Displaying publications 21 - 40 of 187 in total

Abstract:
Sort:
  1. Choong PF, Mok PL, Cheong SK, Then KY
    Cytotherapy, 2007;9(3):252-8.
    PMID: 17464757
    The unique potential of mesenchymal stromal cells (MSC) has generated much research interest recently, particularly in exploring the regenerative nature of these cells. Previously, MSC were thought to be found only in the BM. However, further studies have shown that MSC can also be isolated from umbilical cord blood, adipose tissue and amniotic fluid. In this study, we explored the possibility of MSC residing in the cornea.
    Matched MeSH terms: Flow Cytometry
  2. Ku Nurul Aqmar Ku Bahaudin, Ahmad Bazli Ramzi, Syarul Nataqain Baharum, Suriana Sabri, Adam Leow Thean Chor, Tewin Tencomnao
    Sains Malaysiana, 2018;47:3077-3084.
    Flavonoid is an industrially-important compound due to its high pharmaceutical and cosmeceutical values. However,
    conventional methods in extracting and synthesizing flavonoids are costly, laborious and not sustainable due to small
    amount of natural flavonoids, large amounts of chemicals and space used. Biotechnological production of flavonoids
    represents a viable and sustainable route especially through the use of metabolic engineering strategies in microbial
    production hosts. In this review, we will highlight recent strategies for the improving the production of flavonoids
    using synthetic biology approaches in particular the innovative strategies of genetically-encoded biosensors for in
    vivo metabolite analysis and high-throughput screening methods using fluorescence-activated cell sorting (FACS).
    Implementation of transcription factor based-biosensor for microbial flavonoid production and integration of systems
    and synthetic biology approaches for natural product development will also be discussed.
    Matched MeSH terms: Flow Cytometry
  3. Gudum HR, Chin YM, Menaka N, Jeyaranee S, Lin HP, Tay A
    Malays J Pathol, 1992 Jun;14(1):25-8.
    PMID: 1469914
    Immunophenotypic studies using immunofluorescent flow cytometry were performed on the blast cells of 36 patients with acute leukaemia using a panel of eight monoclonal antibodies. Six patients had blasts which co-expressed markers for lymphoid and myeloid differentiation, and which were therefore defined as biphenotypic hybrid acute leukaemia. Of the six, three patients were in the paediatric age group (below 12 years old) while the other three were more than 12 years old. Peripheral blood counts were variable; however, bone marrow infiltration was extensive (blasts > or = 75% in all). At the time of study, remission was achieved in only two patients. The authors' data show that biphenotypic hybrid acute leukaemia is not rare in Malaysia. This represents a subgroup of acute leukaemia identifiable by immunophenotyping but not by the French-American-British classification based on morphological and basic cytochemical studies alone. The recognition of this subgroup is important for both practical and theoretical reasons. There are implications for treatment of the individual patient because treatment directed at a single lineage may not be effective. The two colour flow cytometry proved to be a useful tool for diagnosis and classification of acute leukaemia.
    Matched MeSH terms: Flow Cytometry
  4. Inayat-Hussain SH, Osman AB, Din LB, Taniguchi N
    Toxicol Lett, 2002 May 28;131(3):153-9.
    PMID: 11992734
    Plant styryl-lactone derivatives isolated from Goniothalamus sp. are potential compounds for cancer chemotherapy. In this study, we have examined the mechanisms of apoptosis induced by altholactone, a stryl-lactone isolated from the Malaysian plant G. malayanus on human HL-60 promyelocytic leukemia cells. Flow cytometric analysis of the externalization of phosphatidylserine (PS) using the annexin V/PI method on altholactone treated HL-60 cells showed a concentration-dependent increase of apoptosis from concentrations ranging from 10.8 (2.5 microg/ml) to 172.4 microM (40 microg/ml). Pre-treatment with the antioxidant N-acetylcysteine (1 mM) completely abrogated apoptosis induced by altholactone, suggesting for the involvement of oxidative stress. Further flow cytometric assessment of the level of intracellular peroxides using the fluorescent probe 2',7'-dichlorofluorescein diacetate (DCFH-DA) confirmed that altholactone induced an increase in cellular oxidative stress in HL-60 cells which was suppressed by N-acetylcysteine. In summary, our results demonstrate for the first time that altholactone induced apoptosis in HL-60 cells occurs via oxidative stress.
