Displaying publications 21 - 40 of 46 in total

Abstract:
Sort:
  1. Lee, W.S., Lok, F.Y.L.
    MyJurnal
    A 46 day old female Chinese infant was referred for fail-ure to thrive, jaundice, hepatomegaly and bilateral cataracts. She had vomiting,blood stained stools and severe unconjugated hyperbilirubinaemia soon after birth. The jaundice persisted. At one month of age, pale stools, firm hepatomegaly and bilateral cataracts were noted. Radionuclide hepatobiliary scintigraphy per-formed at another hospital excluded biliary atresia. Investigations showed cholestasis but a negative sero-logical screening for congenital infections. A presump-tive diagnosis of galactosaemia was made and the infant was started on lactose free formula. A deficient red blood cell galactose- 1 -phosphate uridyltransferase (GALT) activity was demonstrated later. Review eight months after the initial diagnosis showed a thriving infant with no jaundice, but persisting cataracts and firm enlarged liver. A high index of clinical suspicion, labo-ratory confirmation of a deficient GALT activity and prompt withdrawal of lactose from diet are necessary to avoid any delay in diagnosis and management of this condition.
    Matched MeSH terms: Galactose; Galactosemias; Lactose
  2. Hajar, S., Hamid, T.H.T.A.
    MyJurnal
    Lactic acid bacteria is well known for it uses as starter culture in various fermented food, and it functions as a good natural antimicrobial agent. Cincaluk, a Malaysian fermented shrimp product commonly found in traditional dishes is commonly enriched with LAB. Out of 50 colonies from a local cincaluk, 7 strains were successfully isolated and shown to be positive in lactose utilization and catalase tests. The majority of the isolates from cincaluk showed Gram-positive cocci morphology and belonged to the group Staphyloccoccus spp. By using agar disc diffusion method, the anti-bacterial properties of these isolates (namely isolate 1, 2, 3, 4, 5, 6, and 7) moderately inhibited the growth of several pathogenic strains, i.e., Escherichia coli, Staphylococcus aureus, Salmonella typhimurium and Bacillus subtilis which were used as indicator bacteria. Other than isolates 1, 2, 3 and 5; the 16S rRNA gene for isolate 6 and 7 were successfully amplified. The 16S rRNA gene fragment from isolate 7 was successfully cloned and sequenced. Based on rRNA sequences, both isolates 6 and 7 belonged to the group Staphylococcus piscifermentans, a rare strain previously reported to be specifically isolated exclusive from fish sources.
    Matched MeSH terms: Lactose
  3. Tamilvanan S, Karmegam S
    Pharm Dev Technol, 2012 Jul-Aug;17(4):494-501.
    PMID: 21609308 DOI: 10.3109/10837450.2010.550622
    Methyl salicylate-lactose physical mixture (1:1 and 1:1.5 ratios) was incorporated into calcium alginate beads by a coacervation method involving an ionotropic gelation/polyelectrolyte complexation approach.
    Matched MeSH terms: Lactose/administration & dosage
  4. Hasan H, Abd Rahim MH, Campbell L, Carter D, Abbas A, Montoya A
    N Biotechnol, 2019 Sep 25;52:19-24.
    PMID: 30995533 DOI: 10.1016/j.nbt.2019.04.003
    Lovastatin is widely prescribed to reduce elevated levels of cholesterol and prevent heart-related diseases. Cultivation of Aspergillus terreus (ATCC 20542) with carbohydrates or low-value feedstocks such as glycerol produces lovastatin as a secondary metabolite and (+)-geodin as a by-product. An A. terreus mutant strain was developed (gedCΔ) with a disrupted (+)-geodin biosynthesis pathway. The gedCΔ mutant was created by inserting the antibiotic marker hygromycin B (hyg) within the gedC gene that encodes emodin anthrone polyketide synthase (PKS), a primary gene responsible for initiating (+)-geodin biosynthesis. The effects of emodin anthrone PKS gene disruption on (+)-geodin and lovastatin biosynthesis and the production of the precursors acetyl-CoA and malonyl-CoA were investigated with cultures based on glycerol alone and in combination with lactose. The gedCΔ strain showed improved lovastatin production, particularly when cultivated on the glycerol-lactose mixture, increasing lovastatin production by 80% (113 mg/L) while simultaneously inhibiting (+)-geodin biosynthesis compared to the wild-type strain. This study thus shows that suppression of the (+)-geodin pathway increases lovastatin yield and demonstrates a practical approach of manipulating carbon flux by modulating enzyme activity.
