Displaying publications 21 - 40 of 112 in total

Abstract:
Sort:
  1. Dutse SW, Yusof NA
    Sensors (Basel), 2011;11(6):5754-68.
    PMID: 22163925 DOI: 10.3390/s110605754
    Microfluidics-based lab-on-chip (LOC) systems are an active research area that is revolutionising high-throughput sequencing for the fast, sensitive and accurate detection of a variety of pathogens. LOCs also serve as portable diagnostic tools. The devices provide optimum control of nanolitre volumes of fluids and integrate various bioassay operations that allow the devices to rapidly sense pathogenic threat agents for environmental monitoring. LOC systems, such as microfluidic biochips, offer advantages compared to conventional identification procedures that are tedious, expensive and time consuming. This paper aims to provide a broad overview of the need for devices that are easy to operate, sensitive, fast, portable and sufficiently reliable to be used as complementary tools for the control of pathogenic agents that damage the environment.
    Matched MeSH terms: Rheology
  2. Tee HC, Lim PE, Seng CE, Nawi MA
    Bioresour Technol, 2012 Jan;104:235-42.
    PMID: 22130081 DOI: 10.1016/j.biortech.2011.11.032
    The objectives of this study are to compare the performance of newly developed baffled and conventional horizontal subsurface-flow (HSF) constructed wetlands in the removal of nitrogen at the hydraulic retention times (HRT) of 2, 3 and 5 days and to evaluate the potential of rice husk as wetland media for wastewater treatment. The results show that the planted baffled unit achieved 74%, 84% and 99% ammonia nitrogen (NH(4)(+)-N) removal versus 55%, 70% and 96% for the conventional unit at HRT of 2, 3 and 5 days, respectively. The better performance of the baffled unit was explained by the longer pathway due to the up-flow and down-flow conditions sequentially thus allowing more contact of the wastewater with the rhizomes and micro-aerobic zones. Near complete total oxidized nitrogen was observed due to the use of rice husk as wetland media which provided the COD as the electron donor in the denitrification process.
    Matched MeSH terms: Rheology/instrumentation; Rheology/methods
  3. Sopyan I, Fadli A, Mel M
    J Mech Behav Biomed Mater, 2012 Apr;8:86-98.
    PMID: 22402156 DOI: 10.1016/j.jmbbm.2011.10.012
    This report presents physical characterization and cell culture test of porous alumina-hydroxyapatite (HA) composites fabricated through protein foaming-consolidation technique. Alumina and HA powders were mixed with yolk and starch at an adjusted ratio to make slurry. The resulting slip was poured into cylindrical shaped molds and followed by foaming and consolidation via 180 °C drying for 1 h. The obtained green bodies were burned at 600 °C for 1 h, followed by sintering at temperatures of 1200-1550 °C for 2 h. Porous alumina-HA bodies with 26-77 vol.% shrinkage, 46%-52% porosity and 0.1-6.4 MPa compressive strength were obtained. The compressive strength of bodies increased with the increasing sintering temperatures. The addition of commercial HA in the body was found to increase the compressive strength, whereas the case is reverse for sol-gel derived HA. Biocompatibility study of porous alumina-HA was performed in a stirred tank bioreactor using culture of Vero cells. A good compatibility of the cells to the porous microcarriers was observed as the cells attached and grew at the surface of microcarriers at 8-120 cultured hours. The cell growth on porous alumina microcarrier was 0.015 h(-1) and increased to 0.019 h(-1) for 0.3 w/w HA-to-alumina mass ratio and decreased again to 0.017 h(-1) for 1.0 w/w ratio.
    Matched MeSH terms: Rheology
  4. Amid BT, Mirhosseini H
    Carbohydr Polym, 2012 Sep 1;90(1):452-61.
