Displaying publications 21 - 40 of 60 in total

Abstract:
Sort:
  1. Hani NM, Torkamani AE, Azarian MH, Mahmood KW, Ngalim SH
    J Sci Food Agric, 2017 Aug;97(10):3348-3358.
    PMID: 27981649 DOI: 10.1002/jsfa.8185
    BACKGROUND: Drumstick (Moringa oleifera) leaves have been used as a folk herbal medicine across many cultures since ancient times. This is most probably due to presence of phytochemicals possessing antioxidant properties, which could retard oxidative stress, and their degenerative effect. The current study deals with nanoencapsulation of Moringa oleifera (MO) leaf ethanolic extract within fish sourced gelatine matrix using electrospinning technique.

    RESULTS: The total phenolic and flavonoid content, radical scavenging (IC50 ) and metal reducing properties were 67.0 ± 2.5 mg GAE g-1 sample 32.0 ± 0.5 mg QE g-1 extract, 0.08 ± 0.01 mg mL-1 and 510 ± 10 µmol eq Fe(II) g-1 extract, respectively. Morphological and spectroscopic analysis of the fibre mats confirmed successful nanoencapsulation of MO extract within defect free nanofibres via electrospinning process. The percentage encapsulation efficiency (EE) was between 80% and 85%. Furthermore, thermal stability of encapsulated fibres, especially at 3% and 5% of core loading content, was significantly improved. Toxicological analysis revealed that the extract in its original and encapsulated form was safe for oral consumption.

    CONCLUSION: Overall, the present study showed the potential of ambient temperature electrospinning process as a safe nanoencapsulation method, where MO extract retained its antioxidative capacities. © 2016 Society of Chemical Industry.

    Matched MeSH terms: Nanofibers/chemistry*
  2. Hasmad H, Yusof MR, Mohd Razi ZR, Hj Idrus RB, Chowdhury SR
    Tissue Eng Part C Methods, 2018 06;24(6):368-378.
    PMID: 29690856 DOI: 10.1089/ten.TEC.2017.0447
    Fabrication of composite scaffolds is one of the strategies proposed to enhance the functionality of tissue-engineered scaffolds for improved tissue regeneration. By combining multiple elements together, unique biomimetic scaffolds with desirable physical and mechanical properties can be tailored for tissue-specific applications. Despite having a highly porous structure, the utility of electrospun fibers (EF) as scaffold is usually hampered by their insufficient mechanical strength. In this study, we attempted to produce a mechanically competent scaffold with cell-guiding ability by fabricating aligned poly lactic-co-glycolic acid (PLGA) fibers on decellularized human amniotic membrane (HAM), known to possess favorable tensile and wound healing properties. Decellularization of HAM in 18.75 μg/mL of thermolysin followed by a brief treatment in 0.25 M sodium hydroxide efficiently removed the amniotic epithelium and preserved the ultrastructure of the underlying extracellular matrix. The electrospinning of 20% (w/v) PLGA 50:50 polymer on HAM yielded beadless fibers with straight morphology. Subsequent physical characterization revealed that EF-HAM scaffold with a 3-min fabrication had the most aligned fibers with the lowest fiber diameter in comparison with EF-HAM 5- and 7-min scaffolds. Hydrated EF-HAM scaffolds with 3-min deposition had a greater tensile strength than the other scaffolds despite having thinner fibers. Nevertheless, wet HAM and EF-HAMs regardless of the fiber thicknesses had a significantly lower Young's modulus, and hence, a higher elasticity compared with dry HAM and EF-HAMs. Biocompatibility analysis showed that the viability and migration rate of skeletal muscle cells on EF-HAMs were similar to control and HAM alone. Skeletal muscle cells seeded on HAM were shown to display random orientation, whereas cells on EF-HAM scaffolds were oriented along the alignment of the electrospun PLGA fibers. In summary, besides having good mechanical strength and elasticity, EF-HAM scaffold design decorated with aligned fiber topography holds a promising potential for use in the development of aligned tissue constructs.