    Matched MeSH terms: Lactose/metabolism
  5. Asmawi MZ, Seppo L, Vapaatalo H, Korpela R
    Indian J Med Res, 2006 Dec;124(6):697-704.
    PMID: 17287558
    Prevalence of adult-type hypolactasia is known to vary among different countries and in different ethnic populations in the same country. The present study was undertaken to evaluate the prevalence of hypolactasia and lactose intolerance in three different ethnic populations living in similar environmental conditions in Malaysia. The correlation between different symptoms and lactose intolerance test was also studied.
    Matched MeSH terms: Lactose Intolerance/ethnology; Lactose Intolerance/epidemiology*
  6. Contreras-Jodar A, Nayan NH, Hamzaoui S, Caja G, Salama AAK
    PLoS One, 2019;14(2):e0202457.
    PMID: 30735497 DOI: 10.1371/journal.pone.0202457
    The aim of the study is to identify the candidate biomarkers of heat stress (HS) in the urine of lactating dairy goats through the application of proton Nuclear Magnetic Resonance (1H NMR)-based metabolomic analysis. Dairy does (n = 16) in mid-lactation were submitted to thermal neutral (TN; indoors; 15 to 20°C; 40 to 45% humidity) or HS (climatic chamber; 37°C day, 30°C night; 40% humidity) conditions according to a crossover design (2 periods of 21 days). Thermophysiological traits and lactational performances were recorded and milk composition analyzed during each period. Urine samples were collected at day 15 of each period for 1H NMR spectroscopy analysis. Principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) assessment with cross validation were used to identify the goat urinary metabolome from the Human Metabolome Data Base. HS increased rectal temperature (1.2°C), respiratory rate (3.5-fold) and water intake (74%), but decreased feed intake (35%) and body weight (5%) of the lactating does. No differences were detected in milk yield, but HS decreased the milk contents of fat (9%), protein (16%) and lactose (5%). Metabolomics allowed separating TN and HS urinary clusters by PLS-DA. Most discriminating metabolites were hippurate and other phenylalanine (Phe) derivative compounds, which increased in HS vs. TN does. The greater excretion of these gut-derived toxic compounds indicated that HS induced a harmful gastrointestinal microbiota overgrowth, which should have sequestered aromatic amino acids for their metabolism and decreased the synthesis of neurotransmitters and thyroid hormones, with a negative impact on milk yield and composition. In conclusion, HS markedly changed the thermophysiological traits and lactational performances of dairy goats, which were translated into their urinary metabolomic profile through the presence of gut-derived toxic compounds. Hippurate and other Phe-derivative compounds are suggested as urinary biomarkers to detect heat-stressed dairy animals in practice.
    Matched MeSH terms: Lactose
  7. Majid AM, Wong TW
    Int J Pharm, 2013 May 1;448(1):150-8.
    PMID: 23506957 DOI: 10.1016/j.ijpharm.2013.03.008
    The conventional powder flow testers require sample volumes larger than 40g and are met with experimental hiccups due to powder cohesion. This study designed a gas-pressurized dispersive powder flow tester where a high velocity air is used to disaggregate powder (9g) and eliminate its cohesion. The pressurized gas entrained solid particles leaving an orifice where the distance, surface area, width and weight of particle dispersion thereafter are determined as flow index. The flow indices of seven lactose grades with varying size, size distribution, shape, morphology, bulk and tapped densities characteristics were examined. They were compared against Hausner ratio and Carr's index parameters of the same powder mass. Both distance and surface area attributes of particle dispersion had significant negative correlations with Hausner ratio and Carr's index values of lactose. The distance, surface area and ease of particle dispersion varied proportionately with circular equivalent, surface weighted mean and volume weighted mean diameters of lactose, and inversely related to their specific surface area and elongation characteristics. Unlike insensitive Hausner ratio and Carr's index, an increase in elongation property of lactose particles was detectable through reduced powder weight loss from gas-pressurized dispersion as a result of susceptible particle blockage at orifice. The gas-pressurized dispersive tester is a useful alternative flowability measurement device for low volume and cohesive powder.
