Displaying publications 21 - 40 of 85 in total

Abstract:
Sort:
  1. Haibo Jiang, Zuguo Mo, Xiongbin Hou, Haijuan Wang
    Sains Malaysiana, 2017;46:2205-2213.
    The mechanical properties of fractured rock mass are largely dependent on the fracture structure under the coupling of freeze-thaw cycles and large temperature difference. Based on the traditional macroscopic continuum theory, the thermal and mechanical model and the corresponding theories ignore the material internal structure characteristics, which add difficulty in describing the mesoscopic thermal and mechanical behavior of the fractured rock mass among different phases. In order to uncover the inherent relationship and laws among the internal crack development, structural change and the physical and mechanical properties of rock under strong cold and frost weathering in cold area, typical granite and sandstone in cold region were analyzed in laboratory tests. The SEM scanning technology was introduced to record the microstructural change of rock samples subject to freeze-thaw cycles and large temperature difference. Association rules between the microstructure and the physical mechanical properties of rock mass were analyzed. The results indicated that, with the increase of the cyclic number, the macroscopic physical and mechanical indexes and the microscopic fracture index of granite and sandstone continuously and gradually deteriorate. The width of original micro crack continues to expand and extend and new local micro cracks are generated and continue to expand. The fracture area and width of the rock increase and the strength of the rock is continuously damaged. In particular, the strength and elastic modulus of granite decrease by 20.2% and 33.36%, respectively; the strength and elastic modulus of sandstone decrease by 33.4% and 36.43%, respectively.
    Matched MeSH terms: Freezing
  2. Singh GK, Jimenez M, Newman R, Handelsman DJ
    Drug Test Anal, 2014 Apr;6(4):336-41.
    PMID: 23606665 DOI: 10.1002/dta.1481
    Urine provides a convenient non-invasive alternative to blood sampling for measurement of certain hormones. Urinary luteinizing hormone (LH) measurements have been used for endocrinology research and anti-doping testing. However, the commercially available LH immunoassays are developed and validated for human blood samples but not urine so that LH assays intended for use with urine samples need thorough validation. Therefore, the present study evaluated the measurement of urinary LH immunoreactivity using previously validated immunofluorometric (IF) and immunochemiluminometric (ICL) LH assays after prolonged frozen storage. LH was measured in serial urine samples following administration of a single injection of one of two doses of recombinant human chorionic hormone (rhCG) with assays run at the end of study (2008) and again after four years of frozen (-20 °C) storage where samples were stored without adding preservatives. The ICL assay showed quantitatively reproducible LH measurements after prolonged -20 °C storage. However, the IF immunoassay gave consistently lower LH levels relative to ICL (2008) with a further proportionate reduction after four years of sample storage (2012). Yet, both the assays displayed similar patterns of the time-course of urine LH measurement both before and after four years of frozen storage. In conclusion, we found that both immunoassays are suitable for urinary LH measurements with ICL assay being more robust for quantitative urinary LH measurement such as for anti-doping purposes, whereas the IF could be applicable for research studies where urine LH levels are compared within-study but not in absolute terms.
    Matched MeSH terms: Freezing
  3. Baiee FH, Wahid H, Rosnina Y, Ariff O, Yimer N, Jeber Z, et al.
    Cryobiology, 2018 02;80:43-50.
    PMID: 29269043 DOI: 10.1016/j.cryobiol.2017.12.006
    This study aims to assess the effect of Eurycoma longifolia aqueous extract on chilled and cryopreserved quality of bull sperm. Semen samples were obtained from four Simmental-Brangus. Each sample was divided into two fractions: the first fraction was used for chilling the semen, and the second fraction was used for the freezing process. Both fractions were extended with Tris-egg yolk extender supplemented with 0.0, 0.25, 0.5, 1.0, 2.5, 5.0, and 7.5 mg/ml Eurycoma longifolia aqueous extract. The diluted chilled fraction was chilled at 5 °C for 6 days, whereas the frozen-thawed fraction was frozen in liquid nitrogen. Data revealed that 1 mg/ml E. longifolia aqueous extract yielded significantly (p 
    Matched MeSH terms: Freezing
  4. Zuther E, Lee YP, Erban A, Kopka J, Hincha DK
    Adv Exp Med Biol, 2018 10 6;1081:81-98.
