Displaying publications 21 - 40 of 43 in total

Abstract:
Sort:
  1. Samsudin NA, Halim NRA, Sarbon NM
    J Food Sci Technol, 2018 Nov;55(11):4608-4614.
    PMID: 30333657 DOI: 10.1007/s13197-018-3399-0
    The aim of this study is to investigate the effect of pH levels on functional properties of various molecular weights of eel (Monopterus sp.) protein hydrolysate (EPH). The eel was enzymatically hydrolyzed and fractionated through membranes filter (10 kDa, 5 kDa and 3 kDa). The foaming capacity and stability, emulsifying capacity and stability index, water holding capacity and fat binding capacity between pH 2 and 10 were determined. The 5 kDa EPH was found to have the highest foaming capacity at pH 2, pH 4 and pH 6, and foaming stability and emulsifying activity index at all pH levels, except pH 8 and fat binding capacity at pH 2, as compared to 10 kDa and 3 kDa EPH fractions. The 10 kDa EPH had the highest emulsifying stability index and water holding capacity at all pH levels. This study shows that the EPH fractions at low pH level had high foaming and oil binding capacity, while at neutral pH, the fractions had high foaming stability and water holding capacity. These properties are important in making whipped cream, mousse and meringue. In contrast, EPH fractions demonstrated strong emulsifying properties at high pH levels and show potential as an emulsifier for breads, biscuits and frozen desserts.
    Matched MeSH terms: Emulsifying Agents
  2. Yang Y, Gupta VK, Amiri H, Pan J, Aghbashlo M, Tabatabaei M, et al.
    Int J Biol Macromol, 2023 Jun 01;239:124210.
    PMID: 37001778 DOI: 10.1016/j.ijbiomac.2023.124210
    Chitosan is one of the valuable products obtained from crustacean waste. The unique characteristics of chitosan (antimicrobial, antioxidant, anticancer, and anti-inflammatory) have increased its application in various sectors. Besides unique biological properties, chitosan or chitosan-based compounds can stabilize emulsions. Nevertheless, studies have shown that chitosan cannot be used as an efficient stabilizer because of its high hydrophilicity. Hence, this review aims to provide an overview of recent studies dealing with improving the emulsifying properties of chitosan. In general, two different approaches have been reported to improve the emulsifying properties of chitosan. The first approach tries to improve the stabilization property of chitosan by modifying its structure. The second one uses compounds such as polysaccharides, proteins, surfactants, essential oils, and polyphenols with more wettability and emulsifying properties than chitosan's particles in combination with chitosan to create complex particles. The tendency to use chitosan-based particles to stabilize Pickering emulsions has recently increased. For this reason, more studies have been conducted in recent years to improve the stabilizing properties of chitosan-based particles, especially using the electrostatic interaction method. In the electrostatic interaction method, numerous research has been conducted on using proteins and polysaccharides to increase the stabilizing property of chitosan.
    Matched MeSH terms: Emulsifying Agents
  3. Cheong KW, Mirhosseini H, Hamid NS, Osman A, Basri M, Tan CP
    Molecules, 2014 Jun 24;19(6):8691-706.
    PMID: 24962400 DOI: 10.3390/molecules19068691
    This study was conducted to investigate the effect of main emulsion components namely, modified starch, propylene glycol alginate (PGA), sucrose laurate and sucrose stearate on creaming index, cloudiness, average droplet size and conductivity of soursop beverage emulsions. Generally, the use of different emulsifiers or a mixture of emulsifiers has a significant (p < 0.05) effect on the response variables studied. The addition of PGA had a significant (p < 0.05) effect on the creaming index at 55 °C, while PGA-stabilized (PGA1) emulsions showed low creaming stability at both 25 °C and 55 °C. Conversely, the utilization of PGA either as a mixture or sole emulsifier, showed significantly (p < 0.05) higher cloudiness, as larger average droplet size will affect the refractive index of the oil and aqueous phases. Additionally, the cloudiness was directly proportional to the mean droplet size of the dispersed phase. The inclusion of PGA into the formulation could have disrupted the properties of the interfacial film, thus resulting in larger droplet size. While unadsorbed ionized PGA could have contributed to higher conductivity of emulsions prepared at low pH. Generally, emulsions prepared using sucrose monoesters or as a mixture with modified starch emulsions have significantly (p < 0.05) lower creaming index and conductivity values, but higher cloudiness and average droplet size.