    Matched MeSH terms: Flow Cytometry
  5. Lee YH, Pang SW, Tan KO
    Biochem Biophys Res Commun, 2016 Apr 22;473(1):224-229.
    PMID: 27003254 DOI: 10.1016/j.bbrc.2016.03.083
    PNMA2, a member of the Paraneoplastic Ma Family (PNMA), was identified through expression cloning by using anti-sera from patients with paraneoplastic disorder. Tissue expression studies showed that PNMA2 was predominantly expressed in normal human brain; however, the protein was shown to exhibit abnormal expression profile as it was found to be expressed in a number of tumour tissues obtained from paraneopalstic patients. The abnormal expression profile of PNMA2 suggests that it might play an important role in tumorigenesis; however, apart from protein expression and immunological studies, the physiological role of PNMA2 remains unclear. In order to determine potential role of PNMA2 in tumorigenesis, and its functional relationship with PNMA family members, MOAP-1 (PNMA4) and PNMA1, expression constructs encoding the respective proteins were generated for both in vitro and in vivo studies. Our investigations showed that over-expressed MOAP-1 and PNMA1 promoted apoptosis and chemo-sensitization in MCF-7 cells as evidenced by condensed nuclei and Annexin-V positive MCF-7 cells; however, the effects mediated by these proteins were significantly inhibited or abolished when co-expressed with PNMA2 in MCF-7 cells. Furthermore, co-immunoprecipitation study showed that PNMA1 and MOAP-1 failed to associate with each other but readily formed respective heterodimer with PNMA2, suggesting that PNMA2 functions as antagonist of MOAP-1 and PNMA1 through heterodimeric interaction.
    Matched MeSH terms: Flow Cytometry
  6. Chong HP, Tan KY, Tan CH
    Front Mol Biosci, 2020;7:583587.
    PMID: 33263003 DOI: 10.3389/fmolb.2020.583587
    Venoms of cobras (Naja spp.) contain high abundances of cytotoxins, which contribute to tissue necrosis in cobra envenomation. The tissue-necrotizing activity of cobra cytotoxins, nevertheless, indicates anticancer potentials. This study set to explore the anticancer properties of the venoms and cytotoxins from Naja sumatrana (equatorial spitting cobra) and Naja kaouthia (monocled cobra), two highly venomous species in Southeast Asia. The cytotoxicity, selectivity, and cell death mechanisms of their venoms and cytotoxins (NS-CTX from N. sumatrana: NS-CTX; N. kaouthia: NK-CTX) were elucidated in human lung (A549), prostate (PC-3), and breast (MCF-7) cancer cell lines. Cytotoxins were purified through a sequential fractionation approach using cation-exchange chromatography, followed by C18 reverse-phase high-performance liquid chromatography (HPLC) to homogeneity validated with sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and identified by liquid chromatography-tandem mass spectrometry (LCMS/MS). The cobra venoms and their respective cytotoxins exhibited concentration-dependent growth inhibitory effects in all cell lines tested, with the cytotoxins being more potent compared to the corresponding whole venoms. NS-CTX and NK-CTX are, respectively, P-type and S-type isoforms of cytotoxin, based on the amino acid sequences as per LCMS/MS analysis. Both cytotoxins exhibited differential cytotoxic effects in the cell lines tested, with NS-CTX (P-type cytotoxin) being significantly more potent in inhibiting the growth of the cancer cells. Both cytotoxins demonstrated promising selectivity only for the A549 lung cancer cell line (selectivity index = 2.17 and 2.26, respectively) but not in prostate (PC-3) and breast (MCF-7) cancer cell lines (selectivity index < 1). Flow cytometry revealed that the A549 lung cancer cells treated with NS-CTX and NK-CTX underwent necrosis predominantly. Meanwhile, the cytotoxins induced mainly caspase-independent late apoptosis in the prostate (PC-3) and breast (MCF-7) cancer cells lines but lacked selectivity. The findings revealed the limitations and challenges that could be faced during the development of new cancer therapy from cobra cytotoxins, notwithstanding their potent anticancer effects. Further studies should aim to overcome these impediments to unleash the anticancer potentials of the cytotoxins.