    PMID: 24751065 DOI: 10.1016/j.carbpol.2012.05.065
    The aim of the present study was to investigate the effects of different purification and drying methods on the viscoelastic behaviour and rheological properties of durian seed gum. The results indicated that the purified gum A (using isopropanol and ethanol) and D (using hydrochloric acid and ethanol) showed the highest and lowest viscosity, respectively. Four drying techniques included oven drying (105 °C), freeze drying, spray drying and vacuum oven drying. In the present work, all purified gums exhibited more elastic (gel-like) behaviour than the viscous (liquid-like) behaviour (G″
    Matched MeSH terms: Rheology/methods*
  5. Thu HE, Zulfakar MH, Ng SF
    Int J Pharm, 2012 Sep 15;434(1-2):375-83.
    PMID: 22643226 DOI: 10.1016/j.ijpharm.2012.05.044
    The aims of this research were to develop a novel bilayer hydrocolloid film based on alginate and to investigate its potential as slow-release wound healing vehicle. The bilayer is composed of an upper layer impregnated with model drug (ibuprofen) and a drug-free lower layer, which acted as a rate-controlling membrane. The thickness uniformity, solvent loss, moisture vapour transmission rate (MVTR), hydration rate, morphology, rheology, mechanical properties, in vitro drug release and in vivo wound healing profiles were investigated. A smooth bilayer film with two homogenous distinct layers was produced. The characterisation results showed that bilayer has superior mechanical and rheological properties than the single layer films. The bilayers also showed low MVTR, slower hydration rate and lower drug flux in vitro compared to single layer inferring that bilayer may be useful for treating low suppurating wounds and suitable for slow release application on wound surfaces. The bilayers also provided a significant higher healing rate in vivo, with well-formed epidermis with faster granulation tissue formation when compared to the controls. In conclusions, a novel alginate-based bilayer hydrocolloid film was developed and results suggested that they can be exploited as slow-release wound dressings.
    Matched MeSH terms: Rheology
  6. Zargar M, Ahmadinia E, Asli H, Karim MR
    J Hazard Mater, 2012 Sep 30;233-234:254-8.
    PMID: 22818590 DOI: 10.1016/j.jhazmat.2012.06.021
    The ageing of the bitumen during storage, mixing, transport and laying on the road, as well as in service life, are the most important problems presented by the use of bitumen in pavements. This paper investigates the possibility of using waste cooking oil (WCO), which is a waste material that pollutes landfills and rivers, as an alternative natural rejuvenating agent for aged bitumen to a condition that resembles the original bitumen. With this target, the physical and chemical properties of the original bitumen, aged bitumen and rejuvenated bitumen were measured and compared by the bitumen binder tests - softening point, penetration, Brookfield viscosity, dynamic shear rheometer and Fourier transform infrared spectroscopy. In addition, the behaviour of the WCO rejuvenated bitumen is investigated and compared with virgin bitumen after using the rolling thin film oven ageing process. In general, the results showed that using 3-4% of WCO the aged bitumen group 40/50 was rejuvenated to a condition that closely resembled the physical, rheological properties of the original bitumen (80/100), however, there was a difference in the tendency to ageing between the WCO rejuvenated bitumen and the virgin bitumen during mixing, transport and laying on the road.
    Matched MeSH terms: Rheology
  7. Amid BT, Mirhosseini H
    Int J Mol Sci, 2012 Nov 13;13(11):14871-88.
    PMID: 23203099 DOI: 10.3390/ijms131114871
    In recent years, the demand for a natural plant-based polymer with potential functions from plant sources has increased considerably. The main objective of the current study was to study the effect of chemical extraction conditions on the rheological and functional properties of the heteropolysaccharide/protein biopolymer from durian (Durio zibethinus) seed. The efficiency of different extraction conditions was determined by assessing the extraction yield, protein content, solubility, rheological properties and viscoelastic behavior of the natural polymer from durian seed. The present study revealed that the soaking process had a more significant (p < 0.05) effect than the decolorizing process on the rheological and functional properties of the natural polymer. The considerable changes in the rheological and functional properties of the natural polymer could be due to the significant (p < 0.05) effect of the chemical extraction variables on the protein fraction present in the molecular structure of the natural polymer from durian seed. The natural polymer from durian seed had a more elastic (or gel like) behavior compared to the viscous (liquid like) behavior at low frequency. The present study revealed that the natural heteropolysaccharide/protein polymer from durian seed had a relatively low solubility ranging from 9.1% to 36.0%. This might be due to the presence of impurities, insoluble matter and large particles present in the chemical structure of the natural polymer from durian seed.
