Displaying publications 21 - 40 of 1086 in total

Abstract:
Sort:
  1. Thamrin V, Saugstad OD, Tarnow-Mordi W, Wang YA, Lui K, Wright IM, et al.
    J Pediatr, 2018 10;201:55-61.e1.
    PMID: 30251639 DOI: 10.1016/j.jpeds.2018.05.053
    OBJECTIVE: To determine rates of death or neurodevelopmental impairment (NDI) at 2 years corrected age (primary outcome) in children <32 weeks' gestation randomized to initial resuscitation with a fraction of inspired oxygen (FiO2) value of 0.21 or 1.0.

    STUDY DESIGN: Blinded assessments were conducted at 2-3 years corrected age with the Bayley Scales of Infant and Toddler Development, Third Edition or the Ages and Stages Questionnaire by intention to treat.

    RESULTS: Of the 290 children enrolled, 40 could not be contacted and 10 failed to attend appointments. Among the 240 children for whom outcomes at age 2 years were available, 1 child had a lethal congenital anomaly, 1 child had consent for follow-up withdrawn, and 23 children died. The primary outcome, which was available in 238 (82%) of those randomized, occurred in 47 of the 117 (40%) children assigned to initial FiO2 0.21 and in 38 of the 121 (31%) assigned to initial FiO2 1.0 (OR, 1.47; 95% CI, 0.86-2.5; P = .16). No difference in NDI was found in 215 survivors randomized to FiO2 0.21 vs 1.0 (OR, 1.26; 95% CI, 0.70-2.28; P = .11). In post hoc exploratory analyses in the whole cohort, children with a 5-minute blood oxygen saturation (SpO2) <80% were more likely to die or to have NDI (OR, 1.85; 95% CI, 1.07-3.2; P = .03).

    CONCLUSIONS: Initial resuscitation of infants <32 weeks' gestation with initial FiO2 0.21 had no significant effect on death or NDI compared with initial FiO2 1.0. Further evaluation of optimum initial FiO2, including SpO2 targeting, in a large randomized controlled trial is needed.

    TRIAL REGISTRATION: Australian and New Zealand Clinical Trials Network Registry ACTRN 12610001059055 and the National Malaysian Research Registry NMRR-07-685-957.

    Matched MeSH terms: Oxygen/administration & dosage*; Oxygen/blood; Oxygen Inhalation Therapy/methods*
  2. Al-Shididi S, Henze M, Ujang Z
    Water Sci Technol, 2003;48(11-12):327-35.
    PMID: 14753553
    The objective of this study was to assess the feasibility of the Sequencing Batch Reactor (SBR) system for implementation in Malaysia. Theoretical, field, laboratory investigations, and modelling simulations have been carried out. The results of the study indicated that the SBR system was robust, relatively cost-effective, and efficient under Malaysian conditions. However, the SBR system requires highly skilled operators and continuous monitoring. This paper also attempted to identify operating conditions for the SBR system, which optimise both the removal efficiencies and the removal rates. The removal efficiencies could reach 90-96% for COD, up to 92% for TN, and 95% for SS. An approach to estimate a full operational cycle time, to estimate the de-sludging rate, and to control the biomass in the sludge has also been developed. About 4 hours react time was obtained, as 2.25 hours of nitrification with aerated slow fill and 1.75 hour of denitrification with HAc addition as an additional carbon source. Inefficient settling was one of the problems that affect the SBR effluent quality. The settling time was one hour for achieving Standard B (effluent quality) and 2 hours for Standard A.
    Matched MeSH terms: Oxygen/analysis; Oxygen/chemistry
  3. Christwardana M, Yoshi LA, Setyonadi I, Maulana MR, Fudholi A
    Enzyme Microb Technol, 2021 Sep;149:109831.
