Displaying publications 21 - 40 of 96 in total

Abstract:
Sort:
  1. Camalxaman SN, Zeenathul NA, Quah YW, Loh HS, Zuridah H, Hani H, et al.
    In Vitro Cell Dev Biol Anim, 2013 Mar;49(3):238-44.
    PMID: 23435855 DOI: 10.1007/s11626-012-9553-5
    Endothelial cells have been implicated as key cells in promoting the pathogenesis and spread of cytomegalovirus (CMV) infection. This study describes the isolation and culture of rat brain endothelial cells (RBEC) and further evaluates the infectious potential of a Malaysian rat CMV (RCMV ALL-03) in these cultured cells. Brain tissues were mechanically fragmented, exposed to enzymatic digestion, purified by gradient density centrifugation, and cultured in vitro. Morphological characteristics and expression of von Willebrand factor (factor VIII-related antigen) verified the cells were of endothelial origin. RBEC were found to be permissive to the virus by cytopathic effects with detectable plaques formed within 7 d of infection. This was confirmed by electron microscopy examination which proved the existence of the viral particles in the infected cells. The susceptibility of the virus to these target cells under the experimental conditions described in this report provides a platform for developing a cell-culture-based experimental model for studies of RCMV pathogenesis and allows stimulation of further studies on host cell responses imposed by congenital viral infections.
    Matched MeSH terms: Endothelium, Vascular/metabolism; Endothelium, Vascular/pathology; Endothelium, Vascular/virology
  2. Choy KW, Lau YS, Murugan D, Mustafa MR
    PLoS One, 2017;12(5):e0178365.
    PMID: 28562691 DOI: 10.1371/journal.pone.0178365
    Endoplasmic reticulum (ER) stress leads to endothelial dysfunction which is commonly associated in the pathogenesis of several cardiovascular diseases. We explored the vascular protective effects of chronic treatment with paeonol (2'-hydroxy-4'-methoxyacetophenone), the major compound from the root bark of Paeonia suffruticosa on ER stress-induced endothelial dysfunction in mice. Male C57BL/6J mice were injected intraperitoneally with ER stress inducer, tunicamycin (1 mg/kg/week) for 2 weeks to induce ER stress. The animals were co-administered with or without paeonol (20 mg/kg/oral gavage), reactive oxygen species (ROS) scavenger, tempol (20 mg/kg/day) or ER stress inhibitor, tauroursodeoxycholic acid (TUDCA, 150 mg/kg/day) respectively. Blood pressure and body weight were monitored weekly and at the end of treatment, the aorta was isolated for isometric force measurement. Protein associated with ER stress (GRP78, ATF6 and p-eIF2α) and oxidative stress (NOX2 and nitrotyrosine) were evaluated using Western blotting. Nitric oxide (NO) bioavailability were determined using total nitrate/nitrite assay and western blotting (phosphorylation of eNOS protein). ROS production was assessed by en face dihydroethidium staining and lucigenin-enhanced chemiluminescence assay, respectively. Our results revealed that mice treated with tunicamycin showed an increased blood pressure, reduction in body weight and impairment of endothelium-dependent relaxations (EDRs) of aorta, which were ameliorated by co-treatment with either paeonol, TUDCA and tempol. Furthermore, paeonol reduced the ROS level in the mouse aorta and improved NO bioavailability in tunicamycin treated mice. These beneficial effects of paeonol observed were comparable to those produced by TUDCA and tempol, suggesting that the actions of paeonol may involve inhibition of ER stress-mediated oxidative stress pathway. Taken together, the present results suggest that chronic treatment with paeonol preserved endothelial function and normalized blood pressure in mice induced by tunicamycin in vivo through the inhibition of ER stress-associated ROS.
    Matched MeSH terms: Endothelium, Vascular/drug effects*; Endothelium, Vascular/metabolism; Endothelium, Vascular/physiology
  3. Wee CL, Mokhtar SS, Banga Singh KK, Rasool AHG
    Microvasc Res, 2021 Nov;138:104227.