    Matched MeSH terms: Nanofibers/chemistry*
  3. Hosseini S, Azari P, Farahmand E, Gan SN, Rothan HA, Yusof R, et al.
    Biosens Bioelectron, 2015 Jul 15;69:257-64.
    PMID: 25765434 DOI: 10.1016/j.bios.2015.02.034
    Electrospun polyhydroxybutyrate (PHB) fibers were dip-coated by polymethyl methacrylate-co-methacrylic acid, poly(MMA-co-MAA), which was synthesized in different molar ratios of the monomers via free-radical polymerization. Fabricated platfrom was employed for immobilization of the dengue antibody and subsequent detection of dengue enveloped virus in enzyme-linked immunosorbent assay (ELISA). There is a major advantage for combination of electrospun fibers and copolymers. Fiber structre of electrospun PHB provides large specific surface area available for biomolecular interaction. In addition, polymer coated parts of the platform inherited the premanent presence of surface carboxyl (-COOH) groups from MAA segments of the copolymer which can be effectively used for covalent and physical protein immobilization. By tuning the concentration of MAA monomers in polymerization reaction the concentration of surface -COOH groups can be carefully controlled. Therefore two different techniques have been used for immobilization of the dengue antibody aimed for dengue detection: physical attachment of dengue antibodies to the surface and covalent immobilization of antibodies through carbodiimide chemistry. In that perspective, several different characterization techniques were employed to investigate the new polymeric fiber platform such as scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle (WCA) measurement and UV-vis titration. Regardless of the immobilization techniques, substantially higher signal intensity was recorded from developed platform in comparison to the conventional ELISA assay.
    Matched MeSH terms: Nanofibers/chemistry*
  4. Huong DTM, Chai WS, Show PL, Lin YL, Chiu CY, Tsai SL, et al.
    Int J Biol Macromol, 2020 Dec 01;164:3873-3884.
    PMID: 32896561 DOI: 10.1016/j.ijbiomac.2020.09.020
    Water pollution caused by dyes has been a serious problem affecting human health and environment. The surface of polyacrylonitrile (PAN) nanofiber membranes was modified by mild hydrolysis and coupled with bovine serum albumin (BSA) obtained from the laboratory wastes, resulting in the synthesis of P-COOH and P-COOH-BSA nanofibers. The nanofibers with specific functional groups may enhance their potential applications toward the removal of ionic dyes in wastewater. Toluidine blue O (TBO) was applied as an example of cationic dye to evaluate the removal efficiency of P-COOH-BSA nanofiber. Results showed that the equilibrium dissociation constant and maximum removal capacity were 0.48 mg/mL and 434.78 mg/g, respectively, at pH 12, where the TBO removal can be explained based on Langmuir isotherm and pseudo-second-order model. Desorption studies have shown that TBO adsorbed on P-COOH-BSA protein membrane can be completely eluted with either 1 M NaCl or 50% glycerol. The results of repeated studies indicated that after five consecutive adsorption/desorption cycles, the removal efficiency of TBO can be maintained at ~97%. P-COOH-BSA has shown to be promising adsorbent in TBO dye removal from dye wastewater.
    Matched MeSH terms: Nanofibers/chemistry*
  5. Huong DTM, Liu BL, Chai WS, Show PL, Tsai SL, Chang YK
    Int J Biol Macromol, 2020 Dec 15;165(Pt A):1410-1421.