    PMID: 30288705 DOI: 10.1007/978-981-13-1244-1_5
    During low-temperature exposure, temperate plant species increase their freezing tolerance in a process termed cold acclimation. The molecular mechanisms involved in cold acclimation have been mostly investigated in Arabidopsis thaliana. In addition, other Brassicaceae species related to A. thaliana have been employed in recent years to study plant stress responses on a phylogenetically broader basis and in some cases with extremophile species with a much higher stress tolerance. In this paper, we briefly summarize cold acclimation responses in A. thaliana and current knowledge about cold acclimation in A. thaliana relatives with special emphasis on Eutrema salsugineum and two closely related Thellungiella species. We then present a transcriptomic and metabolomic analysis of cold acclimation in five A. thaliana and two E. salsugineum accessions that differ widely in their freezing tolerance. Differences in the cold responses of the two species are discussed.
    Matched MeSH terms: Freezing
  5. Nang CF, Osman K, Budin SB, Ismail MI, Jaffar FH, Mohamad SF, et al.
    Andrologia, 2012 May;44 Suppl 1:447-53.
    PMID: 21806660 DOI: 10.1111/j.1439-0272.2011.01203.x
    Liquid nitrogen preservation in remote farms is a limitation. The goal of this study was to determine optimum temperature above freezing point for bovine spermatozoa preservation using bovine serum albumin (BSA) as a supplementation. Pooled semen sample from three ejaculates was subjected to various BSA concentration (1, 4, 8 and 12 mg ml(-1)), before incubation in different above freezing point temperatures (4, 25 and 37 °C). Viability assessment was carried out against time from day 0 (fresh sample) until all spermatozoa become nonviable. Optimal condition for bovine spermatozoa storage was at 4 °C with 1 mg ml(-1) BSA for almost 7 days. BSA improved bovine spermatozoa viability declining rate to 44.28% at day 4 and 57.59% at day 7 compared to control, with 80.54% and 98.57% at day 4 and 7 respectively. Increase in BSA concentration did not improve sperm viability. Our results also confirmed that there was a strong negative correlation between media osmolarity and bovine spermatozoa survival rate with r = 0.885, P < 0.0001. Bovine serum albumin helps to improve survival rate of bovine spermatozoa stored above freezing point.
    Matched MeSH terms: Freezing*
  6. Awang N, Jaafar J, Ismail AF
    Polymers (Basel), 2018 Feb 15;10(2).
    PMID: 30966230 DOI: 10.3390/polym10020194
    Void-free electrospun SPEEK/Cloisite15A® densed (SP/e-spunCL) membranes are prepared. Different loadings of Cloisite15A® (0.10, 0.15, 0.20, 0.25 and 0.30 wt %) are incorporated into electrospun fibers. The physico-chemical characteristics (methanol permeability, water uptake and proton conductivity) of the membranes are observed. Thermal stability of all membranes is observed using Thermal Gravimetry Analysis (TGA). The thrree stages of degradation range between 163.1 and 613.1 °C. Differential Scanning Calorimetry (DSC) is used to study the wettability of the membranes. SP/e-spunCL15 shows the lowest freezing bound water of 15.27%, which contributed to the lowest methanol permeability. The non-freezing bound water that proportionally increased with proton conductivity of SP/e-spunCL15 membrane is the highest, 10.60%. It is suggested that the electrospinning as the fabricating method has successfully exfoliated the Cloisite in the membrane surface structure, contributing to the decrease of methanol permeability, while the retained water has led to the enhancement of proton conductivity. This new fabrication method of SP/e-spunCL membrane is said to be a desirable polymer electrolyte membrane for future application in direct methanol fuel cell field.
    Matched MeSH terms: Freezing
  7. Ahmed AS, Mandal UK, Taher M, Susanti D, Jaffri JM
    Pharm Dev Technol, 2018 Oct;23(8):751-760.
    PMID: 28378604 DOI: 10.1080/10837450.2017.1295067
    The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze-thaw method. Response surface methodology with Box-Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze-thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12 hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze-thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.