    Matched MeSH terms: Rheology
  8. Guangul FM, Sulaiman SA, Ramli A
    Bioresour Technol, 2012 Dec;126:224-32.
    PMID: 23073112 DOI: 10.1016/j.biortech.2012.09.018
    Oil palm frond biomass is abundantly available in Malaysia, but underutilized. In this study, gasifiers were evaluated based on the available literature data and downdraft gasifiers were found to be the best option for the study of oil palm fronds gasification. A downdraft gasifier was constructed with a novel height adjustment mechanism for changing the position of gasifying air and steam inlet. The oil palm fronds gasification results showed that preheating the gasifying air improved the volumetric percentage of H(2) from 8.47% to 10.53%, CO from 22.87% to 24.94%, CH(4) from 2.02% to 2.03%, and higher heating value from 4.66 to 5.31 MJ/Nm(3) of the syngas. In general, the results of the current study demonstrated that oil palm fronds can be used as an alternative energy source in the energy diversification plan of Malaysia through gasification, along with, the resulting syngas quality can be improved by preheating the gasifying air.
    Matched MeSH terms: Rheology
  9. Ahmad M, Uzir Wahit M, Abdul Kadir MR, Mohd Dahlan KZ
    ScientificWorldJournal, 2012;2012:474851.
    PMID: 22666129 DOI: 10.1100/2012/474851
    Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA) as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50 phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P) precipitates on the composite surface as proven from SEM and XRD analysis.
    Matched MeSH terms: Rheology*
  10. Uddin MJ, Khan WA, Ismail AI
    PLoS One, 2012;7(11):e49499.
    PMID: 23166688 DOI: 10.1371/journal.pone.0049499
    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.
    Matched MeSH terms: Rheology*
  11. Luqman Chuah, A., Russly A.R., Keshani, S.
    MyJurnal
    Rheology is the science of deformation and flow behavior of fluid. Knowledge of rheological properties of fluid foods and their variation with temperature and concentration have been globally important for industrialization of food technology for quality, understanding the texture, process engineering application, correlation with sensory evaluation, designing of transport system , equipment design (heat exchanger and evaporator ), deciding pump capacity and power requirement for mixing. The aim of this study was to determine the rheological behavior of pomelo juice at different concentrations (20-60.4%) and temperatures (23-60°C) by using a rotational rotational Haake Rheostress 600 rheometer. Pomelo juice was found to exhibit both Newtonian and Non-Newtonian behavior. For lower concentration the Newtonian behavior is observed while at higher concentration Non-Newtonian behavior was observed. Standard error (SE) method was selected on the basis to carry out the error analysis due to the best fit model. For the four models the values of SE show that the Herschel-Bulkley and Power Law models perform better than the Bingham and Casson models but Herschel-Bulkley model is true at higher concentration. The rheological model of pomelo juice, incorporating the effects of concentration and temperature was developed. The master-curve was investigated for comparing data from different products at a reference temperature of 40°C. Multiple regression analysis indicated Master-Curve presents good agreement for pomelo juice at all concentrations studied with R2>0.8.
    Matched MeSH terms: Rheology
  12. Abdullah GZ, Abdulkarim MF, Mallikarjun C, Mahdi ES, Basri M, Sattar MA, et al.
    Pak J Pharm Sci, 2013 Jan;26(1):75-83.