    PMID: 34311895 DOI: 10.1016/j.enzmictec.2021.109831
    In this study, yeast microbial fuel cells (MFCs) were established as biosensors for in-situ monitoring of dissolved oxygen (DO) levels in environmental waters, with yeast and glucose substrates acting as biocatalyst and fuel, respectively. Diverse environmental factors, such as temperature, pH and conductivity, were considered. The sensor performance was first tested with distilled water with different DO levels ranging from 0 mg/L to 8 mg/L and an external resistance of 1000 Ω. The relationship between DO and current density was non-linear (exponential). This MFC capability was further explored under different environmental conditions (pH, temperature and conductivity), and the current density produced was within the range of 0.14-34.88 mA/m2, which increased with elevated DO concentration. The resulting regression was y = 1.3051e0.3548x, with a regression coefficient (R2) = 0.71, indicating that the MFC-based DO meter was susceptible to interference. When used in environmental water samples, DO measurements using MFC resulted in errors ranging from 6.25 % to 15.15 % when compared with commercial DO meters. The simple yeast-based MFC sensors demonstrate promising prospects for future monitoring in a variety of areas, including developing countries and remote locations.
    Matched MeSH terms: Oxygen/analysis; Biological Oxygen Demand Analysis
  4. Alvankarian J, Majlis BY
    PLoS One, 2015;10(3):e0119658.
    PMID: 25747514 DOI: 10.1371/journal.pone.0119658
    Rapid prototyping (RP) of microfluidic channels in liquid photopolymers using standard lithography (SL) involves multiple deposition steps and curing by ultraviolet (UV) light for the construction of a microstructure layer. In this work, the conflicting effect of oxygen diffusion and UV curing of liquid polyurethane methacrylate (PUMA) is investigated in microfabrication and utilized to reduce the deposition steps and to obtain a monolithic product. The conventional fabrication process is altered to control for the best use of the oxygen presence in polymerization. A novel and modified lithography technique is introduced in which a single step of PUMA coating and two steps of UV exposure are used to create a microchannel. The first exposure is maskless and incorporates oxygen diffusion into PUMA for inhibition of the polymerization of a thin layer from the top surface while the UV rays penetrate the photopolymer. The second exposure is for transferring the patterns of the microfluidic channels from the contact photomask onto the uncured material. The UV curing of PUMA as the main substrate in the presence of oxygen is characterized analytically and experimentally. A few typical elastomeric microstructures are manufactured. It is demonstrated that the obtained heights of the fabricated structures in PUMA are associated with the oxygen concentration and the UV dose. The proposed technique is promising for the RP of molds and microfluidic channels in terms of shorter processing time, fewer fabrication steps and creation of microstructure layers with higher integrity.
    Matched MeSH terms: Oxygen/chemistry*
  5. Zahari NK, Sheikh Ab Hamid S, Yusof N
    Cell Tissue Bank, 2015 Mar;16(1):55-63.
    PMID: 24647964 DOI: 10.1007/s10561-014-9438-9
    Preserved human amniotic membrane either air dried or glycerol preserved has been used effectively to treat superficial and partial thickness wounds without leaving any obvious hypertrophic scar. The preserved amnion, sterilised by ionising radiation, is known as an effective barrier for heat, fluid and protein loss while adheres nicely on wound. Air drying slightly reduced the oxygen transmission rate (OTR) of the amnion and the value significantly dropped after 15 kGy (p < 0.05). Glycerol preservation significantly reduced (p < 0.05) the OTR indicating less oxygen transmitted through the well structured cells of the amnion. Increase in the OTR with the increasing radiation doses up to 35 kGy possibly due to direct effects of radiation that resulted in large intercellular gaps. Both preservation methods significantly increased (p < 0.05) the water vapour transmission rate (WVTR). However, the low WVTR in the air dried amnion at 15 and 25 kGy was postulated due to cross-linking of collagen. Changes in the biophysical properties can be linked to direct and indirect effects of radiation on collagen bundles. The radiation dose of 25 kGy caused no adverse effect on biophysical properties hence it is still acceptable to sterilize both the air dried and the glycerol preserved amnions.
    Matched MeSH terms: Oxygen/metabolism*
  6. Hashim SM, Mohamed AR, Bhatia S
    Adv Colloid Interface Sci, 2010 Oct 15;160(1-2):88-100.