    Matched MeSH terms: Freezing
  8. Wahab AHA, Saad APM, Harun MN, Syahrom A, Ramlee MH, Sulong MA, et al.
    J Mech Behav Biomed Mater, 2019 03;91:406-415.
    PMID: 30684888 DOI: 10.1016/j.jmbbm.2018.12.033
    Intact glenoid labrum is one of passive stabilizer for glenohumeral joint, which have various stiffness at different region. The aim of this study is to develop new artificial glenoid labrum from Polyvinyl Alcohol (PVA) hydrogel, which known as good biomaterial due to its biocompatibility and ability to tailor its modulus. PVA hydrogel was formed using freeze-thaw (FT) method and the stiffness of PVA was controlled by manipulating the concentration of PVA and number of FT cycles. Then, the gradual stiffness was formed using simple diffusion method by introducing the pre-freeze-and-thaw steps. The results showed 20% PVA with three FT cycles suit to highest stiffness of glenoid labrum while 10% PVA with three FT cycles suit to lowest stiffness of glenoid labrum. The functionally graded PVA hydrogel was then developed using the same method by diffusing two mixture (20% PVA and 10% PVA). Mechanical compression test showed, the highest modulus (0.41 MPa) found at the 20% PVA region and lowest modulus (0.1 MPa) found at 10% PVA region. While, at intermediate region, the compressive modulus was in between 20% and 10%, 0.2 MPa. The existence of gradual stiffness was further prove by checking crystallinity of material at each region using Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD). Microstructure of material was obtained from Scanning Electron Microscopy (SEM). This functionally graded PVA hydrogel also able to reduce about 51% of stress at glenoid implant and up to 17% for micromotion at the interfaces. Existence of artificial glenoid labrum could minimize the occurrence of glenoid component loosening.
    Matched MeSH terms: Freezing*
  9. Nicholas AF, Hussein MZ, Zainal Z, Khadiran T
    Nanomaterials (Basel), 2018 Sep 05;8(9).
    PMID: 30189654 DOI: 10.3390/nano8090689
    The preparation of activated carbon using palm kernel shells as the precursor (PKSAC) was successfully accomplished after the parametric optimization of the carbonization temperature, carbonization holding time, and the ratio of the activator (H₃PO₄) to the precursor. Optimization at 500 °C for 2 h of carbonization with 20% H₃PO₄ resulted in the highest surface area of the activated carbon (C20) of 1169 m² g-1 and, with an average pore size of 27 Å. Subsequently, the preparation of shape-stabilized phase change material (SSPCM-C20) was done by the encapsulation of n-octadecane into the pores of the PKSAC, C20. The field emission scanning electron microscope images and the nitrogen gas adsorption-desorption isotherms show that n-octadecane was successfully encapsulated into the pores of C20. The resulting SSPCM-C20 nano-composite shows good thermal reliability which is chemically and thermally stable and can stand up to 500 melting and freezing cycles. This research work provided a new strategy for the preparation of SSPCM material for thermal energy storage application generated from oil palm waste.
    Matched MeSH terms: Freezing
  10. Kee SY, Munusamy Y, Ong KS, Cornelis Metselaar HS, Chee SY, Lai KC
    Materials (Basel), 2017 Jul 28;10(8).
    PMID: 28773232 DOI: 10.3390/ma10080873
    The composite PCM was prepared by blending polymethyl methacrylate (PMMA) and myristic acid (MA) in different weight percentages. The MA and PMMA were selected as PCM and supporting material, respectively. As liquid MA may leak out during the phase transition, this study proposes the use of two coatings, namely a polyacrylic coating and a conformal coating to overcome the leakage problem. Both coatings were studied in terms of the leakage test, chemical compatibility, thermal stability, morphology, and reliability. No leakage was found in the PCMs with coatings compared to those without under the same proportions of MA/PMMA, thus justifying the use of coatings in the present study. The chemically compatibility was confirmed by FTIR spectra: the functional groups of PCMs were in accordance with those of coatings. DSC showed that the coatings did not significantly change the melting and freezing temperatures, however, they improved the thermal stability of composite PCMs as seen in TGA analysis. Furthermore, the composite PCMs demonstrated good thermal reliability after 1000 times thermal cycling. The latent heat of melting reduced by only 0.16% and 1.02% for the PCMs coated with conformal coating and polyacrylic coating, respectively. Therefore, the proposed coatings can be considered in preparing fatty acid/PMMA blends attributed to the good stability, compatibility and leakage prevention.