    Matched MeSH terms: Emulsifying Agents/chemistry*
  4. Gannasin SP, Ramakrishnan Y, Adzahan NM, Muhammad K
    Molecules, 2012 Jun 05;17(6):6869-85.
    PMID: 22669042 DOI: 10.3390/molecules17066869
    Hydrocolloid from tamarillo (Solanum betaceum Cav.) puree was extracted using water and characterised for the first time. Proximate compositions of the extracted hydrocolloid were also determined. Functional characteristics such as water-holding capacity, oil-holding capacity, emulsifying activity, emulsion stability, foaming capacity and stability of the hydrocolloid were evaluated in comparison to that of commercial hydrocolloids. Its functional groups and degree of esterification were determined using Fourier Transform Infrared (FT-IR) spectroscopy. Monosaccharide profiling was done using reverse-phase high pressure liquid chromatography (RP-HPLC). Screening of various fruits for high hydrocolloid yield after water extraction resulted in tamarillo giving the highest yield. The yield on dry weight basis was 8.30%. The hydrocolloid constituted of 0.83% starch, 21.18% protein and 66.48% dietary fibre with 49.47% degree of esterification and the monosaccharides identified were mannose, ribose, rhamnose, galacturonic acid, glucose, galactose, xylose and arabinose. Higher oil-holding capacity, emulsifying activity and emulsion stability compared to commercial hydrocolloids propose its possible application as a food emulsifier and bile acid binder. Foaming capacity of 32.19% and good foam stabilisation (79.36% of initial foam volume after 2 h of foam formation) suggest its promising application in frothy beverages and other foam based food products. These findings suggest that water-extracted tamarillo hydrocolloid can be utilised as an alternative to low methoxyl pectin.
    Matched MeSH terms: Emulsifying Agents/chemistry
  5. Saadi S, Ariffin AA, Ghazali HM, Miskandar MS, Abdulkarim SM, Boo HC
    J Food Sci, 2011 Jan-Feb;76(1):C21-30.
    PMID: 21535649 DOI: 10.1111/j.1750-3841.2010.01922.x
    The ability of palm oil (PO) to crystallize as beta prime polymorph has made it an attractive option for the production of margarine fat (MF). Palm stearin (PS) expresses similar crystallization behavior and is considered one of the best substitutes of hydrogenated oils due to its capability to impart the required level of plasticity and body to the finished product. Normally, PS is blended with PO to reduce the melting point at body temperature (37 °C). Lipid phase, formulated by PO and PS in different ratios were subjected to an emulsification process and the following analyses were done: triacylglycerols, solid fat content (SFC), and thermal behavior. In addition, the microstructure properties, including size and number of crystals, were determined for experimental MFs (EMFs) and commercial MFs (CMFs). Results showed that blending and emulsification at PS levels over 40 wt% significantly changed the physicochemical and microstructure properties of EMF as compared to CMF, resulting in a desirable dipalmitoyl-oleoyl-glycerol content of less than 36.1%. SFC at 37 °C, crystal size, crystal number, crystallization, and melting enthalpies (ΔH) were 15%, 5.37 μm, 1425 crystal/μm(2), 17.25 J/g, and 57.69J/g, respectively. All data reported indicate that the formation of granular crystals in MFs was dominated by high-melting triacylglycerol namely dipalmitoyl-oleoyl-glycerol, while the small dose of monoacylglycerol that is used as emulsifier slowed crystallization rate. Practical Application: Most of the past studies were focused on thermal behavior of edible oils and some blends of oils and fats. The crystallization of oils and fats are well documented but there is scarce information concerning some mechanism related to crystallization and emulsification. Therefore, this study will help to gather information on the behavior of emulsifier on crystallization regime; also the dominating TAG responsible for primary granular crystal formations, as well as to determine the best level of stearin to impart the required microstructure properties and body to the finished products.
    Matched MeSH terms: Emulsifying Agents/chemistry*
  6. Adnani A, Basri M, Chaibakhsh N, Ahangar HA, Salleh AB, Rahman RN, et al.
    Carbohydr Res, 2011 Mar 1;346(4):472-9.