    PMID: 34324883 DOI: 10.1016/j.mvr.2021.104227
    This study examined the effects of vitamin D deficiency on vascular function and tissue oxidative status in the microcirculation; and whether or not these effects can be ameliorated with calcitriol, the active vitamin D metabolite. Three groups (n = 10 each) of male Sprague Dawley rats were fed for 10 weeks with control diet (CR), vitamin D-deficient diet without (DR), or with oral calcitriol supplementation (0.15 μg/kg) for the last four weeks (DSR). After 10 weeks, rats were sacrificed; mesenteric arterial rings were studied using wire myograph. Oxidative stress biomarkers malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured in the mesenteric arterial tissue. Vascular protein expression of endothelial nitric oxide synthase (eNOS) was determined by Western blotting. Acetylcholine-induced endothelium-dependent relaxation of DR was lower than CR. eNOS expression and SOD activity were lower in mesenteric arterial tissue of DR compared to CR. Calcitriol supplementation to DSR did not ameliorate the above parameters; in fact, augmented endothelium-dependent contraction was observed. Serum calcium was higher in DSR compared to CR and DR. In conclusion, vitamin D deficiency impaired microvascular vasodilation, associated with eNOS downregulation and reduced antioxidant activity. Calcitriol supplementation to vitamin D-deficient rats at the dosage used augmented endothelium-dependent contraction, possibly due to hypercalcaemia.
    Matched MeSH terms: Endothelium, Vascular/drug effects; Endothelium, Vascular/enzymology*; Endothelium, Vascular/physiopathology
  4. Ataollahi F, Pingguan-Murphy B, Moradi A, Wan Abas WA, Chua KH, Abu Osman NA
    Cytotherapy, 2014 Aug;16(8):1145-52.
    PMID: 24831838 DOI: 10.1016/j.jcyt.2014.01.010
    Numerous protocols for the isolation of bovine aortic endothelial cells have been described in the previous literature. However, these protocols prevent researchers from obtaining the pure population of endothelial cells. Thus, this study aimed to develop a new and economical method for the isolation of pure endothelial cells by introducing a new strategy to the enzymatic digestion method proposed by previous researchers.
    Matched MeSH terms: Endothelium, Vascular/cytology*
  5. Ataollahi F, Pramanik S, Moradi A, Dalilottojari A, Pingguan-Murphy B, Wan Abas WA, et al.
    J Biomed Mater Res A, 2015 Jul;103(7):2203-13.
    PMID: 24733741 DOI: 10.1002/jbm.a.35186
    Extracellular environments can regulate cell behavior because cells can actively sense their mechanical environments. This study evaluated the adhesion, proliferation and morphology of endothelial cells on polydimethylsiloxane (PDMS)/alumina (Al2 O3 ) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 2.5, 5, 7.5, and 10 wt % Al2 O3 at a curing temperature of 50°C for 4 h. The substrates were then characterized by mechanical, structural, and morphological analyses. The cell adhesion, proliferation, and morphology of cultured bovine aortic endothelial (BAEC) cells on substrate materials were evaluated by using resazurin assay and 1,1'-dioctadecyl-1,3,3,3',3'-tetramethylindocarbocyanine perchlorate-acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The composites (PDMS/2.5, 5, 7.5, and 10 wt % Al2 O3 ) exhibited higher stiffness than the pure PDMS substrate. The results also revealed that stiffer substrates promoted endothelial cell adhesion and proliferation and also induced spread morphology in the endothelial cells compared with lesser stiff substrates. Statistical analysis showed that the effect of time on cell proliferation depended on stiffness. Therefore, this study concludes that the addition of different Al2 O3 percentages to PDMS elevated substrate stiffness which in turn increased endothelial cell adhesion and proliferation significantly and induced spindle shape morphology in endothelial cells.
    Matched MeSH terms: Endothelium, Vascular/cytology*
  6. Al-Tahami BA, Yvonne-Tee GB, Halim AS, Ismail AA, Rasool AH
    Methods Find Exp Clin Pharmacol, 2010 Apr;32(3):181-5.
    PMID: 20448860 DOI: 10.1358/mf.2010.32.3.1423887
    Iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) combined with laser Doppler fluximetry (LDF) is a tool used to determine microvascular endothelial function. Our aim was to study the reproducibility of different parameters of this technique using iontophoresis with low current strength on the forearm skin of healthy subjects. Baseline skin perfusion was done before application of five current pulses with 1 min of current-free interval. Current strength of 0.007 mA, current density of 0.01 mA/cm(2) and charge density of 6 mC/cm(2) were used, along with 1% ACh and 1% SNP. The absolute maximum change in perfusion (max), percent change in perfusion (% change), peak change in perfusion (peak) and area under the curve during iontophoresis (AUC) at the anodal and cathodal leads were recorded. Measurements were performed in three sessions for 2 days. The coefficient of variation (CV) was calculated for each parameter. Among the parameters studied, maximum change in perfusion and peak flux were the most reproducible parameters.