    Matched MeSH terms: Freezing
  11. Ab Latip R, Lee YY, Tang TK, Phuah ET, Lee CM, Tan CP, et al.
    PeerJ, 2013;1:e72.
    PMID: 23682348 DOI: 10.7717/peerj.72
    Fractionation which separates the olein (liquid) and stearin (solid) fractions of oil is used to modify the physicochemical properties of fats in order to extend its applications. Studies showed that the properties of fractionated end products can be affected by fractionation processing conditions. In the present study, dry fractionation of palm-based diacylglycerol (PDAG) was performed at different: cooling rates (0.05, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0°C/min), end-crystallisation temperatures (30, 35, 40, 45 and 50°C) and agitation speeds (30, 50, 70, 90 and 110 rpm) to determine the effect of these parameters on the properties and yield of the solid and liquid portions. To determine the physicochemical properties of olein and stearin fraction: Iodine value (IV), fatty acid composition (FAC), acylglycerol composition, slip melting point (SMP), solid fat content (SFC), thermal behaviour tests were carried out. Fractionation of PDAG fat changes the chemical composition of liquid and solid fractions. In terms of FAC, the major fatty acid in olein and stearin fractions were oleic (C18:1) and palmitic (C16:0) respectively. Acylglycerol composition showed that olein and stearin fractions is concentrated with TAG and DAG respectively. Crystallization temperature, cooling rate and agitation speed does not affect the IV, SFC, melting and cooling properties of the stearin fraction. The stearin fraction was only affected by cooling rate which changes its SMP. On the other hand, olein fraction was affected by crystallization temperature and cooling rate but not agitation speed which caused changes in IV, SMP, SFC, melting and crystallization behavior. Increase in both the crystallization temperature and cooling rate caused a reduction of IV, increment of the SFC, SMP, melting and crystallization behaviour of olein fraction and vice versa. The fractionated stearin part melted above 65°C while the olein melted at 40°C. SMP in olein fraction also reduced to a range of 26 to 44°C while SMP of stearin fractions increased to (60-62°C) compared to PDAG.
    Matched MeSH terms: Freezing
  12. Sze-Yin, S., Lai-Hoong, C.
    MyJurnal
    The objective of this work was to study the effects of trehalose and maltodextrin on Chinese
    steamed bread (CSB) prepared from frozen dough. Trehalose (0.1 and 0.2% w/w) and
    maltodextrin (1 and 2% w/w) were added and CSB prepared from the fresh dough and the
    frozen dough was characterized in terms of spread ratio, specific volume, staling index and
    stress relaxation properties. Upon frozen storage, spread ratio and specific volume of CSB,
    and elasticity of the bread crumb were reduced. The extend of deterioration was significantly
    reduced with the addition of 0.1% trehalose and 2% maltodextrin. Excessive addition of
    trehalose and maltodextrin was found to cause detrimental effects to CSB quality.
    Matched MeSH terms: Freezing
  13. Tan XY, Misran A, Daim LDJ, Lau BYC
    Food Chem, 2021 May 01;343:128471.
    PMID: 33143964 DOI: 10.1016/j.foodchem.2020.128471
    Four different methods were evaluated to extract proteins from "Musang King" durian pulps and subsequently proteins with different abundance between fresh and long term frozen storage were identified using two-dimensional polyacrylamide gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometer analyses. The acetone-phenol method was found to produce good protein yields and gave the highest gel resolution and reproducibility. Differential protein analyses of the durian pulp revealed that 15 proteins were down-regulated and three other proteins were up-regulated after a year of frozen storage. Isoflavone reductase-like protein, S-adenosyl methionine synthase, and cysteine synthase isoform were up-regulated during frozen storage. The down-regulation of proteins in frozen durian pulps indicated that frozen storage has affected proteins in many ways, especially in their functions related to carbohydrate and energy metabolisms, cellular components, and transport processes. This study will enable future detailed investigations of proteins associated with quality attributes of durians to be studied.