    PMID: 23261730
    Micro-emulsions and sometimes nano-emulsions are well known candidates to deliver drugs locally. However, the poor rheological properties are marginally affecting their acceptance pharmaceutically. This work aimed to modify the poor flow properties of a nano-scaled emulsion comprising palm olein esters as the oil phase and ibuprofen as the active ingredient for topical delivery. Three Carbopol ® resins: 934, 940 and Ultrez 10, were utilized in various concentrations to achieve these goals. Moreover, phosphate buffer and triethanolamine solutions pH 7.4 were used as neutralizing agents to assess their effects on the gel-forming and swelling properties of Carbopol ® 940. The addition of these polymers caused the produced nano-scaled emulsion to show a dramatic droplets enlargement of the dispersed globules, increased intrinsic viscosity, consistent zeta potential and transparent-to-opaque change in appearance. These changes were relatively influenced by the type and the concentration of the resin used. Carbopol ® 940 and triethanolamine appeared to be superior in achieving the proposed tasks compared to other materials. The higher the pH of triethanolamine solution, the stronger the flow-modifying properties of Carbopol ® 940. Transmission electron microscopy confirmed the formation of a well-arranged gel network of Carbopol ® 940, which was the major cause for all realized changes. Later in vitro permeation studies showed a significant decrease in the drug penetration, thus further modification using 10% w/w menthol or limonene as permeation promoters was performed. This resulted in in vitro and in vivo pharmacodynamics properties that are comparably higher than the reference chosen for this study.
    Matched MeSH terms: Rheology
  13. Abubakar Z, Salema AA, Ani FN
    Bioresour Technol, 2013 Jan;128:578-85.
    PMID: 23211483 DOI: 10.1016/j.biortech.2012.10.084
    A new technique to pyrolyse biomass in microwave (MW) system is presented in this paper to solve the problem of bio-oil deposition. Pyrolysis of oil palm shell (OPS) biomass was conducted in 800 W and 2.45 GHz frequency MW system using an activated carbon as a MW absorber. The temperature profile, product yield and the properties of the products were found to depend on the stirrer speed and MW absorber percentage. The highest bio-oil yield of 28 wt.% was obtained at 25% MW absorber and 50 rpm stirrer speed. Bio-char showed highest calorific value of the 29.5 MJ/kg at 50% MW absorber and 100 rpm stirrer speed. Bio-oil from this study was rich in phenol with highest detected as 85 area% from the GC-MS results. Thus, OPS bio-oil can become potential alternative to petroleum-based chemicals in various phenolic based applications.
    Matched MeSH terms: Rheology/instrumentation*
  14. Amid BT, Mirhosseini H
    Colloids Surf B Biointerfaces, 2013 Mar 1;103:430-40.
    PMID: 23261563 DOI: 10.1016/j.colsurfb.2012.11.015
    The main objective of the current work was to characterize the shear rheological flow behaviour and emulsifying properties of the natural biopolymer from durian seed. The present study revealed that the extraction condition significantly affected the physical and functional characteristics of the natural biopolymer from durian seed. The dynamic oscillatory test indicated that the biopolymer from durian seed showed more gel (or solid) like behaviour than the viscous (or liquid) like behaviour (G'>G″) at a relatively high concentration (20%) in the fixed frequency (0.1 Hz). This might be explained by the fact that the gum coils disentangle at low frequencies during the long period of oscillation, thus resulting in more gel like behaviour than the viscous like behaviour. The average droplet size of oil in water (O/W) emulsions stabilized by durian seed gum significantly varied from 0.42 to 7.48 μm. The results indicated that O/W emulsions showed significant different stability after 4 months storage. This might be interpreted by the considerable effect of the extraction condition on the chemical and molecular structure of the biopolymer, thus affecting its emulsifying capacity. The biopolymer extracted by using low water to seed (W/S) ratio at the low temperature under the alkaline condition showed a relatively high emulsifying activity in O/W emulsion.