    Matched MeSH terms: Endothelium, Vascular/metabolism*
  7. Kannan RY, Sales KM, Salacinski HJ, Butler PE, Seifalian AM
    Med J Malaysia, 2004 May;59 Suppl B:99-100.
    PMID: 15468837
    Matched MeSH terms: Endothelium, Vascular/drug effects*
  8. John DV, Lin YS, Perng GC
    J Biomed Sci, 2015;22:83.
    PMID: 26462910 DOI: 10.1186/s12929-015-0191-6
    Dengue virus infection presents a wide spectrum of manifestations including asymptomatic condition, dengue fever (DF), or severe forms, such as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) in affected individuals. The early prediction of severe dengue in patients without any warning signs who may later develop severe DHF is very important to choose appropriate intensive supportive therapy since available vaccines for immunization are yet to be approved. Severe dengue responses include T and B cell activation and apoptosis, cytokine storm, hematologic disorders and complement activation. Cytokines, complement and other unidentified factors may transiently act on the endothelium and alter normal fluid barrier function of the endothelial cells and cause plasma leakage. In this review, the host factors such as activated immune and endothelial cells and their products which can be utilized as biomarkers for severe dengue disease are discussed.
    Matched MeSH terms: Endothelium, Vascular/metabolism*
  9. Munisamy S, Daud KM, Mokhtar SS, Rasool AH
    Microcirculation, 2016 Jan;23(1):53-61.
    PMID: 26749451 DOI: 10.1111/micc.12256
    To determine the effects of six months alfacalcidol on microvascular endothelial function, arterial stiffness, and BP in DN patients.
    Matched MeSH terms: Endothelium, Vascular/physiopathology*
  10. Mokhtar SS, Vanhoutte PM, Leung SW, Yusof MI, Wan Sulaiman WA, Mat Saad AZ, et al.
    Nitric Oxide, 2016 Feb 29;53:35-44.
    PMID: 26768833 DOI: 10.1016/j.niox.2015.12.007
    Diabetes impairs endothelium-dependent relaxations. The present study evaluated the contribution of different endothelium-dependent relaxing mechanisms to the regulation of vascular tone in subcutaneous blood vessels of humans with Type 2 diabetes mellitus. Subcutaneous arteries were isolated from tissues of healthy controls and diabetics. Vascular function was determined using wire myography. Expressions of proteins were measured by Western blotting and immunostaining. Endothelium-dependent relaxations to acetylcholine were impaired in arteries from diabetics compared to controls (P = 0.009). Acetylcholine-induced nitric oxide (NO)-mediated relaxations [in the presence of an inhibitor of cyclooxygenases (COX; indomethacin) and small and intermediate conductance calcium-activated potassium channel blockers (UCL1684 and TRAM 34, respectively)] were attenuated in arteries from diabetics compared to controls (P endothelium-dependent hyperpolarization (EDH)-type relaxations [in the presence of indomethacin and the NO synthase blocker, l-NAME] were augmented in arteries from diabetics compared to controls (P = 0.003). Endothelium-independent relaxations to sodium nitroprusside (NO donor) and salbutamol (β-adrenoceptor agonist) were preserved, but those to prostacyclin were attenuated in diabetics compared to controls (P = 0.017). In arteries of diabetics, protein expressions of endothelial NO synthase, prostacyclin synthase and prostacyclin receptors were decreased, but those of COX-2 were increased. These findings suggest that in human diabetes, the impairment of endothelium-dependent relaxations is caused by a diminished NO bioavailability; however, EDH appears to compensate, at least in part, for this dysfunction.
    Matched MeSH terms: Endothelium, Vascular/metabolism*
  11. Prakash ES, Fink GD
    Clin Exp Pharmacol Physiol, 2010 Feb;37(2):e99-e106.