    Matched MeSH terms: Flow Cytometry
  7. Mohan S, Abdul AB, Abdelwahab SI, Al-Zubairi AS, Sukari MA, Abdullah R, et al.
    J Ethnopharmacol, 2010 Oct 5;131(3):592-600.
    PMID: 20673794 DOI: 10.1016/j.jep.2010.07.043
    The plant Typhonium flagelliforme (TF), commonly known as 'rodent tuber' in Malaysia, is often used as traditional remedy for cancer, including leukemia.
    Matched MeSH terms: Flow Cytometry
  8. Gounder SS, Abdullah BJJ, Radzuanb NEIBM, Zain FDBM, Sait NBM, Chua C, et al.
    Anal Cell Pathol (Amst), 2018;2018:7871814.
    PMID: 30175033 DOI: 10.1155/2018/7871814
    Age-associated changes in natural killer (NK) cell population, phenotype, and functions are directly attributed to the risk of several diseases and infections. It is predicted to be the major cause of the increase in mortality. Based on the surface density of CD56, NK cells are subdivided into two types, such as CD56bright and CD56dim cells, which represent cytokine production and cytotoxicity. In our study, we have examined the age-associated changes in the NK cell population and their subsets at different age groups of males and females (at a range from 41 to 80 years). We found that the total lymphocyte count significantly dropped upon aging in both genders. Although, the level of total immune cells also dropped on aging, and surprisingly the total NK cell population was remarkably increased with the majority of NK cells being CD56dim. Subsequently, we evaluated the proliferation potential of NK cells and our results showed that the NK cell proliferation ability declines with age. Overall, our findings prove that there is an increase in the circulating NK cell population upon aging. However, the proliferation rate upon aging declines when compared to the young age group (<41 yrs).
    Matched MeSH terms: Flow Cytometry
  9. Norazmi MN, Suarn S
    Immunol Lett, 1994 Dec;43(3):177-82.
    PMID: 7721330
    The CD4+ T-lymphocyte absolute count (CD4ac), CD4+ T-lymphocyte percentage (CD4%) and total lymphocyte count (Løac) were assessed in HIV-seropositive intravenous drug users (IVDU) with reference to their correlation with the clinical categories A, B, and C as stipulated by the Centre of Disease Control and Prevention, USA (CDC) and with each other. It was found that while the CD4ac and Løac correlated with the clinical categories, CD4% did not. This may suggest that in our local setting, the CD4% may not necessarily be a suitable alternative marker to CD4ac as proposed by CDC. Furthermore, the CD4% of the normal subjects in this study was found to be relatively lower than the reported Caucasian levels. This may indicate that the use of the cut-off level of less than 14% as an AIDS-defining criteria may not be applicable for our HIV-seropositive IVDU. In addition, unlike the CD4ac which correlated directly with CD4% and Løac, the CD4% did not correlate with Løac. Therefore, due to the observed disparity with clinical status of patients and its possibly lower levels in our normal population, CD4% as a marker for staging HIV disease should be used with caution in our setting. Such findings may also have an impact on the use of established markers for the monitoring and classification of HIV-infected individuals in this region.
    Matched MeSH terms: Flow Cytometry
  10. Lew TTS, Wong MH, Kwak SY, Sinclair R, Koman VB, Strano MS
    Small, 2018 Nov;14(44):e1802086.