    Matched MeSH terms: Lactose/chemistry*
  8. Bose A, Wong TW, Singh N
    Saudi Pharm J, 2013 Apr;21(2):201-13.
    PMID: 23960836 DOI: 10.1016/j.jsps.2012.03.006
    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.
    Matched MeSH terms: Lactose
  9. Wong CF, Yuen KH, Peh KK
    Int J Pharm, 1999 Feb 01;178(1):11-22.
    PMID: 10205621
    Controlled release buccal patches were fabricated using Eudragit NE40D and studied. Various bioadhesive polymers, namely hydroxypropylmethyl cellulose, sodium carboxymethyl cellulose and Carbopol of different grades, were incorporated into the patches, to modify their bioadhesive properties as well as the rate of drug release, using metoprolol tartrate as the model drug. The in-vitro drug release was determined using the USP 23 dissolution test apparatus 5 with slight modification, while the bioadhesive properties were evaluated using texture analyzer equipment with chicken pouch as the model tissue. The incorporation of hydrophilic polymers was found to affect the drug release as well as enhance the bioadhesiveness. Although high viscosity polymers can enhance the bioadhesiveness of the patches, they also tend to cause non-homogeneous distribution of the polymers and drug, resulting in non-predictable drug-release rates. Of the various bioadhesive polymers studied, Cekol 700 appeared to be most satisfactory in terms of modifying the drug release and enhancement of the bioadhesive properties.
    Matched MeSH terms: Lactose/analogs & derivatives; Lactose/chemistry
  10. Golkhandan E, Sijam K, Meon S, Ahmad ZAM, Nasehi A, Nazerian E
    Plant Dis, 2013 Aug;97(8):1110.
    PMID: 30722504 DOI: 10.1094/PDIS-01-13-0112-PDN
    Soft rot of cabbage (Brassica rapa) occurs sporadically in Malaysia, causing economic damage under the hot and wet Malaysian weather conditions that are suitable for disease development. In June 2011, 27 soft rotting bacteria were isolated from cabbage plants growing in the Cameron Highlands and Johor State in Malaysia where the economic losses exceeded 50% in severely infected fields and greenhouses. Five independent strains were initially identified as Pectobacterium wasabiae based on their inability to grow at 37°C, and elicit hypersensitive reaction (HR) on Nicotiana tabaccum and their ability to utilize raffinose and lactose. These bacterial strains were gram-negative, rod-shaped, N-acetylglucosaminyl transferase, gelatin liquefaction, and OPNG-positive and positive for acid production from D-galactose, lactosemelibiose, raffinose, citrate, and trehalose. All strains were negative for indole production, phosphatase activity, reducing sucrose, and negative for acid production from maltose, sorbitol, inositol, inolin, melezitose, α-methyl-D-glucoside, and D-arabitol. All the strains exhibited pectolytic activity on potato slices. PCR assays were conducted to distinguish P. wasabiae from P. carotovorum subsp. brasiliensis, P. atrosepticum, and other Pectobacterium species using primers Br1f/L1r (2), Eca1f/Eca2r (1), and EXPCCF/EXPCCR, respectively. DNA from strains did not yield the expected amplicon with the Br1f/L1r and Eca1f/Eca2r, whereas a 550-bp amplicon typical of DNA from P. wasabiae was produced with primers EXPCCF/EXPCCR. ITS-RFLP using the restriction enzyme, Rsa I, produced similar patterns for the Malaysian strains and the P. wasabiae type strain (SCRI488), but differentiated it from P. carotovora subsp. carotovora, P. atrosepticum, P. carotovorum subsp. brasiliensis, and Dickeya chrysanthemi type strains. BLAST analysis of the 16S rRNA DNA sequence (GenBank Accession No. KC445633) showed 99% identity to the 16S rRNA of Pw WPP163. Phylogenetic reconstruction using concatenated DNA sequences of mdh and gapA from P. wasabiae Cc6 (KC484657) and other related taxa (4) clustered Malaysian P. wasabiae strains with P. wasabiae SCRI488, readily distinguishing it from other closely related species of Pectobacterium. Pathogenicity assays were conducted on leaves and stems of four mature cabbage plants for each strain (var. oleifera) by injecting 10 μl of a bacterial suspension (108 CFU/ml) into either stems or leaves, and incubating them in a moist chamber at 80 to 90% relative humidity at 30°C. Water-soaked lesions similar to those observed in the fields and greenhouses were observed 72 h after injection and bacteria with similar characteristics were consistently reisolated. Symptoms were not observed on water-inoculated controls. The pathogenicity test was repeated with similar results. P. wasabiae was previously reported to cause soft rot of horseradish in Japan (3). However, to our knowledge, this is the first report of P. wasabiae infecting cabbage in Malaysia. References: (1) S. H. De Boer and L. J. Ward. Phytopathology 85:854, 1995. (2) V. Duarte et al. J. Appl. Microbiol. 