    PMID: 19719749 DOI: 10.1111/j.1440-1681.2009.05284.x
    1. We believe that the ultimate goal of cardiovascular regulatory mechanisms is not the regulation of arterial blood pressure (BP), but the maintenance of tissue blood flows commensurate with metabolic requirements. Thus, elevated BP can potentially contribute to optimizing tissue blood flows under select circumstances; for example, when there are primary defects in autoregulation of tissue blood flows. 2. The hypothesis that a primary defect in autoregulation of tissue blood flows may be responsible for the development of hypertension is presented. It is argued that, in this context, at least part of the rise in BP may be reflexly driven by a 'metaboreflex', a homeostatic mechanism acting to regulate tissue blood flows. 3. We argue that in the context of primary defects in autoregulation of tissue blood flows, the ability to generate and sustain a hypertensive phenotype increases the lifespan of species (i.e. if it were not for this adaptive hypertensive phenotype, death due to circulatory failure would occur much earlier). 4. Experimental and clinical evidence that indirectly supports the hypothesis is reviewed briefly and a means for testing this hypothesis is suggested.
    Matched MeSH terms: Endothelium, Vascular/physiopathology
  12. Nawi A, Eu KL, Faris ANA, Wan Ahmad WAN, Noordin L
    Exp Physiol, 2020 08;105(8):1223-1231.
    PMID: 32539237 DOI: 10.1113/EP088667
    NEW FINDINGS: What is the central question of this study? Deprivation of rapid eye movement (REM) sleep is associated with increased oxidative stress, but its effects on the blood vessels are poorly documented. We investigated whether REM sleep deprivation induces oxidative stress and causes lipid peroxidation in the aorta. What is the main finding and its important? We demonstrate that REM sleep deprivation induces oxidative stress and mediates lipid peroxidation in the aorta. This can cause endothelial changes and increased blood pressure. These findings will contribute to the growing body of literature on the mechanism underlying the effects of sleep deprivation on cardiovascular disease.

    ABSTRACT: Oxidative stress-mediated lipid peroxidation is a known cause of endothelial injury or dysfunction. Deprivation of rapid eye movement (REM) sleep is associated with oxidative stress. To date, the pathogenesis of increased blood pressure after sleep deprivation remains poorly understood, particularly in the REM sleep phase. Our aim was to investigate the effects of REM sleep deprivation on blood vessels in the REM sleep-deprived rat model. Twenty-eight male Sprague-Dawley rats were divided into four equal groups: free-moving control rats, rats deprived of REM sleep for 72 h (REMsd), tank control rats and 72 h sleep-recovered rats after 72 h of REM sleep deprivation. The rats were deprived of REM sleep using the inverted flowerpot technique. Food consumption, body weight gain and systolic blood pressure were monitored. At the end of the experiment, the descending thoracic aorta was isolated for the measurement of oxidative stress markers. Despite a significant increase in food consumption in the REMsd group compared with the other groups, there was a significant reduction in body weight gain. Systolic blood pressure also showed a significant increase in the REMsd group compared with the other groups. Superoxide dismutase activity was significantly lower and malondialdehyde concentrations significantly higher in the REMsd group compared with the other groups. Increased levels of malondialdehyde are suggestive of lipid peroxidation in the blood vessels, and oxidative stress may be attributed to the initiation of the process. The changes after REM sleep deprivation revert during sleep recovery. In conclusion, the findings of the present study provide convincing evidence that REM sleep deprivation induced lipid peroxidation, leading to endothelial damage.

    Matched MeSH terms: Endothelium, Vascular/physiopathology*
  13. Yam MF, Tan CS, Ahmad M, Shibao R
    Eur J Pharmacol, 2016 Oct 15;789:27-36.
    PMID: 27370961 DOI: 10.1016/j.ejphar.2016.06.047
    Previous studies demonstrated that eupatorin content in Orthosiphon stamineus fractions correlated with their vasorelaxation activity. Even with previous studies, there is still very little information on the vasorelaxation effect of eupatorin, and not many scientific studies had been carried out. Therefore, the present study was designed to investigate the vasorelaxation activity and mechanism of action of eupatorin. The vasorelaxation activity and the underlying mechanisms of eupatorin was evaluated on thoracic aortic rings isolated from Sprague Dawley rats. Eupatorin caused the relaxation of aortic rings pre-contracted with phenylephrine with and without endothelium (pD2=6.66±0.13, EMAX=99.72±6.39%; pD2=6.10±0.22, EMAX=65.78±8.01%), and also the relaxation of endothelium-intact aortic rings pre-contracted with potassium chloride (pD2=6.20±0.30, EMAX=71.89±12.25%). In the presence of Nω-nitro-l-arginine methyl ester (pD2<4.60, EMAX=24.91±6.39%), methylene blue (pD2=6.05±0.38, EMAX=66.79±9.69%), ODQ (pD25.84±0.32, EMAX=60.47±9.6%), indomethacin (pD2=6.27±0.21, EMAX=76.03±9.45%), tetraethylammonium (pD2=6.09±0.35, EMAX=69.35±11.31%), 4-aminopyridine (pD2=6.34±0.12, EMAX=76±6.1%), barium chloride (pD2=6.47±0.14, EMAX=79.61±10.02%), atropine (pD2=6.36±0.29, EMAX=86.47±12.95%) and propranolol (pD2=6.49±0.26, EMAX=83.2±12.01%), relaxation stimulated by eupatorin was significantly reduced. Eupatorin was also found to be active in reducing Ca(2+) release from sarcoplasmic reticulum and in blocking calcium channels. The present study demonstrates the vasorelaxation effect of eupatorin involving NO/sGC/cGMP and indomethacin pathways, calcium and potassium channels, and muscarinic and beta-adrenergic receptors.