    PMID: 33045299 DOI: 10.1016/j.ijbiomac.2020.10.034
    Electrospinning technology was applied for the preparation of polyacrylonitrile (PAN) nanofiber membrane in this work. After hot pressing, alkaline hydrolysis and neutralization treatment, a weak acid cation exchange membrane (P-COOH) was prepared. By the covalent coupling reaction between the acidic membrane and aminomethane sulfonic acid (AMSA), a strong acidic nanofiber membrane (P-SO3H) was obtained. The surface morphology, chemical structure, and thermal stability of the prepared ion exchange membranes were analyzed via SEM, FTIR and TGA. Analytical results showed that the membranes were prepared successfully and thermally stable. The ion exchange membrane (IEX) was conducted with the newly designed membrane reactor, and different operating conditions affecting the adsorption efficiency of Toluidine Blue dye (TBO) were investigated by dynamic flow process. The results showed that dynamic binding capacity (DBC) of weak and strong IEX membranes for TBO dye was ~170 mg/g in a dynamic flow process. Simultaneously, the ion exchange membranes were also used for purifying lysozyme from chicken egg white (CEW). Results illustrated that the recovery yield and purification factor of lysozyme were 93.43% and 29.23 times (P-COOH); 90.72% and 36.22 times (P-SO3H), respectively. It was revealed that two type ion exchange membranes were very suitable as an adsorber for use in dye waste treatment and lysozyme purification process. P-SO3H strong ion-exchange membrane was more effective either removal of TBO dye or purification of lysozyme. The ion exchange membranes not only effectively purified lysozyme from CEW solution, but also effectively removed dye from wastewater.
    Matched MeSH terms: Nanofibers/chemistry*
  6. Hussain Z, Thu HE, Ng SF, Khan S, Katas H
    Colloids Surf B Biointerfaces, 2017 Feb 01;150:223-241.
    PMID: 27918967 DOI: 10.1016/j.colsurfb.2016.11.036
    Wound healing is a multifarious and vibrant process of replacing devitalized and damaged cellular structures, leading to restoration of the skin's barrier function, re-establishment of tissue integrity, and maintenance of the internal homeostasis. Curcumin (CUR) and its analogs have gained widespread recognition due to their remarkable anti-inflammatory, anti-infective, anticancer, immunomodulatory, antioxidant, and wound healing activities. However, their pharmaceutical significance is limited due to inherent hydrophobic nature, poor water solubility, low bioavailability, chemical instability, rapid metabolism and short half-life. Owing to their pharmaceutical limitations, newer strategies have been attempted in recent years aiming to mitigate problems related to the effective delivery of curcumanoids and to improve their wound healing potential. These advanced strategies include nanovesicles, polymeric micelles, conventional liposomes and hyalurosomes, nanocomposite hydrogels, electrospun nanofibers, nanohybrid scaffolds, nanoconjugates, nanostructured lipid carriers (NLCs), nanoemulsion, nanodispersion, and polymeric nanoparticles (NPs). The superior wound healing activities achieved after nanoencapsulation of the CUR are attributed to its target-specific delivery, longer retention at the target site, avoiding premature degradation of the encapsulated cargo and the therapeutic superiority of the advanced delivery systems over the conventional delivery. We have critically reviewed the literature and summarize the convincing evidence which explore the pharmaceutical significance and therapeutic feasibility of the advanced delivery systems in improving wound healing activities of the CUR and its analogs.
    Matched MeSH terms: Nanofibers/chemistry
  7. Jasni MJ, Sathishkumar P, Sornambikai S, Yusoff AR, Ameen F, Buang NA, et al.
    Bioprocess Biosyst Eng, 2017 Feb;40(2):191-200.
    PMID: 27757535 DOI: 10.1007/s00449-016-1686-6
    In this study, laccase was immobilized on nylon 6,6/Fe(3+) composite (NFC) nanofibrous membrane and used for the detoxification of 3,3'-dimethoxybenzidine (DMOB). The average size and tensile strength of the NFC membrane were found to be 60-80 nm (diameter) and 2.70 MPa, respectively. The FTIR results confirm that the amine (N-H) group of laccase was attached with Fe(3+) particles and the carbonyl (C=O) group of NFC membrane via hydrogen bonding. The half-life of the laccase-NFC membrane storage stability was increased from 6 to 11 weeks and the reusability was significantly extended up to 43 cycles against ABTS oxidation. Enhanced electro-oxidation of DMOB by laccase was observed at 0.33 V and the catalytic current was found to be 30 µA. The DMOB-treated mouse fibroblast 3T3-L1 preadipocytes showed maximum (97 %) cell inhibition at 75 µM L(-1) within 24 h. The cytotoxicity of DMOB was significantly decreased to 78 % after laccase treatment. This study suggests that laccase-NFC membrane might be a good candidate for emerging pollutant detoxification.