96:535, 2004. (3) M. Goto and K. Matsumoto. Int. J. Syst. Bacteriol. 37:130, 1987. (4) B. Ma et al. Phytopathology 97:1150, 2007.
    Matched MeSH terms: Galactose; Lactose
  11. Zhou JN, Liu SY, Chen YF, Liao LS
    Plant Dis, 2015 Mar;99(3):416.
    PMID: 30699721 DOI: 10.1094/PDIS-10-14-1025-PDN
    Clausena lansium, also known as wampee (Clausena wampi), is a plant species native to China, Vietnam, the Philippines, Malaysia, and Indonesia, where it is widely cultivated, and also grown in India, Sri Lanka, Queensland, Florida, and Hawaii, but less frequently (3). The fruit can be consumed fresh or made into juice, jam, or succade. In summer to fall 2014, a soft rot disease was found in a wampee planting region in Yunan County, Guangdong Province, China. On Sept. 18, we collected diseased samples from a wampee orchard with about 20% disease incidence. The infected fruit initially showed pinpoint spots on the peel, water-soaked lesions, and light to dark brown discoloration. Spots expanded in 2 days, and tissues collapsed after 5 days. Severely affected fruit showed cracking or nonodorous decay. Five diseased samples were collected, and causal agents were isolated from symptomatic tissues 1 cm under the peel after surface sterilization in 0.3% NaOCl for 10 min and rinsing in sterile water three times. Tissues were placed on a Luria Bertani (LB) plate for culture. Ten representative isolates were selected for further characterization. No colony was isolated from healthy tissues. Colonies were round, smooth, with irregular edges, and produced a yellow pigment in culture. Biolog identification (Version 4.20.05) showed that all strains were gram negative, negative for indole production, and utilized glucose, maltose, trehalose, sucrose, D-lactose, and pectin but not sorbitol or gelatin. The isolates were identified as Pantoea agglomerans (SIM 0.69). Multilocus sequence analysis (MLSA) was conducted for rapid classification of the strains. Sequences of atpD, gyrB, infB, and rpoB were amplified using corresponding primers (2). All sequences of the 10 isolates were identical in each gene. BLASTn was performed, and maximum likelihood trees based on the concatenated nucleotide sequences of the four genes were constructed using MEGA6. Bootstrap values after 1,000 replicates were expressed as percentages. Results showed that the tested strain named CL1 was most homologous to P. anthophila, with 98% identity for atpD (KM521543), 100% for gyrB (KM521544), infB (KM521545), and rpoB (KM521546). The 16S rRNA sequence (KM521542) amplified by primers 27f and 1492r shared 99% identity with that of P. anthophila M19_2C (JN644500). P. anthophila was previously reclassified from P. agglomerans (3); therefore, we suggest naming this wampee pathogen P. anthophila. Subsequently, 10 wampee fruits were injected with 20 μl of bacterial suspension (1 × 108 CFU/ml) of strains CL1 and CL2, respectively, and another 10 were injected with 20 μl of LB medium as controls, all kept at 28°C for 4 days. Symptoms similar to those of natural infections were observed on inoculated fruits but not on the negative controls. Bacteria were isolated from diseased tissues and further identified as P. anthophila by gyrB sequencing. P. anthophila was reported to naturally infect balsam and marigold (1,2). To our knowledge, this is the first report of P. anthophila naturally causing soft rot disease and cracking on C. lansium (wampee). References: (1) C. Brady et al. Syst. Appl. Microbiol. 31:447, 2008. (2) C. Brady et al. Int. J. Syst. Evol. Microbiol. 59:2339, 2009. (3) J. Morton. Fruits of Warm Climates. Echo Point Books & Media, Miami, FL, 1987.