    Matched MeSH terms: Endothelium, Vascular/drug effects
  14. Mohd Sabri NA, Lee SK, Murugan DD, Ling WC
    Sci Rep, 2022 Oct 21;12(1):17633.
    PMID: 36271015 DOI: 10.1038/s41598-022-21107-5
    Epigallocatechin gallate (EGCG) has been shown to have antihypertensive activity. However, the role of epigallocatechin gallate (EGCG) in improving vascular function via modulation of endothelial nitric oxide synthase (eNOS) in hypertensive subjects is not well researched. Angiotensin II-infused hypertensive mice (8-10 weeks old) received EGCG (50 mg/kg/day) for 14 days via oral gavage. The arterial systolic blood pressure (SBP) was measured using the tail-cuff method every three days. At the end of the treatment, the vascular reactivity of the isolated aortae was studied using wire myographs. The level of nitric oxide (NO), cyclic guanosine monophosphate (cGMP) and tetrahydrobiopterine (BH4) were determined using assay kits while the presence of proteins (NOS, p-eNOS and NOx-2) were determined using by Western blotting. In vivo treatment with EGCG for 14 days significantly attenuated the increase in SBP, alleviated the vascular dysfunction, increased the vascular cGMP and BH4 level as well as the expression of p-eNOS and decreased elevated ROS level and NOx-2 protein in angiotensin II-infused hypertensive mice. Collectively, treatment with EGCG in hypertensive mice exerts a blood pressure lowering effect which is partly attributed to the improvement in the vascular function due to its ability to reduce vascular oxidative stress in the aortic tissue leading to a decrease in eNOS uncoupling thus increasing NO bioavailability.
    Matched MeSH terms: Endothelium, Vascular/metabolism
  15. Barber BE, Grigg MJ, Piera KA, Chen Y, William T, Weinberg JB, et al.
    Sci Rep, 2021 May 07;11(1):9741.
    PMID: 33963210 DOI: 10.1038/s41598-021-88962-6
    Degradation of the endothelial glycocalyx is associated with mortality in adult falciparum malaria. However, its role in the pathogenesis of non-falciparum malaria is unknown. In Malaysian patients with knowlesi (n = 200) and vivax (n = 61) malaria, and in healthy controls (n = 50), we measured glycocalyx breakdown products plasma syndecan-1 and urinary glycosaminoglycans, and evaluated correlations with biomarkers of disease severity. Urinary glycosaminoglycans were increased in patients with knowlesi and vivax malaria compared to healthy controls, and in knowlesi malaria were highest in those with severe disease. In knowlesi malaria, plasma syndecan-1 was also highest in those with severe disease, and correlated with markers of endothelial activation (angiopoietin-2, osteoprotegerin, ICAM-1), asymmetric dimethylarginine (ADMA) and impaired microvascular reactivity. Syndecan-1 also correlated with endothelial activation (ICAM-1, angiopoietin-2) and ADMA in vivax malaria. In knowlesi malaria increased syndecan-1 was associated with acute kidney injury, after controlling for age and parasitemia. In knowlesi malaria, the difference in median syndecan-1 between severe and non-severe disease was more marked in females than males. Endothelial glycocalyx degradation is increased in knowlesi and vivax malaria, and associated with disease severity and acute kidney injury in knowlesi malaria. Agents that inhibit glycocalyx breakdown may represent adjunctive therapeutics for severe non-falciparum malaria.