    Matched MeSH terms: Nanofibers/chemistry*
  8. Kamei KI, Mashimo Y, Yoshioka M, Tokunaga Y, Fockenberg C, Terada S, et al.
    Small, 2017 05;13(18).
    PMID: 28272774 DOI: 10.1002/smll.201603104
    Cellular microenvironments are generally sophisticated, but crucial for regulating the functions of human pluripotent stem cells (hPSCs). Despite tremendous effort in this field, the correlation between the environmental factors-especially the extracellular matrix and soluble cell factors-and the desired cellular functions remains largely unknown because of the lack of appropriate tools to recapitulate in vivo conditions and/or simultaneously evaluate the interplay of different environment factors. Here, a combinatorial platform is developed with integrated microfluidic channels and nanofibers, associated with a method of high-content single-cell analysis, to study the effects of environmental factors on stem cell phenotype. Particular attention is paid to the dependence of hPSC short-term self-renewal on the density and composition of extracellular matrices and initial cell seeding densities. Thus, this combinatorial approach provides insights into the underlying chemical and physical mechanisms that govern stem cell fate decisions.
    Matched MeSH terms: Nanofibers/chemistry*
  9. Karimi S, Abdulkhani A, Tahir PM, Dufresne A
    Int J Biol Macromol, 2016 Oct;91:1040-4.
    PMID: 27339322 DOI: 10.1016/j.ijbiomac.2016.06.061
    Cellulosic nanofibers (NFs) from kenaf bast were used to reinforce glycerol plasticized thermoplastic starch (TPS) matrices with varying contents (0-10wt%). The composites were prepared by casting/evaporation method. Raw fibers (RFs) reinforced TPS films were prepared with the same contents and conditions. The aim of study was to investigate the effects of filler dimension and loading on linear and non-linear mechanical performance of fabricated materials. Obtained results clearly demonstrated that the NF-reinforced composites had significantly greater mechanical performance than the RF-reinforced counterparts. This was attributed to the high aspect ratio and nano dimension of the reinforcing agents, as well as their compatibility with the TPS matrix, resulting in strong fiber/matrix interaction. Tensile strength and Young's modulus increased by 313% and 343%, respectively, with increasing NF content from 0 to 10wt%. Dynamic mechanical analysis (DMA) revealed an elevational trend in the glass transition temperature of amylopectin-rich domains in composites. The most eminent record was +18.5°C shift in temperature position of the film reinforced with 8% NF. This finding implied efficient dispersion of nanofibers in the matrix and their ability to form a network and restrict mobility of the system.
    Matched MeSH terms: Nanofibers/chemistry*
  10. Kouhi M, Jayarama Reddy V, Fathi M, Shamanian M, Valipouri A, Ramakrishna S
    J Biomed Mater Res A, 2019 06;107(6):1154-1165.
    PMID: 30636094 DOI: 10.1002/jbm.a.36607
    Guided bone regeneration (GBR) has been established to be an effective method for the repair of defective tissues, which is based on isolating bone defects with a barrier membrane for faster tissue reconstruction. The aim of the present study is to develop poly (hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/fibrinogen (FG)/bredigite (BR) membranes with applicability in GBR. BR nanoparticles were synthesized through a sol-gel method and characterized using transmission electron microscopy and X-ray diffractometer. PHBV, PHBV/FG, and PHBV/FG/BR membranes were fabricated using electrospinning and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle, pore size, thermogravimetric analysis and tensile strength. The electrospun PHBV, PHBV/FG, and PHBV/FG/BR nanofibers were successfully obtained with the mean diameter ranging 240-410 nm. The results showed that Young's modulus and ultimate strength of the PHBV membrane reduced upon blending with FG and increased by further incorporation of BR nanoparticles, Moreover hydrophilicity of the PHBV membrane improved on addition of FG and BR. The in vitro degradation assay demonstrated that incorporation of FG and BR into PHBV matrix increased its hydrolytic degradation. Cell-membrane interactions were studied by culturing human fetal osteoblast cells on the fabricated membrane. According to the obtained results, osteoblasts seeded on PHBV/FG/BR displayed higher cell adhesion and proliferation compared to PHBV and PHBV/FG membrane. Furthermore, alkaline phosphatase activity and alizarin red-s staining indicated enhanced osteogenic differentiation and mineralization of cells on PHBV/FG/BR membranes. The results demonstrated that developed electrospun PHBV/FG/BR nanofibrous mats have desired potential as a barrier membrane for guided bone tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1154-1165, 2019.
