Displaying publications 21 - 40 of 71 in total

Abstract:
Sort:
  1. Durani LW, Hamezah HS, Ibrahim NF, Yanagisawa D, Makpol S, Damanhuri HA, et al.
    Biochem Biophys Res Commun, 2017 11 25;493(3):1356-1363.
    PMID: 28970069 DOI: 10.1016/j.bbrc.2017.09.164
    We have recently shown that age-dependent regional brain atrophy and lateral ventricle expansion may be linked with impaired cognitive and locomotor functions. However, metabolic profile transformation in different brain regions during aging is unknown. This study examined metabolic changes in the hippocampus, medial prefrontal cortex (mPFC) and striatum of middle- and late-aged Sprague-Dawley rats using ultrahigh performance liquid chromatography coupled with high-resolution accurate mass-orbitrap tandem mass spectrometry. Thirty-eight potential metabolites were altered in hippocampus, 29 in mPFC, and 14 in striatum. These alterations indicated that regional metabolic mechanisms in lated-aged rats are related to multiple pathways including glutathione, sphingolipid, tyrosine, and purine metabolism. Thus, our findings might be useful for understanding the complexity of metabolic mechanisms in aging and provide insight for aging and health span.
    Matched MeSH terms: Glutathione/metabolism
  2. Majid NA, Phang IC, Darnis DS
    Environ Sci Pollut Res Int, 2017 Oct;24(29):22827-22838.
    PMID: 28150147 DOI: 10.1007/s11356-017-8484-9
    Identification of Pelargonium radula as bioindicator for mercury (Hg) detection confers a new hope for monitoring the safety of drinking water consumption. Hg, like other non-essential metals, inflicts the deterioration of biological functions in human and other creatures. In the present study, effects of Hg on the physiology and biochemical content of P. radula were undertaken to understand the occurrence of the morphological changes observed. Young leaves of P. radula were treated with different concentrations of Hg-containing solution (0.5, 1.0 and 2.0 ppb) along with controls for 4 h, prior to further analysis. Elevated Hg concentration in treatment solution significantly prompted an increased accumulation of Hg in the leaf tissues. Meanwhile, total protein, chlorophyll and low molecular mass thiol contents (cysteine, glutathione and oxidized glutathione) decreased as Hg accumulation increased. However, phytochelatin 2 productions were induced in the treated leaves, in comparison to the control. Based on these findings, it is postulated that as low as 0.5 ppb of Hg interferes with the metabolic processes of plant cells, which was reflected from the morphological changes exhibited on P. radula leaves-the colour of the Hg-treated leaves changed from green to yellowish-brown, became chlorosis and wilted. Changes in the tested characteristics of plant are closely related to the Hg-induced morphological changes on P. radula leaves, a potential bioindicator for detecting Hg in drinking water.
    Matched MeSH terms: Glutathione/metabolism
  3. Guerriero G, D'Errico G, Di Giaimo R, Rabbito D, Olanrewaju OS, Ciarcia G
    Environ Sci Pollut Res Int, 2018 Jul;25(19):18286-18296.
    PMID: 28936697 DOI: 10.1007/s11356-017-0098-8