    Matched MeSH terms: Freezing
  14. Hu R, Zhang M, Jiang Q, Law CL
    Meat Sci, 2023 Apr;198:109084.
    PMID: 36599205 DOI: 10.1016/j.meatsci.2022.109084
    The effect of infrared and microwave alternate thawing (IR + MWT) on frozen pork were compared to fresh, air thawing (AT), infrared thawing (IRT), microwave thawing (MWT). The IR + MWT took only about 11.81 min of the thawing time compared to AT 66.5 min, and the Raman spectroscopy and Low-field nuclear magnetic resonance (LF-NMR) results showed that the IR + MWT maintained better protein secondary structure composition and moisture state compared to MWT and IRT. In terms of thawing losses, IR + MWT had the lowest loss 1.92%. In terms of texture, IR + MWT had the least effect on the post-thawing textural properties and increased the springiness of the meat. Scanning electron microscopy results also showed that there was reduced damage to the muscle structure with IR + MWT. Regarding the odor of the meat after thawing, IR + MWT retained the odor better and was closer to the fresh sample. Therefore, IR + MWT can be used to enhance the thawing rate to protect the quality of the thawed pork.
    Matched MeSH terms: Freezing
  15. Nguyen VH, Nguyen BD, Pham HT, Lam SS, Vo DN, Shokouhimehr M, et al.
    Sci Rep, 2021 Feb 11;11(1):3641.
    PMID: 33574397 DOI: 10.1038/s41598-020-80886-x
    In this work, we proposed a facile approach to fabricate a superhydrophobic surface for anti-icing performance in terms of adhesive strength and freezing time. A hierarchical structure was generated on as-received Al plates using a wet etching method and followed with a low energy chemical compound coating. Surfaces after treatment exhibited the great water repellent properties with a high contact angle and extremely low sliding angle. An anti-icing investigation was carried out by using a custom-built apparatus and demonstrated the expected low adhesion and freezing time for icephobic applications. In addition, we proposed a model for calculating the freezing time. The experimented results were compared with theoretical calculation and demonstrated the good agreement, illustrating the importance of theoretical contribution in design icephobic surfaces. Therefore, this study provides a guideline for the understanding of icing phenomena and designing of icephobic surfaces.
    Matched MeSH terms: Freezing
  16. Tee HS, Saad AR, Lee CY
    J Econ Entomol, 2010 Oct;103(5):1770-4.
    PMID: 21061978
    The objective of this study was to evaluate the suitability of heat- and freeze-killed oothecae of Periplaneta americana (L.) (Dictyoptera: Blattidae) as hosts for parasitoid Aprostocetus hagenowii (Ratzeburg) (Hymenoptera: Eulophidae). The oothecae were subjected to -20, 45, 48, 50, and 55 degrees C at different exposure times (15, 30, 45, and 60 min). The effects of heat- and freeze-killed oothecae on several biological parameters (e.g., parasitism and emergence rates, developmental times, progeny number, and sex ratio) ofA. hagenowii were determined. Embryonic development of 2-d-old oothecae was terminated by either freezing at -20 degrees C or heating at > or = 48 degrees C for > or =30 min. A. hagenowii parasitized live oothecae as well as both heat- and freeze-killed oothecae. Percentage parasitism, emergence rates, and developmental times ofA. hagenowii in both heat- and freeze-killed oothecae were not significantly different from those of the live oothecae. Both heating and freezing did not influence progeny number (male and female) and sex ratio of A. hagenowii emerged from killed oothecae.
    Matched MeSH terms: Freezing
  17. Liu J, Zhu F, Yang J, Wang Y, Ma X, Lou Y, et al.
    Food Chem, 2023 Jun 15;411:135499.
    PMID: 36696717 DOI: 10.1016/j.foodchem.2023.135499
    Shrimp meat is prone to autolysis and decay due to the abundance of endogenous enzymes and contamination from microorganisms. HVEF freezing can slow the spoilage of shrimp, producing small and uniform ice crystals, resulting in less damage to muscle tissue. In this study, HVEF technique was used to freeze the shrimp (Solenocera melantho), and the UPLC-MS metabolic technique was used to investigate the metabolites of frozen shrimp meat. Compared with the control group, 367 differential metabolites were identified in the HVEF group. Mapping them to the KEGG database, there were 108 with KEGG ID. Purine metabolism and pyrimidine metabolism were the most enriched pathways. In addition, phosphatidylcholines (PCs), inosine (HxR), and l-valine were identified as potential biomarkers associated with lipid, nucleotide, and organic acid metabolism, respectively. Overall, HVEF can improve freezing quality of shrimp meat by slowing down the metabolism of substances in the muscle of S. melantho.