    Matched MeSH terms: Nanofibers/chemistry*
  11. Kouhi M, Jayarama Reddy V, Ramakrishna S
    Appl Biochem Biotechnol, 2019 Jun;188(2):357-368.
    PMID: 30456599 DOI: 10.1007/s12010-018-2922-0
    Bioceramic nanoparticles with high specific surface area often tend to agglomerate in the polymer matrix, which results in undesirable mechanical properties of the composites and poor cell spreading and attachment. In the present work, bredigite (BR) nanoparticles were modified with an organosilane coupling agent, 3-glycidoxypropyltrimethoxysilane (GPTMS), to enhance its dispersibility in the polymer matrix. The polyhydroxybutyrate-co-hydroxyvaletare (PHBV) nanofibrous scaffolds containing either bredigite or GPTMS-modified bredigite (G-BR) nanoparticles were fabricated using electrospinning technique and characterized using scanning electron microscopy, transmission electron microscopy, and tensile strength. Results demonstrated that modification of bredigite was effective in enhancing nanoparticle dispersion in the PHBV matrix. PHBV/G-BR scaffold showed improved mechanical properties compared to PHBV and PHBV/BR, especially at the higher concentration of nanoparticles. In vitro bioactivity assay performed in the simulated body fluid (SBF) indicated that composite PHBV scaffolds were able to induce the formation of apatite deposits after incubation in SBF. From the results of in vitro biological assay, it is concluded that the synergetic effect of BR and GPTMS provided an enhanced hFob cells attachment and proliferation. The developed PHBV/G-BR nanofibrous scaffolds may be considered for application in bone tissue engineering.
    Matched MeSH terms: Nanofibers/chemistry
  12. Lee SY, Liu BL, Wu JY, Chang YK
    Food Chem, 2021 Feb 15;338:128144.
    PMID: 33092004 DOI: 10.1016/j.foodchem.2020.128144
    A weak ion-exchange membrane (P-COOH) was synthesized by alkaline hydrolysis of a polyacrylonitrile nanofiber membrane prepared by electrospinning process. The P-COOH membrane was characterized for its physical properties and its application for purification of lysozyme from chicken egg white was investigated. The lysozyme adsorption efficiency of the P-COOH membrane operating in a stirred cell contactor (Millipore, Model 8010) was evaluated. The effects of key parameters such as the feed concentration, the rotating speed, the flow rate of feed and the operating pressure were studied. The results showed successful purification of lysozyme with a high recovery yield of 98% and a purification factor of 63 in a single step. The purification strategy was scaled-up to the higher feedstock loading volume of 32.7 and 70 mL using stirred cell contactors of Model 8050 and 8200, respectively. The scale-up processes achieved similar purification results, proving linear scalability of the purification technique adopted.
    Matched MeSH terms: Nanofibers/chemistry*
  13. Liu BL, Ooi CW, Ng IS, Show PL, Lin KJ, Chang YK
    Food Chem, 2020 Oct 15;327:127038.