    PMID: 21276966 DOI: 10.1016/j.carres.2010.12.023
    Immobilized Candida antarctica lipase B-catalyzed esterification of xylitol and two fatty acids (capric and caproic acid) were studied in a solvent-free system. The Taguchi orthogonal array method based on three-level-four-variables with nine experiments was applied for the analysis and optimization of the reaction parameters including time, substrate molar ratio, amount of enzyme, and amount of molecular sieve. The obtained conversion was higher in the esterification of xylitol and capric acid with longer chain length. The optimum conditions derived via the Taguchi approach for the synthesis of xylitol caprate and xylitol caproate were reaction time, 29 and 18h; substrate molar ratio, 0.3 and 1.0; enzyme amount, 0.20 and 0.05g, and molecular sieve amount of 0.03g, respectively. The good correlation between the predicted conversions (74.18% and 61.23%) and the actual values (74.05% and 60.5%) shows that the model derived from the Taguchi orthogonal array can be used for optimization and better understanding of the effect of reaction parameters on the enzymatic synthesis of xylitol esters in a solvent-free system.
    Matched MeSH terms: Emulsifying Agents/chemical synthesis*
  7. Kuan YH, Bhat R, Senan C, Williams PA, Karim AA
    J Agric Food Chem, 2009 Oct 14;57(19):9154-9.
    PMID: 19757813 DOI: 10.1021/jf9015625
    The impact of ultraviolet (UV) irradiation on the physicochemical and functional properties of gum arabic was investigated. Gum arabic samples were exposed to UV irradiation for 30, 60, 90, and 120 min; gum arabic was also treated with formaldehyde for comparison. Molecular weight analysis using gel permeation chromatography indicated that no significant changes occurred on the molecular structure on the samples exposed to UV irradiation. Free amino group analysis indicated that mild UV irradiation (30 min) could induce cross-linking on gum arabic; this result was comparable with that of samples treated with formaldehyde. However, viscosity break down was observed for samples exposed to UV irradiation for longer times (90 and 120 min). All irradiated and formaldehyde-treated samples exhibited better emulsification properties than unirradiated samples. These results indicate that UV-irradiated gum arabic could be a better emulsifier than the native (unmodified) gum arabic and could be exploited commercially.
    Matched MeSH terms: Emulsifying Agents/chemistry
  8. Anarjan N, Tan CP
    Molecules, 2013 Jan 09;18(1):768-77.
    PMID: 23303336 DOI: 10.3390/molecules18010768
    The effects of selected nonionic emulsifiers on the physicochemical characteristics of astaxanthin nanodispersions produced by an emulsification/evaporation technique were studied. The emulsifiers used were polysorbates (Polysorbate 20, Polysorbate 40, Polysorbate 60 and Polysorbate 80) and sucrose esters of fatty acids (sucrose laurate, palmitate, stearate and oleate). The mean particle diameters of the nanodispersions ranged from 70 nm to 150 nm, depending on the emulsifier used. In the prepared nanodispersions, the astaxanthin particle diameter decreased with increasing emulsifier hydrophilicity and decreasing carbon number of the fatty acid in the emulsifier structure. Astaxanthin nanodispersions with the smallest particle diameters were produced with Polysorbate 20 and sucrose laurate among the polysorbates and the sucrose esters, respectively. We also found that the Polysorbate 80- and sucrose oleate-stabilized nanodispersions had the highest astaxanthin losses (i.e., the lowest astaxanthin contents in the final products) among the nanodispersions. This work demonstrated the importance of emulsifier type in determining the physicochemical characteristics of astaxanthin nano-dispersions.
    Matched MeSH terms: Emulsifying Agents/chemistry*
  9. Tan TB, Yussof NS, Abas F, Mirhosseini H, Nehdi IA, Tan CP
    Food Chem, 2016 Mar 1;194:416-23.
    PMID: 26471574 DOI: 10.1016/j.foodchem.2015.08.045
    A solvent displacement method was used to prepare lutein nanodispersions. The effects of processing parameters (addition method, addition rate, stirring time and stirring speed) and emulsifiers with different stabilizing mechanisms (steric, electrostatic, electrosteric and combined electrostatic-steric) on the particle size and particle size distribution (PSD) of the nanodispersions were investigated. Among the processing parameters, only the addition method and stirring time had significant effects (p<0.05) on the particle size and PSD. For steric emulsifiers, Tween 20, 40, 60 and 80 were used to produce nanodispersions successfully with particle sizes below 100nm. Tween 80 (steric) was then chosen for further comparison against sodium dodecyl sulfate (SDS) (electrostatic), sodium caseinate (electrosteric) and SDS-Tween 80 (combined electrostatic-steric) emulsifiers. At the lowest emulsifier concentration of 0.1%, all the emulsifiers invariably produced stable nanodispersions with small particle sizes (72.88-142.85nm) and narrow PSDs (polydispersity index<0.40).