    PMID: 20813344 DOI: 10.1016/j.cis.2010.07.007
    There has been tremendous progress in membrane technology for gas separation, in particular oxygen separation from air in the last 20 years. It provides an alternative route to the existing conventional separation processes such as cryogenic distillation and pressure swing adsorption as well as cheaper production of oxygen with high purity. This review presents the recent advances of ceramic membranes for the separation of oxygen from air at high temperature. It covers the issues and problems with respect to the selectivity and separation performance. The paper also presents different approaches applied to overcome these challenges. The future directions of ceramic-based membranes for oxygen separation from air are also presented.
    Matched MeSH terms: Oxygen/isolation & purification*
  7. Bashir MJ, Aziz HA, Yusoff MS, Aziz SQ, Mohajeri S
    J Hazard Mater, 2010 Oct 15;182(1-3):115-22.
    PMID: 20580491 DOI: 10.1016/j.jhazmat.2010.06.005
    The treatability of stabilized sanitary landfill leachate via synthetic anion exchange resin (INDION FFIP MB) was investigated. An ideal experimental design was conducted based on central composite design using a response surface methodology to assess individual and interactive effects of critical operational variables (i.e., anionic dosage; contact time; shaking speed) and pH on treatment performance in terms of color, chemical oxygen demand (COD), suspended solid (SS), and turbidity removal efficiencies. Optimum operational conditions were established as 30.9 cm(3) anionic dosage, 90 min contact time, 150 rpm shaking speed, and pH 3.1. Under these conditions, the color, COD, SS, and turbidity removal efficiencies of 91.5, 70.3, 93.1, and 92.4% were experimentally attained and were found to fit well with the prediction model. According to these results, stabilized leachate treatment using INDION FFIP MB could be an effective alternative in the administration of color, COD, SS, and turbidity problems of landfill leachates.
    Matched MeSH terms: Oxygen/chemistry
  8. Fatimah IS, Iswadi IM, Khairul O, Nurhazilah M, Fadzilah MS, Padzil AR, et al.
    Clin Ter, 2010;161(2):125-8.
    PMID: 20499025
    There is an association between reactive oxygen species (ROS) and DNA damage to sperm. Researchers believe that ROS is always present at the sperm's head. The variation of ROS concentration within the area has an impact on the integrity of the DNA.
    Matched MeSH terms: Reactive Oxygen Species*
  9. Lee YK, Bister M, Salleh YM, Blanchfield P
    PMID: 18003041
    Effect of amplitude criteria on the operating characteristics of algorithms for detecting OSAH events based on the analysis of oxygen saturation alone is investigated. The objective is to establish that there exists an oxygen desaturation level that leverages these algorithms to be more sensitive or more specific, irrespective of the differences in detection mechanism and database, a first ever attempt. Linear classification of algorithms from previous studies discovered that a drop in oxygen saturation of 3% or less makes the detection algorithms more sensitive while a drop of 4% or more makes it more specific. Results from two algorithms developed here also supported this. This finding explains the contradiction cited in the performance of algorithms from the different authors, which casts doubts on their detection ability. It could lead to the establishment of standard oxygen desaturation levels for screening and diagnosis of moderate/severe OSA, thus providing a more credible comparison basis for automated detection algorithms or even clinical tests.
    Matched MeSH terms: Oxygen/blood*
  10. Salleh SF, Kamaruddin A, Uzir MH, Mohamed AR, Shamsuddin AH
    Prep Biochem Biotechnol, 2017 Feb 07;47(2):111-115.
    PMID: 27143318 DOI: 10.1080/10826068.2016.1181085
    Hydrogen production by cyanobacteria could be one of the promising energy resources in the future. However, there is very limited information regarding the kinetic modeling of hydrogen production by cyanobacteria available in the literature. To provide an in-depth understanding of the biological system involved during the process, the Haldane's noncompetitive inhibition equation has been modified to determine the specific hydrogen production rate (HPR) as a function of both dissolved CO2 concentration (CTOT) and oxygen production rate (OPR). The highest HPR of 15 [Formula: see text] was found at xCO2 of 5% vol/vol and the rate consequently decreased when the CTOT and OPR were 0.015 k mol m(-3) and 0.55 mL h(-1), respectively. The model provided a fairly good estimation of the HPR with respect to the experimental data collected.