    Matched MeSH terms: Freezing
  18. Tan YC, Mustangin M, Rosli N, Wan Ahmad Kammal WSE, Md Isa N, Low TY, et al.
    Cryobiology, 2024 Mar;114:104843.
    PMID: 38158171 DOI: 10.1016/j.cryobiol.2023.104843
    Coolant-assisted liquid nitrogen (LN) flash freezing of frozen tissues has been widely adopted to preserve tissue morphology for histopathological annotations in mass spectrometry-based spatial proteomics techniques. However, existing coolants pose health risks upon inhalation and are expensive. To overcome this challenge, we present our pilot study by introducing the EtOH-LN workflow, which demonstrates the feasibility of using 95 % ethanol as a safer and easily accessible alternative to existing coolants for LN-based cryoembedding of frozen tissues. Our study reveals that both the EtOH-LN and LN-only cryoembedding workflows exhibit significantly reduced freezing artifacts compared to cryoembedding in cryostat (p 
    Matched MeSH terms: Freezing
  19. Tan SZK, Temel Y, Chan AY, Mok ATC, Perucho JAU, Blokland A, et al.
    Brain Struct Funct, 2020 Sep;225(7):1957-1966.
    PMID: 32594260 DOI: 10.1007/s00429-020-02102-w
    Electrical stimulation of the dorsolateral periaqueductal gray (dlPAG) in rats has been shown to elicit panic-like behaviour and can be a useful as an unconditioned stimulus for modelling anticipatory fear and agoraphobia in a contextual fear conditioning paradigm. In this study, we further analysed our previous data on the effects of escitalopram (a selective serotonin reuptake inhibitor, SSRI) and buspirone (a 5-HT1A receptor partial agonist) on dlPAG-induced anticipatory fear behaviour in a rat model using freezing as a measure. We then attempted to unravel some of the interactions with dopamine signalling using tyrosine hydroxylase (TH) immunohistochemistry to probe the effects on dopaminergic neurons. We showed that acute treatment of escitalopram, but not buspirone, was effective in reducing anticipatory freezing behaviour, while chronic administrations of both drugs were effective. We found that the dlPAG stimulation induced increase number of dopaminergic neurons in the ventral tegmental area (VTA) which was reversed in both chronic buspirone and escitalopram groups. We further found a strong positive correlation between the number of dopaminergic neurons and freezing in the VTA and showed positive correlations between dopaminergic neurons in the VTA and substantia nigra pars compacta (SNpc) in escitalopram and buspirone groups, respectively. Overall, we showed that chronic treatment with an SSRI and a 5-HT1A agonist reduced anticipatory freezing behaviour which seems to be associated, through correlative studies, with a reversal of dlPAG stimulation induced increase in number of dopaminergic neurons in the VTA and/or SNpc.
    Matched MeSH terms: Freezing Reaction, Cataleptic/drug effects; Freezing Reaction, Cataleptic/physiology
  20. Cheong SK, Lim YC
    Malays J Pathol, 1990 Jun;12(1):51-6.
    PMID: 1708844
    The routine study of bone marrow trephine biopsies involves fixation, decalcification, paraffin-embedment, sectioning and staining. However, this process creates artifacts, produces shrinkage of tissue, consumes time and can result in sections of unsatisfactory cytological quality. It also renders the tissue unsuitable for enzyme-histochemical and immunohistochemical analyses. Frozen section of bone marrow without decalcification was evaluated as an alternative method for the study of bone marrow. This method was found to give sections with comparable cytological quality to that of paraffin-embedment, yielded sections for interpretation within 24 hours, and allowed enzyme-histochemical and immunohistochemical analyses to be applied successfully.
    Matched MeSH terms: Freezing
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links