    PMID: 30191658 DOI: 10.1002/smll.201802086
    The ability to control the subcellular localization of nanoparticles within living plants offers unique advantages for targeted biomolecule delivery and enables important applications in plant bioengineering. However, the mechanism of nanoparticle transport past plant biological membranes is poorly understood. Here, a mechanistic study of nanoparticle cellular uptake into plant protoplasts is presented. An experimentally validated mathematical model of lipid exchange envelope penetration mechanism for protoplasts, which predicts that the subcellular distribution of nanoparticles in plant cells is dictated by the particle size and the magnitude of the zeta potential, is advanced. The mechanism is completely generic, describing nanoparticles ranging from quantum dots, gold and silica nanoparticles, nanoceria, and single-walled carbon nanotubes (SWNTs). In addition, the use of imaging flow cytometry to investigate the influence of protoplasts' morphological characteristics on nanoparticle uptake efficiency is demonstrated. Using DNA-wrapped SWNTs as model nanoparticles, it is found that glycerolipids, the predominant lipids in chloroplast membranes, exhibit stronger lipid-nanoparticle interaction than phospholipids, the major constituent in protoplast membrane. This work can guide the rational design of nanoparticles for targeted delivery into specific compartments within plant cells without the use of chemical or mechanical aid, potentially enabling various plant engineering applications.
    Matched MeSH terms: Flow Cytometry
  11. Jada SR, Subur GS, Matthews C, Hamzah AS, Lajis NH, Saad MS, et al.
    Phytochemistry, 2007 Mar;68(6):904-12.
    PMID: 17234223
    The plant Andrographis paniculata found throughout Southeast Asia contains Andrographolide 1, a diterpenoid lactone, which has antitumour activities against in vitro and in vivo breast cancer models. In the present study, we report on the synthesis of andrographolide derivatives, 3,19-isopropylideneandrographolide (2), 14-acetyl-3,19-isopropylideneandrographolide (3) and 14-acetylandrographolide (4), and their in vitro antitumour activities against a 2-cell line panel consisting of MCF-7 (breast cancer cell line) and HCT-116 (colon cancer cell line). Compounds 2 and 4 were also screened at the US National Cancer Institute (NCI) for their activities against a panel of 60 human cancer cell lines derived from nine cancer types. Compound 2 was found to be selective towards leukaemia and colon cancer cells, and compound 4 was selective towards leukaemia, ovarian and renal cancer cells at all the dose-response parameters. Compounds 2 and 4 showed non-specific phase of the cell cycle arrest in MCF-7 cells treated at different intervals with different concentrations. NCI's COMPARE and SOM mechanistic analyses indicated that the anticancer activities of these new class of compounds were not similar to that of standard anticancer agents, suggesting novel mechanism(s) of action.
    Matched MeSH terms: Flow Cytometry
  12. Jada SR, Matthews C, Saad MS, Hamzah AS, Lajis NH, Stevens MF, et al.
    Br J Pharmacol, 2008 Nov;155(5):641-54.
    PMID: 18806812 DOI: 10.1038/bjp.2008.368
    BACKGROUND AND PURPOSE: Andrographolide, the major phytoconstituent of Andrographis paniculata, was previously shown by us to have activity against breast cancer. This led to synthesis of new andrographolide analogues to find compounds with better activity than the parent compound. Selected benzylidene derivatives were investigated for their mechanisms of action by studying their effects on the cell cycle progression and cell death.
    EXPERIMENTAL APPROACH: Microculture tetrazolium, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and sulphorhodamine B (SRB) assays were utilized in assessing the in vitro growth inhibition and cytotoxicity of compounds. Flow cytometry was used to analyse the cell cycle distribution of control and treated cells. CDK1 and CDK4 levels were determined by western blotting. Apoptotic cell death was assessed by fluorescence microscopy and flow cytometry.