    Matched MeSH terms: Emulsifying Agents/chemistry*
  10. Akit H, Collins CL, Fahri FT, Hung AT, D'Souza DN, Leury BJ, et al.
    Meat Sci, 2014 Mar;96(3):1147-51.
    PMID: 24334033 DOI: 10.1016/j.meatsci.2013.10.028
    The influence of dietary lecithin at doses of 0, 4, 20 or 80 g/kg fed to finisher gilts for six weeks prior to slaughter on growth performance, carcass quality and pork quality was investigated. M. longissimus lumborum (loin) was removed from 36 pig carcasses at 24h post-mortem for Warner-Bratzler shear force, compression, collagen content and colour analyses. Dietary lecithin increased dressing percentage (P=0.009). Pork chewiness and collagen content were decreased by dietary lecithin (P<0.05, respectively), suggesting that improved chewiness may be due to decreased collagen content. However, dietary lecithin had no effect on shear force, cohesiveness or hardness (P>0.05, respectively). Dietary lecithin reduced loin muscle L* values and increased a* values (P<0.05, respectively) but no changes on b* values (P=0.56). The data showed that dietary lecithin improved dressing percentage and resulted in less chewy and less pale pork.
    Matched MeSH terms: Emulsifying Agents/chemistry
  11. Soo YN, Tan CP, Tan PY, Khalid N, Tan TB
    J Sci Food Agric, 2021 Apr;101(6):2455-2462.
    PMID: 33034060 DOI: 10.1002/jsfa.10871
    BACKGROUND: The popularity of coffee, the second most consumed beverage in the world, contributes to the high demand for liquid non-dairy creamer (LNDC). In this study, palm olein emulsions (as LNDCs) were investigated as alternatives to the more common soybean oil-based LNDCs. LNDCs were prepared via different homogenization pressures (100-300 bar) using different types of oil (palm olein and soybean oil) and concentrations of DATEM emulsifier (5-20 g kg-1 ).

    RESULTS: Increases in homogenization pressure and emulsifier concentration were observed to have significant (P  0.05) differences between the prepared and commercial LNDCs in terms of their color, appearance, and overall acceptability.

    CONCLUSION: Shelf-stable LNDCs with qualities comparable to commercial LNDC were successfully fabricated. Valuable insights into the effects of homogenization pressure, oil type, and emulsifier concentration, as well as functionality and consumer acceptance of the LNDCs when added into black coffee, were obtained. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Emulsifying Agents/chemistry
  12. Wan Mohamad WAF, McNaughton D, Augustin MA, Buckow R
    Food Chem, 2018 Aug 15;257:361-367.
    PMID: 29622223 DOI: 10.1016/j.foodchem.2018.03.027
    Understanding the bioactive partitioning between the phases of an emulsion system underpins strategies for improving the efficiency of bioactive protection against degradation. We analysed partitioning of β-carotene in emulsions with various formulations in-situ using confocal Raman microscopy (CRM). The partitioning of β-carotene into the aqueous phase of emulsions increased when whey protein isolate (WPI) was heat or high pressure-treated prior to emulsion formation. However, increasing the concentration of high pressure-treated WPI reduced the β-carotene partitioning into the aqueous phase. Increasing the solid fat content in the carrier oil favoured the migration of β-carotene into the aqueous phase. The use of WPI as the emulsifier resulted in a greater partitioning of β-carotene into the aqueous phase compared to when Tween 40 was the emulsifier. This study demonstrates that partitioning of β-carotene between the aqueous and oil phase is dependent on the characteristics of the oil phase, emulsifier type and processing.
    Matched MeSH terms: Emulsifying Agents/chemistry*
  13. Cheong AM, Tan CP, Nyam KL
    J Food Sci, 2018 Oct;83(10):2457-2465.