    Matched MeSH terms: Lactose
  12. Mukhtar H, Suliman SM, Shabbir A, Mumtaz MW, Rashid U, Rahimuddin SA
    Protein Pept Lett, 2018;25(2):195-201.
    PMID: 29359654 DOI: 10.2174/0929866525666180122112805
    BACKGROUND: Lipid-producing microorganisms, said to be oleaginous have been recognized since several years. We had investigated the effects of medium components and culturing situations on cell growth and lipid accumulation of oleaginous yeasts which were analytically examined so as to enhance lipid yield for biodiesel production.

    OBJECTIVE: The main objective of this study was to explore oleaginous yeast, Yarrowia lipolytica isolated from soil and optimization of culture conditions and medium components to obtained better quality microbial oil for biodiesel production.

    METHODS: Fifty yeast strains were isolated from soil from different regions of Lahore and eleven of them were selected for oil production. The isolated yeast colonies were screened to further check their lipid producing capabilities by the qualitative analysis. Five yeast strains were designated as oleaginous because they produced more than 16% of oil based on their biomass. To estimate the total lipid content of yeast cells, the extraction of lipids was done by performing the procedure proposed by Bligh and Dyer. The transesterification of yeast oils was performed by using different methods. There were three different strategies customized to transesterifying microbial oil using base catalyzed transesterification, acid catalyzed transesterification and enzyme-based transesterification. After completion of transesterification, sample was used for fatty acid methyl esters (FAMEs) were analyzed by gas-chromatograph with ionization detector type MS.

    RESULTS: The isolate IIB-10 identified as Yarrowia lipolytica produced maximum amount of lipids i.e. 22.8%. More amount of biomass was obtained when cane molasses was utilized as carbon source where it produced 29.4 g/L of biomass while sucrose and lactose were not utilized by IIB-10 and no biomass was obtained. Similarly, meat extracts showed best results when it was used as nitrogen source because it resulted in 35.8 g/L biomass of Yarrowia lipolytica IIB-10. The culturing conditions like size of inoculum, effect of pH and time of incubation were also studied. The 10% of inoculum size produced 25.4 g/L biomass at 120 h incubation time, while the pH 7 was the optimum pH at which 24.8 g/L biomass was produced by Yarrowia lipolytica IIB-10. GC-MS analysis showed that biodiesel produced by transesterification contained similar fatty acids as found in vegetable oil for this reason it is widely accepted feedstock for biodiesel production.

    CONCLUSION: The analysis of fatty acids methyl esters showed the similar composition of microbial oil as in vegetable oils and high amount of methyl esters were obtained after transesterification. Therefore, potentially oleaginous yeast could be used to generate a large amount of lipids for biodiesel production that will be the better substitute of petroleum-based diesel and will also control the environmental pollution.

    Matched MeSH terms: Lactose
  13. Khoramnia A, Abdullah N, Liew SL, Sieo CC, Ramasamy K, Ho YW
    Anim Sci J, 2011 Feb;82(1):127-35.