    PMID: 32447136 DOI: 10.1016/j.foodchem.2020.127038
    Polyacrylonitrile nanofiber membrane functionalized with tris(hydroxymethyl)aminomethane (P-Tris) was used in affinity membrane chromatography for lysozyme adsorption. The effects of pH and protein concentration on lysozyme adsorption were investigated. Based on Langmuir model, the adsorption capacity of P-Tris nanofiber membrane was estimated to be 345.83 mg/g. For the operation of dynamic membrane chromatography with three-layer P-Tris nanofiber membranes, the optimal operating conditions were at pH 9, 1.0 mL/min of feed flow rate, and 2 mg/mL of feed concentration. Chicken egg white (CEW) was applied as the crude feedstock of lysozyme in the optimized dynamic membrane chromatography. The percent recovery and purification factor of lysozyme obtained from the chromatography were 93.28% and 103.98 folds, respectively. Our findings demonstrated the effectiveness of P-Tris affinity nanofiber membrane for the recovery of lysozyme from complex CEW solution.
    Matched MeSH terms: Nanofibers/chemistry*
  14. Malekbala MR, Soltani S, Abdul Rashid S, Abdullah LC, Choong TSY
    PLoS One, 2019;14(7):e0219936.
    PMID: 31365558 DOI: 10.1371/journal.pone.0219936
    In this research work, carbon nanofibers (CNFs) were synthesized on honeycomb monolith substrates using injection chemical vapor deposition (ICVD) technique. The effect of various wash-coated materials and catalyst promoter on the growth rate of CNFs on monolith substrates were examined. The characteristics of the synthesized CNFs-coated monolith composites were examined using Raman spectroscopy, Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM), and Transmission electron microscopy (TEM) techniques. According to the textural characterization study, the specific surface area and pore volume of CNFs-coated monolith composites were significantly improved as compared to bare monolith which might be attributed to the growth of highly pure and aligned CNFs over monolith substrate. Besides that, the synthesized CNFs-coated monolith possessed extremely well thermal stability up to the temperature of 550 °C which was corresponded to the strong attachment of highly graphitized CNFs over monolith substrates.
    Matched MeSH terms: Nanofibers/chemistry*
  15. Misson M, Zhang H, Jin B
    J R Soc Interface, 2015 Jan 06;12(102):20140891.
    PMID: 25392397 DOI: 10.1098/rsif.2014.0891
    The nanobiocatalyst (NBC) is an emerging innovation that synergistically integrates advanced nanotechnology with biotechnology and promises exciting advantages for improving enzyme activity, stability, capability and engineering performances in bioprocessing applications. NBCs are fabricated by immobilizing enzymes with functional nanomaterials as enzyme carriers or containers. In this paper, we review the recent developments of novel nanocarriers/nanocontainers with advanced hierarchical porous structures for retaining enzymes, such as nanofibres (NFs), mesoporous nanocarriers and nanocages. Strategies for immobilizing enzymes onto nanocarriers made from polymers, silicas, carbons and metals by physical adsorption, covalent binding, cross-linking or specific ligand spacers are discussed. The resulting NBCs are critically evaluated in terms of their bioprocessing performances. Excellent performances are demonstrated through enhanced NBC catalytic activity and stability due to conformational changes upon immobilization and localized nanoenvironments, and NBC reutilization by assembling magnetic nanoparticles into NBCs to defray the high operational costs associated with enzyme production and nanocarrier synthesis. We also highlight several challenges associated with the NBC-driven bioprocess applications, including the maturation of large-scale nanocarrier synthesis, design and development of bioreactors to accommodate NBCs, and long-term operations of NBCs. We suggest these challenges are to be addressed through joint collaboration of chemists, engineers and material scientists. Finally, we have demonstrated the great potential of NBCs in manufacturing bioprocesses in the near future through successful laboratory trials of NBCs in carbohydrate hydrolysis, biofuel production and biotransformation.
    Matched MeSH terms: Nanofibers/chemistry*
  16. Mohd Syukri MS, A Rahman R, Mohamad Z, Md Illias R, Nik Mahmood NA, Jaafar NR
    Int J Biol Macromol, 2021 Jan 01;166:876-883.