    Matched MeSH terms: Endothelium, Vascular/metabolism*
  16. Lau YS, Machha A, Achike FI, Murugan D, Mustafa MR
    Exp Biol Med (Maywood), 2012 Jan;237(1):93-8.
    PMID: 22156043 DOI: 10.1258/ebm.2011.011145
    Boldine, a major aporphine alkaloid found in Chilean boldo tree, is a potent antioxidant. Oxidative stress plays a detrimental role in the pathogenesis of endothelial dysfunction in hypertension. In the present study, we investigated the effects of boldine on endothelial dysfunction in hypertension using spontaneously hypertensive rats (SHR), the most studied animal model of hypertension. SHR and their age-matched normotensive Wistar-Kyoto (WKY) rats were treated with boldine (20 mg/kg per day) or its vehicle, which served as control, for seven days. Control SHR displayed higher systolic blood pressure (SBP), reduced endothelium-dependent aortic relaxation to acetylcholine (ACh), marginally attenuated endothelium-independent aortic relaxation to sodium nitroprusside (SNP), increased aortic superoxide and peroxynitrite production, and enhanced p47(phox) protein expression as compared with control WKY rats. Boldine treatment significantly lowered SBP in SHR but not in WKY. Boldine treatment enhanced the maximal relaxation to ACh in SHR, but had no effect in WKY, whereas the sensitivity to ACh was increased in both SHR and WKY aortas. Boldine treatment enhanced sensitivity, but was without effect on maximal aortic relaxation responses, to SNP in both WKY and SHR aortas. In addition, boldine treatment lowered aortic superoxide and peroxynitrite production and downregulated p47(phox) protein expression in SHR aortas, but had no effect in the WKY control. These results show that boldine treatment exerts endothelial protective effects in hypertension, achieved, at least in part, through the inhibition of NADPH-mediated superoxide production.
    Matched MeSH terms: Endothelium, Vascular/drug effects*; Endothelium, Vascular/physiopathology
  17. Ajay M, Chai HJ, Mustafa AM, Gilani AH, Mustafa MR
    J Ethnopharmacol, 2007 Feb 12;109(3):388-93.
    PMID: 16973321
    Previous studies have demonstrated the anti-hypertensive effects of Hibiscus sabdariffa L. (HS) in both humans and experimental animals. To explore the mechanisms of the anti-hypertensive effect of the HS, we examined the effects of a crude methanolic extract of the calyces of HS (HSE) on vascular reactivity in isolated aortas from spontaneously hypertensive rats. HSE relaxed, concentration-dependently, KCl (high K(+), 80 mM)- and phenylephrine (PE, 1 microM)-pre-contracted aortic rings, with a greater potency against the alpha(1)-adrenergic receptor agonist. The relaxant effect of HSE was partly dependent on the presence of a functional endothelium as the action was significantly reduced in endothelium-denuded aortic rings. Pretreatment with atropine (1 microM), L-NAME (10 microM) or methylene blue (10 microM), but not indomethacin (10 microM), significantly blocked the relaxant effects of HSE. Endothelium-dependent and -independent relaxations induced by acetylcholine and sodium nitroprusside, respectively, were significantly enhanced in aortic rings pretreated with HSE when compared to those observed in control aortic rings. The present results demonstrated that HSE has a vasodilator effect in the isolated aortic rings of hypertensive rats. These effects are probably mediated through the endothelium-derived nitric oxide-cGMP-relaxant pathway and inhibition of calcium (Ca(2+))-influx into vascular smooth muscle cells. The present data further supports previous in vivo findings and the traditional use of HS as an anti-hypertensive agent.
    Matched MeSH terms: Endothelium, Vascular/drug effects; Endothelium, Vascular/physiopathology
  18. Loong BJ, Tan JH, Lim KH, Mbaki Y, Ting KN
    Naunyn Schmiedebergs Arch Pharmacol, 2015 Oct;388(10):1061-7.