    Matched MeSH terms: Oxygen/metabolism*
  11. Aydın Tekdaş D, Viswanathan G, Zehra Topal S, Looi CY, Wong WF, Min Yi Tan G, et al.
    Org Biomol Chem, 2016 Mar 7;14(9):2665-70.
    PMID: 26831779 DOI: 10.1039/c5ob02477c
    A novel BODIPY derivative was designed for biomedical applications. Its mono-quaternized structure ensured its water-solubility and suitable amphiphilicity. Showing no singlet oxygen generation to avoid damage to healthy cells, this new derivative proved to be an extremely promising antimicrobial agent, with activity equal or superior to ampicillin against MRS Staphylococcus strains with no short-term resistance issue. Its activity against MSS Staphylococcus strains was largely superior to those of ampicillin and reached the activity of vancomycin against MSS S. epidermidis. This latter result is in particular extremely promising for the treatment of hospital-acquired infections. Also the fluorescence properties of BODIPY allowed imaging of the uptake.
    Matched MeSH terms: Oxygen; Singlet Oxygen
  12. Lim KG
    Med J Malaysia, 2001 Jun;56(2):141-2.
    PMID: 11771072
    Matched MeSH terms: Oxygen Inhalation Therapy*
  13. Nur Shazweena Samsudin, Jami, Mohammed Saedi, Kabbashi, Nassereldeen Ahmed
    MyJurnal
    sugar industry is one of the industries that produce a high amount of
    pollutant since its wastewater contains high amount of organic material, biochemical
    oxygen demand (bod) and chemical oxygen demand (cod). if this waste is
    discharged without a proper treatment into the watercourse, it can cause problem to aquatic
    life and environment. for the primary treatment process, sugar wastewater can be treated
    by using chemical precipitation method which involves coagulation process. currently,
    ferric chloride has been used as the coagulant but it consumes more alkalinity and
    corrosive. in this study, the suitable coagulant to be used to treat the wastewater from sugar
    industry and the optimum conditions to achieve high percentage removal of cod was
    determined. the characteristic of the wastewater was firstly determined. then, the most
    suitable coagulant to be used for the treatment was studied by determining their efficiency
    to reduce cod and tss in the wastewater at different dosages. aluminium sulphate
    (alum), ferric chloride and polyaluminium chloride (pac) were chosen to be studied for
    suitable coagulant. The optimum condition of the coagulant (ph, coagulant dosage, fast
    mixing speed) was determined by using design expert software. results showed that alum
    can be used to effectively remove 42.9% of cod and 100% of tss at high dosage (50
    mg/l). the optimum condition of alum was at ph 5.2, 10 mg/l of alum and 250 rpm of
    mixing speed. this shows that at optimum condition, alum can be used to treat wastewater
    from sugar industry.
    Matched MeSH terms: Oxygen; Biological Oxygen Demand Analysis
  14. Amir S. A. Hamzah, Ali H. M. Murid
    MATEMATIKA, 2018;34(2):293-311.
    MyJurnal
    This study presents a mathematical model examining wastewater pollutant removal through
    an oxidation pond treatment system. This model was developed to describe the reaction
    between microbe-based product mPHO (comprising Phototrophic bacteria (PSB)), dissolved
    oxygen (DO) and pollutant namely chemical oxygen demand (COD). It consists
    of coupled advection-diffusion-reaction equations for the microorganism (PSB), DO and
    pollutant (COD) concentrations, respectively. The coupling of these equations occurred
    due to the reactions between PSB, DO and COD to produce harmless compounds. Since
    the model is nonlinear partial differential equations (PDEs), coupled, and dynamic, computational
    algorithm with a specific numerical method, which is implicit Crank-Nicolson
    method, was employed to simulate the dynamical behaviour of the system. Furthermore,
    numerical results revealed that the proposed model demonstrated high accuracy when
    compared to the experimental data.