    Important toxicological achievements have been made during the last decades using reptiles. We focus our investigation on gonadal reproductive health of the soil biosentinel Podarcis sicula which is very sensitive to endocrine-disrupting chemicals. The aim of this study is to quantitatively detect, by sensitive microassays, reactive oxygen species and the glutathione antioxidants in the testis and investigate if they are differentially expressed before and after remediation of a site of the "Land of Fires" (Campania, Italy) subject to illicit dumping of unknown material. The oxidative stress level was evaluated by electron spin resonance spectroscopy applying a spin-trapping procedure able to detect products of lipid peroxidation, DNA damage and repair by relative mobility shift, and poly(ADP-ribose) polymerase enzymatic activity, respectively, the expression of glutathione peroxidase 4 transcript by real-time quantitative PCR analysis, the antioxidant glutathione S-transferase, a well-assessed pollution index, by enzymatic assay and the total soluble antioxidant capacity. Experimental evidences from the different techniques qualitatively agree, thus confirming the robustness of the combined experimental approach. Collected data, compared to those from a reference unpolluted site constitute evidence that the reproductive health of this lizard is impacted by pollution exposure. Remediation caused significant reduction of reactive oxygen species and downregulation of glutathione peroxidase 4 mRNAs in correspondence of reduced levels of glutathione S-transferase, increase of antioxidant capacity, and repair of DNA integrity. Taken together, our results indicate directions to define new screening approaches in remediation assessment.
    Matched MeSH terms: Glutathione/metabolism*
  4. Budin SB, Han CM, Jayusman PA, Taib IS
    Pak J Biol Sci, 2012 Jun 01;15(11):517-23.
    PMID: 24191625
    Fenitrothion (FNT) is extensively used as pesticide and may induce oxidative stress in various organs. Tocotrienol, a form of vitamin E found in palm oil, reduces oxidative impairments in pathological conditions. This study aims to investigate the effects of palm oil tocotrienol rich fraction (TRF) on fenitrothion-induced oxidative damage in rat pancreas. Forty male Sprague-Dawley rats were divided into four groups: control group, FNT group, TRF group and FNT+TRF group. Regimens FNT (20 mg kg(-1) b.wt.) and TRF (200 mg kg(-1) b.wt.) were force-fed for 28 consecutive days with control group only receiving corn oil. Chronic administration of fenitrothion significantly (p < 0.05) induced oxidative damage in pancreas of rats with elevated malondialdehyde and protein carbonyl level. Depletion of glutathione and significant (p < 0.05) reduction in antioxidant enzyme activities in pancreas homogenate additionally suggested induction of oxidative stress. Despite these changes in pancreas of intoxicated rats, no significant (p < 0.05) changes in blood glucose and pancreas histology were observed. Co-administration of FNT with TRF alleviated these oxidative changes and significantly (p < 0.05) restored antioxidant status. Enzymatic activities of Superoxide Dismutase (SOD) and Catalase (CAT) were normalized. In conclusion, tocotrienol rich fraction of palm oil prevents fenitrothion-induced pancreatic oxidative damage in rats.
    Matched MeSH terms: Glutathione/metabolism
  5. Rahim SM, Taha EM, Al-janabi MS, Al-douri BI, Simon KD, Mazlan AG
    PMID: 25435631
    BACKGROUND: Cymbopogon citratus (Poaceae) a tropical perennial herb plant that is widely cultivated to be eaten either fresh with food or dried in tea or soft drink has been reported to possess a number of medicinal and aromatic properties. This study aimed at evaluating the protective effects of C. citratus aqueous extract against liver injury induced by hydrogen peroxide (H2O2), in male rats.