    PMID: 30178877 DOI: 10.1111/1750-3841.14332
    Kenaf seed oil-in-water nanoemulsions (NANO) stabilized by sodium caseinate (SC), beta-cyclodextrin (β-CD), and Tween 20 (T20) have been optimized and shown to improve in vitro bioaccessibility and physicochemical stability in the previous study. The main objective of this study was to evaluate the stability of bioactive compounds and antioxidants in the NANO during storage at different temperatures (4 °C, 25 °C, and 40 °C). An evaluation of the antioxidant activities of each emulsifier showed that SC had good scavenging capability with 97.6% ABTS radical scavenging activity. Therefore, SC which was used as one of the main emulsifiers could further enhanced the antioxidant activity of NANO. At week 8 of storage, NANO that stored at 4 °C had maintained the best bioactive compounds stability and antioxidant activities with 90% retention of vitamin E and 65% retention of phytosterols. These results suggested that 4 °C would be the most suitable storage temperature for NANO containing naturally present vitamin E and phytosterols. From the accelerated storage results at 40 °C, NANO containing vitamin E and phytosterols had maintained half of its initial concentration until week 4 and week 2 of storage, which is equivalent to 16 weeks and 8 weeks of storage at room temperature, respectively.

    PRACTICAL APPLICATION: The results of this study provide a better understanding on the stability of bioactive compounds and antioxidant activities in oil-in-water nanoemulsions that stabilized by similar ternary emulsifiers during storage at different temperatures. In addition, this study could be used as a predictive model to estimate the shelf life of bioactive compounds encapsulated in the form of nanoemulsions.

    Matched MeSH terms: Emulsifying Agents/chemistry
  14. Cheong AM, Tan CP, Nyam KL
    Food Sci Technol Int, 2018 Jul;24(5):404-413.
    PMID: 29466882 DOI: 10.1177/1082013218760882
    Kenaf ( Hibiscus cannabinus L.) seed oil has been proven for its multi-pharmacological benefits; however, its poor water solubility and stability have limited its industrial applications. This study was aimed to further improve the stability of pre-developed kenaf seed oil-in-water nanoemulsions by using food-grade ternary emulsifiers. The effects of emulsifier concentration (1, 5, 10, 15% w/w), homogenisation pressure (16,000, 22,000, 28,000 psi), and homogenisation cycles (three, four, five cycles) were studied to produce high stability of kenaf seed oil-in-water nanoemulsions using high pressure homogeniser. Generally, results showed that the emulsifier concentration and homogenisation conditions had great effect ( p 
    Matched MeSH terms: Emulsifying Agents*
  15. Goh PS, Ng MH, Choo YM, Amru NB, Chuah CH
    Molecules, 2015;20(11):19936-46.
    PMID: 26556328 DOI: 10.3390/molecules201119666
    In the present study, tocotrienol rich fraction (TRF) nanoemulsions were produced as an alternative approach to improve solubility and absorption of tocotrienols. In the present study, droplet size obtained after 10 cycles of homogenization with increasing pressure was found to decrease from 120 to 65.1 nm. Nanoemulsions stabilized with Tween series alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) homogenized at 25,000 psi and 10 cycles, produced droplet size less than 100 nm and a narrow size distribution with a polydispersity index (PDI) value lower than 0.2. However blend of Tween series with Span 80 produced nanoemulsions with droplet size larger than 200 nm. This work has also demonstrated the amount of tocols losses in TRF nanoemulsion stabilized Tweens alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) ranged between 3%-25%. This can be attributed to the interfacial film formed surrounding the droplets exhibited different level of oxidative stability against heat and free radicals created during high pressure emulsification.
    Matched MeSH terms: Emulsifying Agents
  16. Lee PE, Choo WS
    J Food Sci Technol, 2015 Jul;52(7):4378-86.
    PMID: 26139903 DOI: 10.1007/s13197-014-1495-3
    The emulsifying capacity of surfactants (polysorbate 20, polysorbate 80 and soy lecithin) and proteins (soy protein isolate and whey protein isolate) in flaxseed oil was measured based on 1 % (w/w) of emulsifier. Surfactants showed significantly higher emulsifying capacity compared to the proteins (soy protein isolate and whey protein isolate) in flaxseed oil. The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a mixer was ranked in the following order: 1,000 rpm (58 min) ≈ 1,000 rpm (29 min) ≈ 2,000 rpm (35 min) >2,000 rpm (17.5 min). The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a homogenizer (Ultra Turrax) was independent of the speed and mixing time. The mean particle size of the flaxseed oil emulsions prepared using the two mixing devices ranged from 23.99 ± 1.34 μm to 47.22 ± 1.99 μm where else the particle size distribution and microstructure of the flaxseed oil emulsions demonstrated using microscopic imaging were quite similar. The flaxseed oil emulsions had a similar apparent viscosity and exhibited shear thinning (pseudoplastic) behavior. The flaxseed oil emulsions had L* value above 70 and was in the red-yellow color region (positive a* and b* values).