    Matched MeSH terms: Oxygen; Biological Oxygen Demand Analysis
  15. Ishadi NA, Rawi CS, Ahmad AH, Abdul NH
    Trop Life Sci Res, 2014 Dec;25(2):61-79.
    PMID: 27073600 MyJurnal
    The hemipteran (Insecta) diversity in the upper part of the Kerian River Basin was low with only 8 families and 16 genera recorded at 4 study sites from 3 rivers. Water bug composition varied among sampling sites (Kruskal-Wallis χ (2) = 0.00, p<0.05) but was not affected by wet-dry seasons (Z = 0.00, p>0.05). All recorded water parameters were weakly associated with generic abundance but the biochemical oxygen demand (BOD), chemical oxygen demand (COD), Water Quality Index (WQI) and heavy metals (zinc and manganese) showed relatively strong positive or negative relations with hemipteran diversity and richness (H' and R2). Within the ranges of measured water parameters, the WQI was negatively associated with hemipteran diversity and richness, implying the tolerance of the water bugs to the level of pollution encountered in the river basin. Based on its highest abundance and occurrence (ISI), Rhagovelia was the most important genus and along with Rheumatogonus and Paraplea, these genera were common at all study sites. In conclusion, habitat availability and suitability together with some environmental parameters influenced the abundance and composition of hemipterans in this river basin.
    Matched MeSH terms: Oxygen; Biological Oxygen Demand Analysis
  16. Mohd Jai NA, Mat Rosly M, Abd Razak NA
    Games Health J, 2021 Apr;10(2):73-82.
    PMID: 33297818 DOI: 10.1089/g4h.2020.0078
    Objective: Studies investigating the effects of exergaming in available platforms are still limited. This review aims to systematically identify available studies on physiological intensities of exergaming boxing in able-bodied adults and recategorize them based on different platforms or environments. The meta-analysis further analyzes the physiological responses during exergaming boxing into a set of pooled data for any evidence of outliers, heterogeneity, or publication bias. Materials and Methods: A systematic search was conducted by using databases from Google Scholar, PubMed, and Web of Science. Population, intervention, comparison, and outcomes (PICO) and preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were used in the study selection process for the review. Results: From the 1534 articles examined, 16 articles were included for further analyses. Results indicated that exergaming boxing exhibits a wide range of metabolic equivalent of task (MET) values and intensity, from very light to vigorous, with elements of heterogeneity and bias detected. The Xbox® Kinect boxing platform produced higher MET (mean = 5.3) compared with the Nintendo® Wii™ boxing (mean = 3.8). Conclusion: The results of this review suggest that boxing exergames can produce intensity-adequate physical activity among younger adults that are beneficial for cardiometabolic improvements, regardless of platforms used. Exergaming boxing may be employed as an effective exercise tool to increase energy expenditure and physical activity level in young adults.
    Matched MeSH terms: Oxygen Consumption/physiology
  17. Siti Roshayu Hassan, Nastaein Qamaruz Zaman, Irvan Dahlan
    MyJurnal
    The performance and operational characteristics of a laboratory scale modified anaerobic hybrid baffled (MAHB) reactor were studied using recycled paper mill effluent (RPME) wastewater. MAHB reactor was continuously operated at 35°C for 90 days with organic loading rate (OLR) increased from 0.14 to 0.57 g/L/dy. This present study demonstrated that the system was proficient in treating low strength RPME wastewater. Highest carbon oxygen demand (COD) removal were recorded up to 97% for an organic loading of 0.57 g /L/dy while effluent alkalinity assured that the system pH in the MAHB compartments were of great advantages to acidogens and methanogens respectively. Methane and biogas production rate shows increment as the load increases, which evidently indicated that the most significant approach to enhance gas production rates involves the increment of incoming substrate moderately. Variations of biogas and volatile fatty acid (VFA) in different compartments of MAHB reactor indicated the chronological degradation of substrate. The compartmental structure of MAHB reactor provided its strong ability to resist shock loads. From this present study, it shows the potential usage of MAHB reactor broadens the usage of multi-phase anaerobic technology for industrial wastewater treatment.