    MATERIALS AND METHODS: Twenty-five rats were randomly divided into five different groups of five animals in each group; (1) Control. (2) Received H2O2 (0.5%) with drinking water. (3), and (4) received H2O2 and C. citratus (100 mg·kg(-1) b wt), vitamin C (250 mg·kg(-1) b wt) respectively. (5), was given C. citratus alone. The treatments were administered for 30 days. Blood samples were collected and serum was used for biochemical assay including liver enzymes activities, total protein, total bilirubin and malonaldehyde, glutathione in serum and liver homogenates. Liver was excised and routinely processed for histological examinations.

    RESULTS: C. citratus attenuated liver damage due to H2O2 administration as indicated by the significant reduction (p<0.05), in the elevated levels of ALT, AST, ALP, LDH, TB, and MDA in serum and liver homogenates; increase in TP and GSH levels in serum and liver homogenates; and improvement of liver histo-pathological changes. These effects of the extract were similar to that of vitamin C which used as antioxidant reference.

    CONCLUSION: C. citratus could effectively ameliorate H2O2-induced oxidative stress and prevent liver injury in male rats.

    Matched MeSH terms: Glutathione/metabolism
  6. Rajah T, Chow SC
    Toxicol Appl Pharmacol, 2014 Jul 15;278(2):100-6.
    PMID: 24768707 DOI: 10.1016/j.taap.2014.04.014
    The caspase inhibitor benzyloxycarbony (Cbz)-l-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) has recently been shown to inhibit T cell proliferation without blocking caspase-8 and caspase-3 activation in primary T cells. We showed in this study that z-VAD-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-mediated T cell proliferation induced by z-VAD-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and l-cysteine, whereas d-cysteine which cannot be metabolised to GSH has no effect. These results suggest that the depletion of intracellular GSH is the underlying cause of z-VAD-FMK-mediated inhibition of T cell activation and proliferation. The presence of exogenous GSH also attenuated the inhibition of anti-CD3-induced CD25 and CD69 expression mediated by z-VAD-FMK. However, none of the low molecular weight thiols were able to restore the caspase-inhibitory properties of z-VAD-FMK in activated T cells where caspase-8 and caspase-3 remain activated and processed into their respective subunits in the presence of the caspase inhibitor. This suggests that the inhibition of T cell proliferation can be uncoupled from the caspase-inhibitory properties of z-VAD-FMK. Taken together, the immunosuppressive effects in primary T cells mediated by z-VAD-FMK are due to oxidative stress via the depletion of GSH.
    Matched MeSH terms: Glutathione/metabolism
  7. Abdul Hamid Z, Budin SB, Wen Jie N, Hamid A, Husain K, Mohamed J
    J Zhejiang Univ Sci B, 2012 Mar;13(3):176-85.
    PMID: 22374609 DOI: 10.1631/jzus.B1100133
    Paracetamol (PCM) overdose can cause nephrotoxicity with oxidative stress as one of the possible mechanisms mediating the event. In this study, the effects of ethyl acetate extract of Zingiber zerumbet rhizome [200 mg per kg of body weight (mg/kg) and 400 mg/kg] on PCM-induced nephrotoxicity were examined. Rats were divided into five groups containing 10 rats each. The control group received distilled water while other groups were treated with extract alone (400 mg/kg), PCM alone (750 mg/kg), 750 mg/kg PCM+200 mg/kg extract (PCM+200-extract), and 750 mg/kg PCM+400 mg/kg extract (PCM+400-extract), respectively, for seven consecutive days. The Z. zerumbet extract was given intraperitoneally concurrent with oral administration of PCM. Treatment with Z. zerumbet extract at doses of 200 and 400 mg/kg prevented the PCM-induced nephrotoxicity and oxidative impairments of the kidney, as evidenced by a significantly reduced (P<0.05) level of plasma creatinine, plasma and renal malondialdehyde (MDA), plasma protein carbonyl, and renal advanced oxidation protein product (AOPP). Furthermore, both doses were also able to induce a significant increment (P<0.05) of plasma and renal levels of glutathione (GSH) and plasma superoxide dismutase (SOD) activity. The nephroprotective effects of Z. zerumbet extract were confirmed by a reduced intensity of renal cellular damage, as evidenced by histological findings. Moreover, Z. zerumbet extract administered at 400 mg/kg was found to show greater protective effects than that at 200 mg/kg. In conclusion, ethyl acetate extract of Z. zerumbet rhizome has a protective role against PCM-induced nephrotoxicity and the process is probably mediated through its antioxidant properties.