    PMID: 21269371 DOI: 10.1111/j.1740-0929.2010.00804.x
    A rotatable central composite design (CCD) was used to study the effect of cryoprotectants (skim milk, sucrose and lactose) on the survival rate of a probiotic Lactobacillus strain, L. reuteri C10, for poultry, during freeze-drying and storage. Using response surface methodology, a quadratic polynomial equation was obtained for response value by multiple regression analyses: Y = 8.59546-0.01038 X(1)-0.09382 X(2)-0.07771 X(3)-0.054861 X(1)(2)-0.04603 X(3)(2)-0.10938 X(1)X(2). Based on the model predicted, sucrose exerted the strongest effect on the survival rate. At various combinations of cryoprotectants, the viability loss of the cells after freeze-drying was reduced from 1.65 log colony forming units (CFU)/mL to 0.26-0.66 log CFU/mL. The estimated optimum combination for enhancing the survival rate of L. reuteri C10 was 19.5% skim milk, 1% sucrose and 9% lactose. Verification experiments confirmed the validity of the predicted model. The storage life of freeze-dried L. reuteri C10 was markedly improved when cryoprotectants were used. At optimum combination of the cryoprotectants, the survival rates of freeze-dried L. reuteri C10 stored at 4°C and 30°C for 6 months were 96.4% and 73.8%, respectively. Total viability loss of cells which were not protected by cryoprotectants occurred after 12 and 8 weeks of storage at 4°C and 30°C, respectively.
    Matched MeSH terms: Lactose
  14. Iyngkaran N, Yadav M, Boey CG, Lam KL
    Arch Dis Child, 1988 Aug;63(8):911-5.
    PMID: 3415326
    The clinical response and the histological changes in the mucosa of the small bowel in response to continued feeding with cows' milk protein were assessed over a period of 2-6 weeks in 24 infants who had shown histological changes without immediate clinical symptoms after challenge with a diet containing cows' milk protein. Twenty of the 24 infants (83%) thrived well on cows' milk protein. Jejunal biopsy specimens taken six to eight weeks after the initial biopsy showed histological improvement in all 20 infants compared with biopsy specimens taken soon after the challenge, which had shown mucosal damage. The mucosa had returned to normal in 12, was mildly abnormal in seven, and moderately abnormal in one. Corresponding improvements in the activities of mucosal enzymes were seen. In four of the 24 infants (17%) symptoms developed between three and six weeks. Histological examination of the jejunal biopsy specimens showed that mucosal damage had progressed in two, and remained the same in two; moreover, the disaccharidase activities remained depressed. The present study shows that most infants with enteropathy caused by sensitivity to cows' milk protein but without clinical symptoms develop tolerance to the protein and the mucosa returns to normal despite continued feeding with cows' milk protein.
    Matched MeSH terms: Lactose Intolerance/complications; Lactose Intolerance/pathology*
  15. Misson M, Du X, Jin B, Zhang H
    Enzyme Microb Technol, 2016 Mar;84:68-77.
    PMID: 26827776 DOI: 10.1016/j.enzmictec.2015.12.008
    Functional nanomaterials have been pursued to assemble nanobiocatalysts since they can provide unique hierarchical nanostructures and localized nanoenvironments for enhancing enzyme specificity, stability and selectivity. Functionalized dendrimer-like hierarchically porous silica nanoparticles (HPSNs) was fabricated for assembling β-galactosidase nanobiocatalysts for bioconversion of lactose to galacto-oligosaccharides (GOS). The nanocarrier was functionalized with amino (NH2) and carboxyl (COOH) groups to facilitate enzyme binding, benchmarking with non-functionalized HPSNs. Successful conjugation of the functional groups was confirmed by FTIR, TGA and zeta potential analysis. HPSNs-NH2 showed 1.8-fold and 1.1-fold higher β-galactosidase adsorption than HPSNs-COOH and HPSNs carriers, respectively, with the highest enzyme adsorption capacity of 328mg/g nanocarrier at an initial enzyme concentration of 8mg/ml. The HPSNs-NH2 and β-galactosidase assembly (HPSNs-NH2-Gal) demonstrated to maintain the highest activity at all tested enzyme concentrations and exhibited activity up to 10 continuous cycles. Importantly, HPSNs-NH2-Gal was simply recycled through centrifugation, overcoming the challenging problems of separating the nanocarrier from the reaction medium. HPSNs-NH2-Gal had distinguished catalytic reaction profiles by favoring transgalactosylation, enhancing GOS production of up to 122g/l in comparison with 56g/l by free β-galactosidase. Furthermore, it generated up to 46g/l GOS at a lower initial lactose concentration while the free counterpart had negligible GOS production as hydrolysis was overwhelmingly dominant in the reaction system. Our research findings show the amino-functionalized HPSNs can selectively promote the enzyme activity of β-galactosidase for transgalactosylation, which is beneficial for GOS production.