    Matched MeSH terms: Oxygen; Biological Oxygen Demand Analysis
  18. Suniza, A.M.S., Zaleha Kassim, Chatterji, Anil
    MyJurnal
    Respiratory metabolism of the larvae of Malaysian horseshoe crab Tachypleus gigas (Müller) was studied under different salinities, pH, and temperature. The trend in oxygen consumption was uniform at all salinities, ranging from 10-40 ppt, indicating insignificant influence on the oxygen consumption by the larvae. Similarly, the correlation coefficient values showed that the relationship between oxygen consumption and salinity was not significant (P > 0.05; r = 0.245). During the first three hours, the oxygen consumption was 8.89, 10.72, 17.4, and 12.06% at 10, 20, 30, and 40 ppt salinities, respectively. Meanwhile, the maximum oxygen consumption was recorded after 12 hrs, i.e. at salinity 20 ppt. A sudden drop in oxygen consumption was recorded during 3-6 hours of the experiment. This was followed by a gradual increase in the consumption of oxygen up to 12 hours of experiment. A similar trend in the oxygen consumption was observed in different pH levels, ranging from 5 to 9. At pH 6 and 9, during the first six hour, a moderate consumption of oxygen was observed. However, at pH 6, 7 and 8, the rates of oxygen consumption were found to be relatively greater after six hours, indicating unfavourable conditions. The data were statistically tested and it was found that a high degree of correlations existed between pH and oxygen consumption (r = 0.97). The analysis of covariance showed a significant relationship between oxygen consumption and pH (P < 0.05). Meanwhile, minimal variation in oxygen consumption was recorded between 30 and 40oC, with a
    gradual decrease in dissolved oxygen concentration up to 12 hours of experimental time. At 50oC,
    almost all dissolved oxygen was consumed by the larvae. The rate of oxygen consumption between
    30 and 40oC was low during the first 9 hours of the experiment but it was significantly increased at later hours. A sudden increase in the oxygen consumption was recorded at 50oC, suggesting that it
    might be the most unfavourable temperature condition. Meanwhile, a significant relationship was
    observed between temperature and oxygen consumption (P < 0.05; r = 0.98).
    Matched MeSH terms: Oxygen; Oxygen Consumption
  19. How SW, Lim SY, Lim PB, Aris AM, Ngoh GC, Curtis TP, et al.
    Water Sci Technol, 2018 May;77(9-10):2274-2283.
    PMID: 29757179 DOI: 10.2166/wst.2018.143
    Intensive aeration for nitrification is a major energy consumer in sewage treatment plants (STPs). Low-dissolved-oxygen (low-DO) nitrification has the potential to lower the aeration demand. However, the applicability of low-DO nitrification in the tropical climate is not well-understood. In this study, the potential of low-DO nitrification in tropical setting was first examined using batch kinetic experiments. Subsequently, the performance of low-DO nitrification was investigated in a laboratory-scale sequential batch reactor (SBR) for 42 days using real tropical sewage. The batch kinetic experiments showed that the seed sludge has a relatively high oxygen affinity. Thus, the rate of nitrification was not significantly reduced at low DO concentrations (0.5 mg/L). During the operation of the low-DO nitrification SBR, 90% of NH4-N was removed. The active low-DO nitrification was mainly attributed to the limited biodegradable organics in the sewage. Fluorescence in-situ hybridisation and 16S rRNA amplicon sequencing revealed the nitrifiers were related to Nitrospira genus and Nitrosomonadaceae family. Phylogenetic analysis suggests 47% of the operational taxonomic units in Nitrospira genus are closely related to a comammox bacteria. This study has demonstrated active low-DO nitrification in tropical setting, which is a more sustainable process that could significantly reduce the energy footprint of STPs.
    Matched MeSH terms: Oxygen*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links