    Matched MeSH terms: Glutathione/metabolism
  8. Naidu KR, Kumar KS, Arulselvan P, Reddy CB, Lasekan O
    Arch Pharm (Weinheim), 2012 Dec;345(12):957-63.
    PMID: 23015406 DOI: 10.1002/ardp.201200192
    A series of α-hydroxyphosphonates were synthesized from the reaction of aldehyde (1) with triethylphosphite (2) in the presence of oxone and evaluated for their antioxidant properties against lipid peroxidation, reduced glutathione, superoxide dismutase, and catalase. The majority of the compounds showed promising antioxidant activity. Diethyl anthracen-9-yl (hydroxy) methylphosphonate (3n) is the most potent and biologically active compound against free radicals.
    Matched MeSH terms: Glutathione/metabolism
  9. Magalingam KB, Radhakrishnan A, Haleagrahara N
    Int J Mol Med, 2013 Jul;32(1):235-40.
    PMID: 23670213 DOI: 10.3892/ijmm.2013.1375
    Free radicals are widely known to be the major cause of human diseases such as neurodegenerative diseases, cancer, allergy and autoimmune diseases. Human cells are equipped with a powerful natural antioxidant enzyme network. However, antioxidants, particularly those originating from natural sources such as fruits and vegetables, are still considered essential. Rutin, a quercetin glycoside, has been proven to possess antioxidant potential. However, the neuroprotective effect of rutin in pheochromocytoma (PC-12) cells has not been studied extensively. Therefore, the present study was designed to establish the neuroprotective role of rutin as well as to elucidate the antioxidant mechanism of rutin in 6-hydroxydopamine (6-OHDA)-induced toxicity in PC-12 neuronal cells. PC-12 cells were pretreated with different concentrations of rutin for 4, 8 and 12 h and subsequently incubated with 6-OHDA for 24 h to induce oxidative stress. A significant cytoprotective activity was observed in rutin pretreated cells in a dose-dependent manner. Furthermore, there was marked activation of antioxidant enzymes including superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and total glutathione (GSH) in rutin pretreated cells compared to cells incubated with 6-OHDA alone. Rutin significantly reduced lipid peroxidation in 6-OHDA-induced PC-12 cells. On the basis of these observations, it was concluded that the bioflavonoid rutin inhibited 6-OHDA-induced neurotoxicity in PC-12 cells by improving antioxidant enzyme levels and inhibiting lipid peroxidation.
    Matched MeSH terms: Glutathione/metabolism
  10. Haleagrahara N, Siew CJ, Mitra NK, Kumari M
    Neurosci Lett, 2011 Aug 15;500(2):139-43.
    PMID: 21704673 DOI: 10.1016/j.neulet.2011.06.021
    An increasing large body of research on Parkinson's disease (PD) has focused on the understanding of the mechanisms behind the potential neuro protection offered by antioxidants and iron chelating agents. In this study, the protective effect of the bioflavonoid quercetin on 6-hydroxydopamine (6-OHDA)-induced model of PD was investigated. PD was induced by a single intracisternal injection of 6-hydroxydopamine (300μg) to male Sprague-Dawley rats. Quercetin treatment (30mg/kg body weight) over 14 consecutive days markedly increased the striatal dopamine and antioxidant enzyme levels compared with similar measurements in the group treated with 6-OHDA alone. There was a significant decrease in protein carbonyl content in the striatum compared with that of rats that did not receive quercetin. A significant increase in neuronal survivability was also found with quercetin treatment in rats administered 6-OHDA. In conclusion, treatment with quercetin defended against the oxidative stress in the striatum and reduced the dopaminergic neuronal loss in the rat model of PD.
    Matched MeSH terms: Glutathione/metabolism
  11. Abd Aziz CB, Ahmad Suhaimi SQ, Hasim H, Ahmad AH, Long I, Zakaria R
    J Integr Med, 2019 Jan;17(1):66-70.
    PMID: 30591413 DOI: 10.1016/j.joim.2018.12.002
    OBJECTIVE: This study was done to determine whether Tualang honey could prevent the altered nociceptive behaviour, with its associated changes of oxidative stress markers and morphology of the spinal cord, among the offspring of prenatally stressed rats.