    PMID: 33144251 DOI: 10.1016/j.ijbiomac.2020.10.244
    Enzyme immobilization has been known to be one of the methods to improve the stability and reusability of enzyme. In this study, a strategy to optimize laccase immobilization on polyethylene terephthalate grafted with maleic anhydride electrospun nanofiber mat (PET-g-MAH ENM) was developed. The development involves the screening and optimization processes of the crucial factors that influence the immobilization yield such as enzyme concentration, pH values, covalent bonding (CV) time, CV temperature, crosslinking (CL) time, CL temperature and glutaraldehyde concentration using two-level factorial design and Box-Behnken design (BBD), respectively. It was found that laccase concentration, pH values and glutaraldehyde concentration play important role in enhancing the immobilization yield of laccase on PET-g-MAH ENM in the screening process. Subsequently, the optimization result showed at 0.28 mg/ml laccase concentration, pH 3 and 0.45% (v/v) glutaraldehyde concentrations gave the highest immobilization yield at 87.64% which was 81.2% increment from the immobilization yield before optimization. Under the optimum condition, the immobilized laccase was able to oxidize 2, 2-azino-bis 3-ethylbenzothiazoline-6- sulfonic acid (ABTS) in a broad range of pH (pH 3-6) and temperature (20- 70 °C). Meanwhile, the kinetic parameters for Km and Vmax were 1.331 mM and 0.041 mM/min, respectively. It was concluded that the optimization of immobilized laccase on PET-g-MAH ENM enhance the performance of this biocatalyst.
    Matched MeSH terms: Nanofibers/chemistry*
  17. Nawawi WMFW, Lee KY, Kontturi E, Bismarck A, Mautner A
    Int J Biol Macromol, 2020 Apr 01;148:677-687.
    PMID: 31954796 DOI: 10.1016/j.ijbiomac.2020.01.141
    The structural component of fungal cell walls comprises of chitin covalently bonded to glucan; this constitutes a native composite material (chitin-glucan, CG) combining the strength of chitin and the toughness of glucan. It has a native nano-fibrous structure in contrast to nanocellulose, for which further nanofibrillation is required. Nanopapers can be manufactured from fungal chitin nanofibrils (FChNFs). FChNF nanopapers are potentially applicable in packaging films, composites, or membranes for water treatment due to their distinct surface properties inherited from the composition of chitin and glucan. Here, chitin-glucan nanofibrils were extracted from common mushroom (Agaricus bisporus) cell walls utilizing a mild isolation procedure to preserve the native quality of the chitin-glucan complex. These extracts were readily disintegrated into nanofibre dimensions by a low-energy mechanical blending, thus making the extract dispersion directly suitable for nanopaper preparation using a simple vacuum filtration process. Chitin-glucan nanopaper morphology, mechanical, chemical, and surface properties were studied and compared to chitin nanopapers of crustacean (Cancer pagurus) origin. It was found that fungal extract nanopapers had distinct physico-chemical surface properties, being more hydrophobic than crustacean chitin.
    Matched MeSH terms: Nanofibers/chemistry
  18. Ngadiman NH, Mohd Yusof N, Idris A, Kurniawan D
    Proc Inst Mech Eng H, 2016 Aug;230(8):739-49.
    PMID: 27194535 DOI: 10.1177/0954411916649632
    Electrospinning is a simple and efficient process in producing nanofibers. To fabricate nanofibers made of a blend of two constituent materials, co-axial electrospinning method is an option. In this method, the constituent materials contained in separate barrels are simultaneously injected using two syringe nozzles arranged co-axially and the materials mix during the spraying process forming core and shell of the nanofibers. In this study, co-axial electrospinning method is used to fabricate nanofibers made of polyvinyl alcohol and maghemite (γ-Fe2O3). The concentration of polyvinyl alcohol and amount of maghemite nanoparticle loading were varied, at 5 and 10 w/v% and at 1-10 v/v%, respectively. The mechanical properties (strength and Young's modulus), porosity, and biocompatibility properties (contact angle and cell viability) of the electrospun mats were evaluated, with the same mats fabricated by regular single-nozzle electrospinning method as the control. The co-axial electrospinning method is able to fabricate the expected polyvinyl alcohol/maghemite nanofiber mats. It was noticed that the polyvinyl alcohol/maghemite electrospun mats have lower mechanical properties (i.e. strength and stiffness) and porosity, more hydrophilicity (i.e. lower contact angle), and similar cell viability compared to the mats fabricated by single-nozzle electrospinning method.