    KEY RESULTS: Compounds, in nanomolar to micromolar concentrations, exhibited growth inhibition and cytotoxicity in MCF-7 (breast) and HCT-116 (colon) cancer cells. In the NCI screen, 3,19-(2-bromobenzylidene) andrographolide (SRJ09) and 3,19-(3-chloro-4-fluorobenzylidene) andrographolide (SRJ23) showed greater cytotoxic potency and selectivity than andrographolide. SRJ09 and SRJ23 induced G(1) arrest and apoptosis in MCF-7 and HCT-116 cells, respectively. SRJ09 downregulated CDK4 but not CDK1 level in MCF-7 cells. Apoptosis induced by SRJ09 and SRJ23 in HCT-116 cells was confirmed by annexin V-FITC/PI flow cytometry analysis.
    CONCLUSION AND IMPLICATIONS: The new benzylidene derivatives of andrographolide are potential anticancer agents. SRJ09 emerged as the lead compound in this study, exhibiting anticancer activity by downregulating CDK4 to promote a G(1) phase cell cycle arrest, coupled with induction of apoptosis.
    Matched MeSH terms: Flow Cytometry
  13. Aravind SR, Joseph MM, George SK, Dileep KV, Varghese S, Rose-James A, et al.
    Int J Biochem Cell Biol, 2015 Feb;59:153-66.
    PMID: 25541375 DOI: 10.1016/j.biocel.2014.11.019
    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an attractive target for cancer therapy due to its ability to selectively induce apoptosis in cancer cells, without causing significant toxicity in normal tissues. We previously reported that galactoxyloglucan (PST001) possesses significant antitumor and immunomodulatory properties. However, the exact mechanism in mediating this anticancer effect is unknown. This study, for the first time, indicated that PST001 sensitizes non-small cell lung cancer (A549) and nasopharyngeal (KB) cells to TRAIL-mediated apoptosis. In vitro studies suggested that PST001 induced apoptosis primarily via death receptors and predominantly activated caspases belonging to the extrinsic apoptotic cascade. Microarray profiling of PST001 treated A549 and KB cells showed the suppression of survivin (BIRC5) and anti-apoptotic Bcl-2, as well as increased cytochrome C. TaqMan low density array analysis of A549 cells also confirmed that the induction of apoptosis by the polysaccharide occurred through the TRAIL-DR4/DR5 pathways. This was finally confirmed by in silico analysis, which revealed that PST001 binds to TRAIL-DR4/DR5 complexes more strongly than TNF and Fas ligand-receptor complexes. In summary, our results suggest the potential of PST001 to be developed as an anticancer agent that not only preserves innate biological activity of TRAIL, but also sensitizes cancer cells to TRAIL-mediated apoptosis.
    Matched MeSH terms: Flow Cytometry
  14. Leong CF, Kalaichelvi AV, Cheong SK, Hamidah NH, Rahman J, Sivagengei K
    Malays J Pathol, 2004 Dec;26(2):111-6.
    PMID: 16329563
    Myeloperoxidase (MPO) is present in azurophilic granules which appear in the promyelocyte stage of differentiation and is expressed in granulomonocytic cells. MPO is usually detected by cytochemistry. The demonstration of peroxidase in at least 3% of bone marrow blasts defines an acute leukaemia as acute myeloblastic leukaemia (AML). MPO is important in distinguishing acute myeloblastic leukaemia (AML) from acute lymphoblastic leukaemia (ALL). It is difficult to diagnose AML with minimal evidence of myeloid differentiation (AML- M0) by conventional light microscopy. However, these AML-M0 blasts can be detected by monoclonal antibodies. Anti-MPO recognizes the enzymatically inactive precursor forms of MPO. There are a few commercially available monoclonal antibodies against MPO. In this study, we evaluated two monoclonal antibodies against MPO from different commercial sources.
    Matched MeSH terms: Flow Cytometry/methods*
  15. Khurana RK, Kumar R, Gaspar BL, Welsby G, Welsby P, Kesharwani P, et al.
    Mater Sci Eng C Mater Biol Appl, 2018 Oct 01;91:645-658.