    METHODS: Pregnant rats were divided into three groups: control, stress, and stress treated with Tualang honey. The stress and stress treated with Tualang honey groups were subjected to restraint stress from day 11 of pregnancy until delivery. Ten week old male offspring (n = 9 from each group) were given formalin injection and their nociceptive behaviours were recorded. After 2 h, the rats were sacrificed, and their spinal cords were removed to assess oxidative stress activity and morphology. Nociceptive behaviour was analysed using repeated measures analysis of variance (ANOVA), while the levels of oxidative stress parameters and number of Nissl-stained neurons were analysed using a one-way ANOVA.

    RESULTS: This study demonstrated that prenatal stress was associated with increased nociceptive behaviour, changes in the oxidative stress parameters and morphology of the spinal cord of offspring exposed to prenatal stress; administration of Tualang honey reduced the alteration of these parameters.

    CONCLUSION: This study provides a preliminary understanding of the beneficial effects of Tualang honey against the changes in oxidative stress and neuronal damage in the spinal cord of the offspring of prenatally stressed rats.

    Matched MeSH terms: Glutathione/metabolism
  12. Hambali Z, Ngah WZ, Wahid SA, Kadir KA
    Pathology, 1995 Jan;27(1):30-5.
    PMID: 7603748
    The effects of ovariectomy and hormone replacement in control and carcinogen treated female rats were investigated by measuring whole blood and liver glutathione (WGSH, HGSH), glutathione S-transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GRx) and histological evaluation. Hepatocarcinogenesis was induced by diethylnitrosamine and 2-acetylaminofluorene. In control rats not receiving carcinogen, ovariectomy significantly increased the GST and GRx activities. Replacement with either estrogen or progesterone reduced the GST activities to below intact female values whereas replacement of both hormones together brought the GST activities to that of intact females. GRx activities were brought to intact female values by replacement with estrogen or progesterone, either singly or in combination. Neither ovariectomy nor sex hormone/s replacement influenced the levels of WGSH, HGSH and GPx activities. Carcinogen administration to intact rats increased all the parameters measured. Ovariectomized rats treated with carcinogen showed lower GPx and GRx activities at 2 mths. However, replacement with either progesterone or combined estrogen and progesterone increased GPx and GRx activities to original values. On the other hand GST and GPx activities in ovariectomized rats which had carcinogen treatment were lower than intact rats after 5 mths. Replacement with hormones either singly or both brought GST and GPx activities up to intact rat levels receiving carcinogen. The levels of WGSH, HGSH and GRx activities (5 mths) in carcinogen treated rats were not influenced by ovariectomy and/or hormone/s replacement. The results from this study suggested that ovariectomy reduced the severity of hepatocarcinogenesis which was restored by sex hormone/s replacement.
    Matched MeSH terms: Glutathione/metabolism*
  13. Taib IS, Budin SB, Ghazali AR, Jayusman PA, Mohamed J
    Exp Anim, 2014;63(4):383-93.
    PMID: 25030881
