.910 +/- 1.760) and ara-C (1.310 +/- 2.390), which was higher compared to childhood AML samples (0.129 +/- 0.214 and 0.210 +/- 0.003, respectively). However, there was no correlation between IC50 values of these drugs tested with clinical outcome. In conclusion, we found that MTS assay is an easy, rapid and non laborious method to study in vitro drug resistance in acute leukaemia cases.
    Matched MeSH terms: Drug Resistance, Neoplasm*
  20. Ankathil R, Ismail SM, Mohd Yunus N, Sulong S, Husin A, Abdullah AD, et al.
    Malays J Pathol, 2020 Dec;42(3):307-321.
    PMID: 33361712
    Chronic myeloid leukaemia (CML) provides an illustrative disease model for both molecular pathogenesis of cancer and rational drug therapy. Imatinib mesylate (IM), a BCR-ABL1 targeted tyrosine kinase inhibitor (TKI) drug, is the first line gold standard drug for CML treatment. Conventional cytogenetic analysis (CCA) can identify the standard and variant Philadelphia (Ph) chromosome, and any additional complex chromosome abnormalities at diagnosis as well as during treatment course. Fluorescence in situ hybridization (FISH) is especially important for cells of CML patients with inadequate or inferior quality metaphases or those with variant Ph translocations. CCA in conjunction with FISH can serve as powerful tools in all phases of CML including the diagnosis, prognosis, risk stratification and monitoring of cytogenetic responses to treatment. Molecular techniques such as reverse transcriptase-polymerase chain reaction (RT-PCR) is used for the detection of BCR-ABL1 transcripts at diagnosis whereas quantitative reverse transcriptase-polymerase chain reaction (qRTPCR) is used at the time of diagnosis as well as during TKI therapy for the quantitation of BCR-ABL1 transcripts to evaluate the molecular response and minimal residual disease (MRD). Despite the excellent treatment results obtained after the introduction of TKI drugs, especially Imatinib mesylate (IM), resistance to TKIs develops in approximately 35% - 40% of CML patients on TKI therapy. Since point mutations in BCR-ABL1 are a common cause of IM resistance, mutation analysis is important in IM resistant patients. Mutations are reliably detected by nested PCR amplification of the translocated ABL1 kinase domain followed by direct sequencing of the entire amplified kinase domain. The objective of this review is to highlight the importance of regular and timely CCA, FISH analysis and molecular testing in the diagnosis, prognosis, assessment of therapeutic efficacy, evaluation of MRD and in the detection of BCR-ABL1 kinase mutations which cause therapeutic resistance in adult CML patients.
    Matched MeSH terms: Drug Resistance, Neoplasm/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links