    Matched MeSH terms: Emulsifying Agents
  17. Kassim, S., Tahrin, R.A.A., Rusdi, N.F., Harun, N.A.
    ASM Science Journal, 2018;11(101):86-95.
    MyJurnal
    A feasible production of poly (methyl methacrylate)@alloy (gold-silver) core shell has
    been presented as candidate in enhanced detection of surface enhanced Raman scattering
    (SERS). Free emulsifier- emulsion synthesised PMMA sphere with average size of 419 nm in
    diameter were used as core material for incorporation of alloy nanoparticles (6 nm) resulting
    a core-shell structure. The fabrication of PMMA@alloy SERS substrate was successfully
    done via self-assembly thus the produced SERS substrate that comprise of unique optical
    properties combination arising from periodic core arrangement and plasmonic activity of
    alloy nanoparticles. Alloy is bimetallic nanoparticles in which the combination of silver
    (Ag) and gold (Au) present an absolutely improved light resistance as compared to single
    metal alone with great surface plasmon resonance. Morphology and elemental analysis was
    performed through scanning electron microscope (SEM) and the analysis showing species of
    both Au and Ag in single alloy nanoparticles. The alloy nanoparticles were also observed to
    homogenously coating the PMMA sphere. Surface plasmon resonance activity was maximum
    at 476 nm obtained from UV-Visible spectroscopy. High surface production was observed
    to have periodically arranged PMMA@alloy core -shell and potentially to be used as SERS
    substrate.
    Matched MeSH terms: Emulsifying Agents
  18. Al-Edresi S, Baie S
    Int J Pharm, 2009 May 21;373(1-2):174-8.
    PMID: 19429303 DOI: 10.1016/j.ijpharm.2009.02.011
    Virgin coconut oil (VCO)-in-water, nano-emulsion in the form of cream stabilized by Emulium Kappa as an emulsifier, was prepared by using the Emulsion Inversion Point method. A nano-emulsion with droplet size <300 nm was then obtained. VCO has recently become a more popular new material in the cosmetic industries. Emulium Kappa is an ionic emulsifier that contains sodium stearoyl lactylate, the active whitening ingredient was Kojic Dipalmitate. Ostwald ripening is the main destabilizing factor for the nano-emulsion. This decline can be reduced by adding non-soluble oil, namely squalene, to the virgin coconut oil. We tested VCO:squalene in the ratios of 10:0, 9.8:0.2, 9.6:0.4, 9.4:0.6, 9.2:0.8, 9:1 and 8:2 and discovered that squalene's higher molecular weight (above critical molecular weight) resulted in low polarity and insolubility in the continuous phase. The continuous partitioning between the droplets results in the decline of Ostwald ripening. Furthermore, flocculation may occur due to the instability of nano-emulsion, especially for the preparations with little or no squalene at all. The stability of the nano-emulsion was evaluated by the electrophoretic properties of the emulsion droplets. The zeta potential values for the emulsion increased as the percentage of squalene oil increased.
    Matched MeSH terms: Emulsifying Agents/chemistry
  19. Chee KL, Ayob MK
    Food Sci Technol Int, 2013 Apr;19(2):109-22.
    PMID: 23520324 DOI: 10.1177/1082013212442185
    Response surface methodology was applied to study the optimization of palm kernel cake protein (PKCP) hexametaphosphate-assisted extraction. The optimum PKCP yield (28.37%) when extracted using 1.50% sodium hexametaphosphate (SHMP) of pH 10, at 50 °C, and the 1:70 (w/v) ratio of cake-to-solvent was significantly (P 
    Matched MeSH terms: Emulsifying Agents/chemistry
  20. Ismail S, Dadrasnia A
    PLoS One, 2015;10(4):e0120931.
    PMID: 25875763 DOI: 10.1371/journal.pone.0120931
    Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater.
    Matched MeSH terms: Emulsifying Agents/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links