    Exposure to organophosphate insecticides such as fenitrothion (FNT) in agriculture and public health has been reported to affect sperm quality. Antioxidants may have a potential to reduce spermatotoxic effects induced by organophosphate. The present study was carried out to evaluate the effects of palm oil tocotrienol-rich fraction (TRF) in reducing the detrimental effects occurring in spermatozoa of FNT-treated rats. Adult male Sprague-Dawley rats were divided into four equal groups: a control group and groups of rats treated orally with palm oil TRF (200 mg/kg), FNT (20 mg/kg) and palm oil TRF (200 mg/kg) combined with FNT (20 mg/kg). The sperm characteristics, DNA damage, superoxide dismutase (SOD) activity, and levels of reduced glutathione (GSH), malondialdehyde (MDA), and protein carbonyl (PC) were evaluated. Supplementation with TRF attenuated the detrimental effects of FNT by significantly increasing the sperm counts, motility, and viability and decreased the abnormal sperm morphology. The SOD activity and GSH level were significantly increased, whereas the MDA and PC levels were significantly decreased in the TRF+FNT group compared with the rats receiving FNT alone. TRF significantly decreased the DNA damage in the sperm of FNT-treated rats. A significant correlation between abnormal sperm morphology and DNA damage was found in all groups. TRF showed the potential to reduce the detrimental effects occurring in spermatozoa of FNT-treated rats.
    Matched MeSH terms: Glutathione/metabolism
  14. Hafiz ZZ, Amin M'M, Johari James RM, Teh LK, Salleh MZ, Adenan MI
    Molecules, 2020 Feb 17;25(4).
    PMID: 32079355 DOI: 10.3390/molecules25040892
    Centella asiatica (C. asiatica) is one of the medicinal plants that has been reported to exert comprehensive neuroprotection in vitro and in vivo. In view of this, the present study was performed to investigate the effect of ethanolic extract of C. asiatica, designated as raw-extract of C. asiatica (RECA) in reducing the acetylcholinesterase (AChE), inflammations, and oxidative stress activities via both in vitro (SH-SY5Y and RAW 264.7 cells) and in vivo (Sprague Dawley rats). Quantitative high-performance liquid chromatography analysis reveals that RECA contains a significantly high proportion of glycosides than the aglycones with madecassoside as the highest component, followed by asiaticoside. Treatment of SH-SY5Y cells with RECA significantly reduced the AChE activity in a concentration-dependent manner with an IC50 value of 31.09 ± 10.07 µg/mL. Furthermore, the anti-inflammatory and antioxidant effects of RECA were evaluated by lipopolysaccharides (LPS)-stimulated RAW 264.7 cells. Our results elucidated that treatment with RECA significantly suppressed the level of pro-inflammatory cytokine/mediators and oxidative stress released in a concentration-dependent manner. Interestingly, these patterns of inhibition were consistent as observed in the LPS-induced neuroinflammation Sprague Dawley rats' model. The highest concentration used in the two models presented the most significant results. Herein, our findings strongly suggest that RECA may offer therapeutic potential for the treatment of Alzheimer's disease through inhibiting the AChE, inflammation, and oxidative stress activities.
    Matched MeSH terms: Glutathione/metabolism
  15. Gautam RK, Gupta G, Sharma S, Hatware K, Patil K, Sharma K, et al.
    Int J Rheum Dis, 2019 Jul;22(7):1247-1254.
    PMID: 31155849 DOI: 10.1111/1756-185X.13602
    AIM: The purpose of our investigation is to evaluate the anti-arthritic potential of isolated rosmarinic acid from the rind of Punica granatum.