    PMID: 26051407 DOI: 10.1007/s00210-015-1140-3
    The functional responses of different overnight-stored in vitro tissues are not clearly described in any animal model. The influence of overnight storage in an animal model may vary between tissue types. We employed Sprague-Dawley rat as our animal model and investigated the functional changes of rat aorta, trachea, bronchus and bladder that were used (i) immediately after surgical removal (denoted as fresh) and (ii) after storage in aerated (95% O2, 5% CO2) Krebs-Ringer bicarbonate solution at 4 °C for 24 h (denoted as stored). The aorta ring was pre-contracted with phenylephrine, and the functional response of the tissue was investigated using isoprenaline, forskolin and carbachol. Carbachol was also used to increase the tone in trachea, bronchus rings and bladder strips. A clear reduced function of endothelium, with a minor if any effect in the smooth muscle function in rat aorta was observed after overnight storage. The contractile response of overnight-stored rat airway (trachea and bronchus) and bladder smooth muscles remained unchanged. Among all tested tissues, only bronchus showed a reduced response rate (only 40% responded) after storage. In vitro rat tissues that are stored in Krebs solution at 4 °C for 24 h can still be used to investigate smooth muscle responses, however, not endothelium-mediated responses for aorta. The influence of overnight storage on different tissues from an animal model (Sprague-Dawley rat in our study) also provides an insight in maximising the use of sacrificed animals.
    Matched MeSH terms: Endothelium, Vascular/drug effects*; Endothelium, Vascular/metabolism
  19. Ling WC, Liu J, Lau CW, Murugan DD, Mustafa MR, Huang Y
    Biochem Pharmacol, 2017 Jul 15;136:76-85.
    PMID: 28396195 DOI: 10.1016/j.bcp.2017.04.007
    Salvianolic acid B (Sal B) is one of the most abundant phenolic acids derived from the root of Danshen with potent anti-oxidative properties. The present study examined the vasoprotective effect of Sal B in hypertensive mice induced by angiotensin II (Ang II). Sal B (25mg/kg/day) was administered via oral gavage for 11days to Ang II (1.2mg/kg/day)-infused C57BL/6J mice (8-10weeks old). The vascular reactivity (both endothelium-dependent relaxations and contractions) in mouse arteries was examined by wire myography. The production of reactive oxygen species (ROS), protein level and localization of angiotensin AT1 receptors and the proteins involved in ROS formation were evaluated using dihydroethidium (DHE) fluorescence, lucigenin-enhanced chemiluminescence, immunohistochemistry and Western blotting, respectively. The changes of ROS generating proteins were also assessed in vitro in human umbilical vein endothelial cells (HUVECs) exposed to Ang II with and without co-treatment with Sal B (0.1-10nM). Oral administration of Sal B reversed the Ang II-induced elevation of arterial systolic blood pressure in mice, augmented the impaired endothelium-dependent relaxations and attenuated the exaggerated endothelium-dependent contractions in both aortas and renal arteries of Ang II-infused mice. In addition, Sal B treatment normalized the elevated levels of AT1 receptors, NADPH oxidase subunits (NOx-2 and NOx-4) and nitrotyrosine in arteries of Ang II-infused mice or in Ang II-treated HUVECs. In summary, the present study provided additional evidence demonstrating that Sal B treatment for 11days reverses the impaired endothelial function and with a marked inhibition of AT1 receptor-dependent vascular oxidative stress. This vasoprotective and anti-oxidative action of Sal B most likely contributes to the anti-hypertensive action of the plant-derived compound.
    Matched MeSH terms: Endothelium, Vascular/drug effects; Endothelium, Vascular/physiology*
  20. Machha A, Mustafa MR
    J Cardiovasc Pharmacol, 2005 Jul;46(1):36-40.
    PMID: 15965352
    Flavonoids are known to possess cardioprotective properties. Vascular endothelial function is a surrogate marker for cardiovascular diseases, including hypertension. We have studied the effects of chronic flavonoid treatment on vascular endothelial functions in spontaneously hypertensive rats (SHR). Starting from 6-7 weeks old, SHR were given flavonoids (baicalein, flavone, or quercetin) orally (10 mg/kg, once daily) to the SHRs for 4 weeks. Aortas from all the flavonoid-treated animals showed remarkably higher endothelium-dependent relaxations to acetylcholine, to a similar extent as those pretreated with the angiotensin-converting enzyme inhibitor, captopril. However, in contrast to other experimental groups, flavone pretreatment also enhanced the endothelium-independent relaxations to sodium nitroprusside. In addition, treatment with either flavone or quercetin induced a significant attenuation in systolic blood pressure of the hypertensive animals. The present results suggest that chronic treatment with the flavonoids (baicalein, flavone, and quercetin) preserves vascular endothelial functions in hypertensive animals through several possible actions, including increasing endothelial nitric oxide production and bioavailability and reduction in blood pressure.
    Matched MeSH terms: Endothelium, Vascular/drug effects*; Endothelium, Vascular/physiopathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links