    PMID: 30033299 DOI: 10.1016/j.msec.2018.05.010
    The current studies envisage unravelling the underlying cellular internalisation mechanism of the systematically developed docetaxel (DTH) polyunsaturated fatty acid (PUFA) enriched self-nanoemulsifying lipidic micellar systems (SNELS). The concentration-, time- and cytotoxicity-related effects of DTH-SNELS on triple negative breast cancer (TNBC) MDA-MB-231 and non-TNBC MCF-7 cell lines were assessed through Presto-blue assay. Subsequently, rhodamine-123 (Rh-123) loaded SNELS were employed for evaluating their internalisation through flow cytometry and fluorescence microscopy, establishing it to be "clathrin-mediated" endocytic pathway. Apoptosis assay (65% cell death) and cell cycle distribution (47% inhibition at G2/M phase) further corroborated the cytotoxicity of DTH-SNELS towards cancerous cells. Biodistribution, histopathology and haematology studies indicated insignificant toxicity of the optimized formulation on vital organs. Preclinical anticancer efficacy studies using 7,12-dimethylbenzantracene (DMBA)-induced model construed significant reduction in breast tumor-volume. Overall, extensive in vitro and in vivo studies indicated the intracellular localization and cytotoxicity, suggesting DTH-SNELS as promising delivery systems for breast tumor therapeutics including TNBC.
    Matched MeSH terms: Flow Cytometry
  16. Menon N, Mariappan V, Vellasamy KM, Samudi C, See JX, Ganesh PS, et al.
    Access Microbiol, 2020;2(5):acmi000110.
    PMID: 32974575 DOI: 10.1099/acmi.0.000110
    Burkholderia pseudomallei is the causative agent for melioidosis. Because of its intracellular nature, the bacterium is capable of replicating within a plethora of eukaryotic cell lines. B. pseudomallei can remain dormant within host cells without symptoms for years, causing recrudescent infections. Here, we investigated the pathogenesis mechanism behind the suppression of T cell responses by B. pseudomallei . Peripheral blood mononuclear cells (1×106 cells/well) isolated by Ficoll Paque (Sigma-Aldrich) density gradient centrifugation were incubated with optimized concentrations of bacterial crude culture filtrate antigens (CFAs) (10 ug ml-1) and heat-killed bacteria [1 : 10 multiplicity of infection (m.o.i.)]. Following incubation, cells were investigated for surface expression of coinhibitory molecules by flow cytometry. We found that B. pseudomallei induced the upregulation of programmed death 1 (PD-1), a molecule responsible for T cell exhaustion, on T cells in vitro following exposure to crude CFAs of B. pseudomallei . This upregulation of PD-1 probably contributes to poor immune surveillance and disease pathogenesis.
    Matched MeSH terms: Flow Cytometry
  17. Barathan M, Mohamed R, Saeidi A, Vadivelu J, Chang LY, Gopal K, et al.
    Eur J Clin Invest, 2015 May;45(5):466-74.
    PMID: 25721991 DOI: 10.1111/eci.12429
    Hepatitis C virus (HCV) causes persistent disease in ~85% of infected individuals, where the viral replication appears to be tightly controlled by HCV-specific CD8+ T cells. Accumulation of senescent T cells during infection results in considerable loss of functional HCV-specific immune responses.
    Matched MeSH terms: Flow Cytometry
  18. Hidayah HN, Mazzre M, Ng AM, Ruszymah BH, Shalimar A
    Med J Malaysia, 2008 Jul;63 Suppl A:39-40.
    PMID: 19024973
    Bone marrow derived Mesenchymal stem cells (MSCs) were evaluated as an alternative source for tissue engineering of peripheral nerves. Human MSCs were subjected to a series of treatment with a reducing agent, retinoic acid and a combination of trophic factors. This treated MSCs differentiated into Schwann cells were characterized in vitro via flow cytometry analysis and immunocytochemically. In contrast to untreated MSCs, differentiated MSCs expressed Schwann cell markers in vitro, as we confirmed by flow cytometry analysis and immunocytochemically. These results suggest that human MSCs can be induced to be a substitute for Schwann cells that may be applied for nerve regeneration since it is difficult to grow Schwann cells in vitro.