    METHOD: Rosmarinic acid was isolated by bioactivity-guided isolation from butanolic fraction of Punica granatum and acute toxicity of rosmarinic acid was carried out. The experiment was conducted at doses of 25 and 50 mg/kg, in Freund's complete adjuvant (FCA)-induced arthritic rats. Various parameters, that is arthritic score, paw volume, thickness of paw, hematological, antioxidant and inflammatory parameters such as glutathione (GSH), superoxide dismutase (SOD), malonaldehyde (MDA) and tumor necrosis factor-α (TNF-α) were also estimated.

    RESULTS: Rosmarinic acid significantly decreased the arthritic score, paw volume, joint diameter, white blood cell count and erythrocyte sedimentation rate. It also significantly increased body weight, hemoglobin and red blood cells. The significantly decreased levels of TNF-α were observed in treated groups as compared to arthritic control rats (P 

    Matched MeSH terms: Glutathione/metabolism
  16. Nallappan D, Chua KH, Ong KC, Chong CW, Teh CSJ, Palanisamy UD, et al.
    Food Funct, 2021 Jul 05;12(13):5876-5891.
    PMID: 34019055 DOI: 10.1039/d1fo00539a
    Obesity is a driving factor in the onset of metabolic disorders. This study aims to investigate the effects of the myricetin derivative-rich fraction (MD) from Syzygium malaccense leaf extract on high-fat diet (HFD)-induced obesity and its associated complications and its influence on uncoupling protein-1 (UCP-1) and gut microbiota in C57BL/6J mice. Mice were randomly assigned into four groups (n = 6) and given a normal diet (ND) or high-fat diet (HFD) for 10 weeks to induce obesity. The HFD groups (continued with HFD) were administered 50 mg kg-1 MD (treatment), 50 mg kg-1 metformin (positive control) and normal saline (HFD and ND controls) daily for four weeks via oral gavage. The ten-week HFD-feeding resulted in hyperglycemia and elevated urinary oxidative indices. The subsequent MD administration caused significant weight reduction without appetite suppression and amelioration of insulin resistance, steatosis and dyslipidemia. Besides, MD significantly reduced lipid hydroperoxides and protein carbonyls in tissue homogenates and urine and elevated Trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) and reduced glutathione (GSH) and thus, alleviated oxidative stress. The weight reduction was correlated with downregulation of inflammatory markers and the increased UCP-1 level, suggesting weight loss plausibly through thermogenesis. The Akkermansia genus (reflects improved metabolic status) in the HFD50 group was more abundant than that in the HFD group while the non-enzymatic antioxidant markers were strongly associated with UCP-1. In conclusion, MD ameliorates obesity and its related complications possibly via the upregulation of UCP-1 and increased abundance of Akkermansia genus and is promising as a therapeutic agent in the treatment of obesity and its associated metabolic disorders.
    Matched MeSH terms: Glutathione/metabolism
  17. Ibrahim MH, Jaafar HZ, Karimi E, Ghasemzadeh A
    Molecules, 2013 Sep 05;18(9):10973-88.
    PMID: 24013410 DOI: 10.3390/molecules180910973
    A study was conducted to compare secondary metabolites and antioxidant activity of Labisia pumila Benth (Kacip Fatimah) in response to two sources of fertilizer [i.e., organic (chicken dung; 10% N:10% P₂O₅:10% K₂O) and inorganic fertilizer (NPK green; 15% N, 15% P₂O₅, 15% K₂O)] under different N rates of 0, 90, 180 and 270 kg N/ha. The experiment was arranged in a randomized complete block design replicated three times. At the end of 15 weeks, it was observed that the application of organic fertilizer enhanced the production of total phenolics, flavonoids, ascorbic acid, saponin and gluthathione content in L. pumila, compared to the use of inorganic fertilizer. The nitrate content was also reduced under organic fertilization. The application of nitrogen at 90 kg N/ha improved the production of secondary metabolites in Labisia pumila. Higher rates in excess of 90 kg N/ha reduced the level of secondary metabolites and antioxidant activity of this herb. The DPPH and FRAP activity was also highest at 90 kg N/ha. The results indicated that the use of chicken dung can enhance the production of secondary metabolites and improve antioxidant activity of this herb.
    Matched MeSH terms: Glutathione/metabolism
  18. Sidahmed HM, Hashim NM, Abdulla MA, Ali HM, Mohan S, Abdelwahab SI, et al.
    PLoS One, 2015;10(3):e0121060.
    PMID: 25798602 DOI: 10.1371/journal.pone.0121060
    BACKGROUND: Zingiber zerumbet Smith is a perennial herb, broadly distributed in many tropical areas. In Malaysia, it's locally known among the Malay people as "lempoyang" and its rhizomes, particularly, is widely used in traditional medicine for the treatment of peptic ulcer disease beyond other gastric disorders.

    AIM OF THE STUDY: The aim of the current study is to evaluate the gastroprotective effect of zerumbone, the main bioactive compound of Zingiber zerumbet rhizome, against ethanol-induced gastric ulcer model in rats.