    Matched MeSH terms: Nanofibers/chemistry
  19. Ngadiman NH, Idris A, Irfan M, Kurniawan D, Yusof NM, Nasiri R
    J Mech Behav Biomed Mater, 2015 Sep;49:90-104.
    PMID: 26002419 DOI: 10.1016/j.jmbbm.2015.04.029
    Maghemite (γ-Fe2O3) nanoparticle with its unique magnetic properties is recently known to enhance the cell growth rate. In this study, γ-Fe2O3 is mixed into polyvinyl alcohol (PVA) matrix and then electrospun to form nanofibers. Design of experiments was used to determine the optimum parameter settings for the electrospinning process so as to produce elctrospun mats with the preferred characteristics such as good morphology, Young's modulus and porosity. The input factors of the electrospinnning process were nanoparticles content (1-5%), voltage (25-35 kV), and flow rate (1-3 ml/h) while the responses considered were Young's modulus and porosity. Empirical models for both responses as a function of the input factors were developed and the optimum input factors setting were determined, and found to be at 5% nanoparticle content, 35 kV voltage, and 1 ml/h volume flow rate. The characteristics and performance of the optimum PVA/γ-Fe2O3 nanofiber mats were compared with those of neat PVA nanofiber mats in terms of morphology, thermal properties, and hydrophilicity. The PVA/γ-Fe2O3 nanofiber mats exhibited higher fiber diameter and surface roughness yet similar thermal properties and hydrophilicity compared to neat PVA PVA/γ-Fe2O3 nanofiber mats. Biocompatibility test by exposing the nanofiber mats with human blood cells was performed. In terms of clotting time, the PVA/γ-Fe2O3 nanofibers exhibited similar behavior with neat PVA. The PVA/γ-Fe2O3 nanofibers also showed higher cells proliferation rate when MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was done using human skin fibroblast cells. Thus, the PVA/γ-Fe2O3 electrospun nanofibers can be a promising biomaterial for tissue engineering scaffolds.
    Matched MeSH terms: Nanofibers/chemistry
  20. Ngadiman NH, Yusof NM, Idris A, Misran E, Kurniawan D
    Mater Sci Eng C Mater Biol Appl, 2017 Jan 01;70(Pt 1):520-534.
    PMID: 27770924 DOI: 10.1016/j.msec.2016.09.002
    The use of electrospinning process in fabricating tissue engineering scaffolds has received great attention in recent years due to its simplicity. The nanofibers produced via electrospinning possessed morphological characteristics similar to extracellular matrix of most tissue components. Porosity plays a vital role in developing tissue engineering scaffolds because it influences the biocompatibility performance of the scaffolds. In this study, maghemite (γ-Fe2O3) was mixed with polyvinyl alcohol (PVA) and subsequently electrospun to produce nanofibers. Five factors; nanoparticles content, voltage, flow rate, spinning distance, and rotating speed were varied to produce the electrospun nanofibrous mats with high porosity value. Empirical model was developed using response surface methodology to analyze the effect of these factors to the porosity. The results revealed that the optimum porosity (90.85%) was obtained using 5% w/v nanoparticle content, 35kV of voltage, 1.1ml/h volume flow rate of solution, 8cm spinning distance and 2455rpm of rotating speed. The empirical model was verified successfully by performing confirmation experiments. The properties of optimum PVA/γ-Fe2O3 nanofiber mats such as fiber diameter, mechanical properties, and contact angle were investigated. In addition, cytocompatibility test, in vitro degradation rate, and MTT assay were also performed. Results revealed that high porosity biodegradable γ-Fe2O3/polyvinyl alcohol nanofiber mats have low mechanical properties but good degradation rates and cytocompatibility properties. Thus, they are suitable for low load bearing biomedical application or soft tissue engineering scaffold.
    Matched MeSH terms: Nanofibers/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links