    Matched MeSH terms: Lactose/metabolism
  16. Kazemi Shariat Panahi H, Dehhaghi M, Amiri H, Guillemin GJ, Gupta VK, Rajaei A, et al.
    Biotechnol Adv, 2023 Sep;66:108172.
    PMID: 37169103 DOI: 10.1016/j.biotechadv.2023.108172
    Chitin, as the main component of the exoskeleton of Arthropoda, is a highly available natural polymer that can be processed into various value-added products. Its most important derivative, i.e., chitosan, comprising β-1,4-linked 2-amino-2-deoxy-β-d-glucose (deacetylated d-glucosamine) and N-acetyl-d-glucosamine units, can be prepared via alkaline deacetylation process. Chitosan has been used as a biodegradable, biocompatible, non-antigenic, and nontoxic polymer in some in-vitro applications, but the recently found potentials of chitosan for in-vivo applications based on its biological activities, especially antimicrobial, antioxidant, and anticancer activities, have upgraded the chitosan roles in biomaterials. Chitosan approval, generally recognized as a safe compound by the United States Food and Drug Administration, has attracted much attention toward its possible applications in diverse fields, especially biomedicine and agriculture. Despite some favorable characteristics, the chitosan's structure should be customized for advanced applications, especially due to its drawbacks, such as low drug-load capacity, low solubility, high viscosity, lack of elastic properties, and pH sensitivity. In this context, derivatization with relatively inexpensive and highly available mono- and di-saccharides to soluble branched chitosan has been considered a "game changer". This review critically scrutinizes the emerging technologies based on the synthesis and application of lactose- and galactose-modified chitosan as two important chitosan derivatives. Some characteristics of chitosan derivatives and biological activities have been detailed first to understand the value of these natural polymers. Second, the saccharide modification of chitosan has been discussed briefly. Finally, the applications of lactose- and galactose-modified chitosan have been scrutinized and compared to native chitosan to provide an insight into the current state-of-the research for stimulating new ideas with the potential of filling research gaps.
    Matched MeSH terms: Galactose; Lactose
  17. Alhajj N, Zakaria Z, Naharudin I, Ahsan F, Li W, Wong TW
    Asian J Pharm Sci, 2020 May;15(3):374-384.
    PMID: 32636955 DOI: 10.1016/j.ajps.2019.02.001
    Chitosan nanoparticles are exhalation prone and agglomerative to pulmonary inhalation. Blending nanoparticles with lactose microparticles (∼5 µm) could mutually reduce their agglomeration through surface adsorption phenomenon. The chitosan nanoparticles of varying size, size distribution, zeta potential, crystallinity, shape and surface roughness were prepared by spray drying technique as a function of chitosan, surfactant and processing conditions. Lactose-polyethylene glycol 3000 (PEG3000) microparticles were similarly prepared. The chitosan nanoparticles, physically blended with fine lactose-PEG3000 microparticles, exhibited a comparable inhalation performance with the commercial dry powder inhaler products (fine particle fraction between 20% and 30%). Cascade impactor analysis indicated that the aerosolization and inhalation performance of chitosan nanoparticles was promoted by their higher zeta potential and circularity, and larger size attributes of which led to reduced inter-nanoparticulate aggregation and favored nanoparticles interacting with lactose-PEG3000 micropaticles that aided their delivery into deep and peripheral lungs.