    MATERIALS AND METHODS: Rats were pre-treated with zerumbone and subsequently exposed to acute gastric ulcer induced by absolute ethanol administration. Following treatment, gastric juice acidity, ulcer index, mucus content, histological analysis (HE and PAS), immunohistochemical localization for HSP-70, prostaglandin E2 synthesis (PGE2), non-protein sulfhydryl gastric content (NP-SH), reduced glutathione level (GSH), and malondialdehyde level (MDA) were evaluated in ethanol-induced ulcer in vivo. Ferric reducing antioxidant power assay (FRAP) and anti-H. pylori activity were investigated in vitro.

    RESULTS: The results showed that the intragastric administration of zerumbone protected the gastric mucosa from the aggressive effect of ethanol-induced gastric ulcer, coincided with reduced submucosal edema and leukocyte infiltration. This observed gastroprotective effect of zerumbone was accompanied with a significant (p <0.05) effect of the compound to restore the lowered NP-SH and GSH levels, and to reduce the elevated MDA level into the gastric homogenate. Moreover, the compound induced HSP-70 up-regulation into the gastric tissue. Furthermore, zerumbone significantly (p <0.05) enhanced mucus production, showed intense PAS stain and maintained PG content near to the normal level. The compound exhibited antisecretory activity and an interesting minimum inhibitory concentration (MIC) against H. pylori strain.

    CONCLUSION: The results of the present study revealed that zerumbone promotes ulcer protection, which might be attributed to the maintenance of mucus integrity, antioxidant activity, and HSP-70 induction. Zerumbone also exhibited antibacterial action against H. pylori.

    Matched MeSH terms: Glutathione/metabolism
  19. Haleagrahara N, Varkkey J, Chakravarthi S
    Int J Mol Sci, 2011;12(10):7100-13.
    PMID: 22072938 DOI: 10.3390/ijms12107100
    The aim of the present study was to look into the possible protective effects of glycyrrhizic acid (GA) against isoproterenol-induced acute myocardial infarction in Sprague-Dawley rats. The effect of three doses of glycyrrhizic acid in response to isoproterenol (ISO)-induced changes in 8-isoprostane, lipid hydroperoxides, super oxide dismutase and total glutathione were evaluated. Male Sprague-Dawley rats were divided into control, ISO-control, glycyrrhizic acid alone (in three doses-5, 10 and 20 mg/kg BW) and ISO with glycyrrhizic acid (in three doses) groups. ISO was administered at 85 mg/kg BW at two consecutive days and glycyrrhizic acid was administered intraperitoneally for 14 days. There was a significant increase in 8-isoprostane (IP) and lipid hydroperoxide (LPO) level in ISO-control group. A significant decrease in total superoxide dismutase (SOD) and total glutathione (GSH) was seen with ISO-induced acute myocardial infarction. Treatment with GA significantly increased SOD and GSH levels and decreased myocardial LPO and IP levels. Histopathologically, severe myocardial necrosis and nuclear pyknosis and hypertrophy were seen in ISO-control group, which was significantly reduced with GA treatment. Gycyrrhizic acid treatment proved to be effective against isoproterenol-induced acute myocardial infarction in rats and GA acts as a powerful antioxidant and reduces the myocardial lipid hydroperoxide and 8-isoprostane level.
    Matched MeSH terms: Glutathione/metabolism
  20. Sultan MT, Butt MS, Karim R, Ahmed W, Kaka U, Ahmad S, et al.
    PMID: 26385559 DOI: 10.1186/s12906-015-0853-7
    Nigella sativa is an important component of several traditional herbal preparations in various countries. It finds its applications in improving overall health and boosting immunity. The current study evaluated the role of fixed and essential oil of Nigella sativa against potassium bromate induced oxidative stress with special reference to modulation of glutathione redox enzymes and myeloperoxidase.
    Matched MeSH terms: Glutathione/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links