    Matched MeSH terms: Flow Cytometry
  19. Siti ZS, Seoparjoo AMI, Shahrul H
    Heliyon, 2019 Apr;5(4):e01573.
    PMID: 31183434 DOI: 10.1016/j.heliyon.2019.e01573
    Background: Drug resistance remains as a challenge in the treatment of HER2-overexpressed breast cancer. Emerging evidence from clinical studies show relation of oxidized low density lipoprotein (LDL) and very low density lipoprotein (VLDL) level with drug resistance. However, the underlying molecular mechanisms for this effect remain unclear. Therefore, the aim of this study was to determine the effects of oxidized-LDL and VLDL in drug-resistant HER2-overexpressed breast cancer cells.

    Methods: An in vitro cell model for tamoxifen-resistant HER2 overexpressed UACC732 cells was created using the pulse method. Cells were exposed to oxidized LDL (oxLDL) and very low density lipoprotein (VLDL) separately. Effects on cell morphology was studied using phase contrast microscopic changes. Percentage of cell viability was measured using proliferation assay kit. Development of tamoxifen resistance was determined based on P-gp expression with flow cytometry. Further analysis includedcell death measurement with flow cytometry method.

    Results: UACC732 cells exposed to VLDL exhibited fibroblast-like morphology. This was further supported by proliferation assay, where the percentage of cell viability achieved more than 100% with 100 μg/ml of VLDL exposure, indicating cell proliferation. Findings also showed that VLDL caused reduction in expression of Pgp in resistant cells compared to resistant cells alone (p = 0.02).

    Conclusion: Results of this study suggest that VLDL may play a role in growth of drug-resistant HER2-overexpressing cells. Lower expression of P-gp in presence of VLDL need to be investigated further.

    Matched MeSH terms: Flow Cytometry
  20. Mohd Ashari NS, Mohamed Sanusi SNF, Mohd Yasin MA, Che Hussin CM, Wong KK, Shafei MN
    Malays J Pathol, 2019 Aug;41(2):169-176.
    PMID: 31427552
    INTRODUCTION: Regulatory T cell (Treg) is a subtype of T lymphocyte that plays a crucial role in establishing immunologic self-tolerance and maintaining immune homeostasis. In this study, we set out to investigate the percentage and absolute count of Tregs in major depressive disorder (MDD) patients and their correlation with disease severity.

    MATERIALS & METHODS: This is a case-control study consisting of 47 MDD patients and 47 healthy controls. MDD patients were treated with antidepressant drugs according to their physician's choice. The severity of MDD was assessed using Beck Depression Inventory (BDI) and Montgomery-Asberg Depression Rating Scale (MADRS) at the time of recruitment. Healthy controls completed the Depression Anxiety Scoring System (DASS21) questionnaire to ensure they were in good mental health without history of MDD. The percentage and absolute count of CD4+ CD25+ Tregs and CD4+ CD25+ FOXP3+ Tregs were identified by multiparameter flow cytometry.

    RESULTS: The percentage and absolute count of CD4+ CD25+ Treg cells were significantly higher in MDD patients than in healthy controls (P<0.001, in both cases). Likewise, the percentage and absolute count of CD4+ CD25+ FOXP3+ Treg cells were also significantly higher in MDD patients compared to healthy controls (P=0.003 and P=0.002, respectively). However, there was no significant correlation between the percentage and absolute count of CD4+ CD25+ Treg and CD4+ CD25+ FOXP3+ Treg cells with BDI or MADRS score.

    CONCLUSIONS: Our results suggest that antidepressant treatments contributed to an upregulation of Tregs in MDD patients.

    Matched MeSH terms: Flow Cytometry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links