    Matched MeSH terms: Lactose
  18. Amin MC, Fell JT
    Drug Dev Ind Pharm, 2004;30(9):937-45.
    PMID: 15554218
    Percolation theory has been used with great interest in understanding the design and characterization of dosage forms. In this study, work has been carried out to investigate the behavior of binary mixture tablets containing excipients of similar and different deformation properties. The binary mixture tablets were prepared by direct compression using lactose, polyvinyl chloride (PVC), Eudragit RS 100, and microcrystalline cellulose (MCC). The application of percolation theory on the relationships between compactibility, Pmax, or compression susceptibility (compressibility), gamma, and mixture compositions reveals the presence of percolation thresholds even for mixtures of similar deformation properties. The results showed that all mixture compositions exhibited at least one discreet change in the slope, which was referred to as the percolation threshold. The PVC/Eudragit RS100 mixture compositions showed significant percolation threshold at 80% (w/w) PVC loading. Two percolation thresholds were observed from a series of binary mixtures containing similar plastic deformation materials (PVC/MCC). The percolation thresholds were determined at 20% (w/w) and 80% (w/w) PVC loading. These are areas where one of the components percolates throughout the system and the properties of the tablets are expected to experience a sudden change. Experimental results, however, showed that total disruption of the tablet physical properties at the specified percolation thresholds can be observed for PVC/lactose mixtures at 20-30% (w/w) loading while only minor changes in the tablets' strength for PVC/MCC or PVC/Eudragit RS 100 mixtures were observed.
    Matched MeSH terms: Lactose/chemistry
  19. Wong TW, Musa N
    Int J Pharm, 2012 Jul 1;430(1-2):184-96.
    PMID: 22531845 DOI: 10.1016/j.ijpharm.2012.04.026
    Conventional melt pelletization and granulation processes produce round and dense, and irregularly shaped but porous agglomerates respectively. This study aimed to design centrifugal air-assisted melt agglomeration technology for manufacture of spherical and yet porous "granulets" for ease of downstream manufacturing and enhancing drug release. A bladeless agglomerator, which utilized shear-free air stream to mass the powder mixture of lactose filler, polyethylene glycol binder and poorly water-soluble tolbutamide drug into "granulets", was developed. The inclination angle and number of vane, air-impermeable surface area of air guide, processing temperature, binder content and molecular weight were investigated with reference to "granulet" size, shape, texture and drug release properties. Unlike fluid-bed melt agglomeration with vertical processing air flow, the air stream in the present technology moved centrifugally to roll the processing mass into spherical but porous "granulets" with a drug release propensity higher than physical powder mixture, unprocessed drug and dense pellets prepared using high shear mixer. The fast-release attribute of "granulets" was ascribed to porous matrix formed with a high level of polyethylene glycol as solubilizer. The agglomeration and drug release outcomes of centrifugal air-assisted technology are unmet by the existing high shear and fluid-bed melt agglomeration techniques.
    Matched MeSH terms: Lactose/chemistry
  20. Mazlee MTF, Heidelberg T, Ariffin A, Zain SM
    Carbohydr Res, 2023 Oct;532:108923.
    PMID: 37598565 DOI: 10.1016/j.carres.2023.108923
    In the attempt to create a delivery system for an alkali-cation stimulated drug release, a computational study was conducted, aiming for the evaluation of synthetic access towards glycolipid crown ethers analogs and their potential for coordination-induced changes of packing constraints for molecular assemblies. The results disfavor amide-linkages for the creation of macrocycles around the inter-glycosidic bond of a disaccharide. Conformational changes upon cation coordination of the macrocycle decrease the intersection area for easily accessible macrocycles based on lactose. This leads to shrinking intersection areas upon alkali complexation. Maltose-based analogs, on the other hand, exhibited the targeted increase of the glycolipid intersection area and, hence, may be considered as a promising resource.
    Matched MeSH terms: Lactose*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links