    Matched MeSH terms: Rheology*
  15. Anis S, Zainal ZA, Bakar MZ
    Bioresour Technol, 2013 May;136:117-25.
    PMID: 23567671 DOI: 10.1016/j.biortech.2013.02.049
    A new effective RF tar thermocatalytic treatment process with low energy intensive has been proposed to remove tar from biomass gasification. Toluene and naphthalene as biomass tar model compounds were removed via both thermal and catalytic treatment over a wide temperature range from 850 °C to 1200 °C and 450 °C to 900 °C, respectively at residence time of 0-0.7 s. Thermal characteristics of the new technique are also described in this paper. This study clearly clarified that toluene was much easier to be removed than naphthalene. Soot was found as the final product of thermal treatment of the tar model and completely removed during catalytic treatment. Radical reactions generated by RF non-thermal effect improve the tar removal. The study showed that Y-zeolite has better catalytic activity compared to dolomite on toluene and naphthalene removal due to its acidic nature and large surface area, even at lower reaction temperature of about 550 °C.
    Matched MeSH terms: Rheology
  16. Majid AM, Wong TW
    Int J Pharm, 2013 May 1;448(1):150-8.
    PMID: 23506957 DOI: 10.1016/j.ijpharm.2013.03.008
    The conventional powder flow testers require sample volumes larger than 40g and are met with experimental hiccups due to powder cohesion. This study designed a gas-pressurized dispersive powder flow tester where a high velocity air is used to disaggregate powder (9g) and eliminate its cohesion. The pressurized gas entrained solid particles leaving an orifice where the distance, surface area, width and weight of particle dispersion thereafter are determined as flow index. The flow indices of seven lactose grades with varying size, size distribution, shape, morphology, bulk and tapped densities characteristics were examined. They were compared against Hausner ratio and Carr's index parameters of the same powder mass. Both distance and surface area attributes of particle dispersion had significant negative correlations with Hausner ratio and Carr's index values of lactose. The distance, surface area and ease of particle dispersion varied proportionately with circular equivalent, surface weighted mean and volume weighted mean diameters of lactose, and inversely related to their specific surface area and elongation characteristics. Unlike insensitive Hausner ratio and Carr's index, an increase in elongation property of lactose particles was detectable through reduced powder weight loss from gas-pressurized dispersion as a result of susceptible particle blockage at orifice. The gas-pressurized dispersive tester is a useful alternative flowability measurement device for low volume and cohesive powder.
    Matched MeSH terms: Rheology/instrumentation*; Rheology/methods
  17. Mabood F, Khan WA, Ismail AI
    PLoS One, 2013;8(12):e83581.
    PMID: 24376722 DOI: 10.1371/journal.pone.0083581
    In this article, an approximate analytical solution of flow and heat transfer for a viscoelastic fluid in an axisymmetric channel with porous wall is presented. The solution is obtained through the use of a powerful method known as Optimal Homotopy Asymptotic Method (OHAM). We obtained the approximate analytical solution for dimensionless velocity and temperature for various parameters. The influence and effect of different parameters on dimensionless velocity, temperature, friction factor, and rate of heat transfer are presented graphically. We also compared our solution with those obtained by other methods and it is found that OHAM solution is better than the other methods considered. This shows that OHAM is reliable for use to solve strongly nonlinear problems in heat transfer phenomena.
    Matched MeSH terms: Rheology/methods*
  18. Sheshala R, Ying LT, Hui LS, Barua A, Dua K
    PMID: 23746224
    In order to achieve better treatment for local wounds and bacterial infections, topical formulations containing Cocos nucifera Linn. were developed. These formulations were evaluated for their physicochemical properties and antimicrobial efficacy against various strains of microorganisms. Semisolid formulations containing 5% w/w of Cocos nucifera Linn. were prepared by employing different dermatological bases and were evaluated for their physical appearance, pH, rheological properties, FTIR-spectroscopic analysis, thermodynamic stability and stability studies. The antimicrobial activity of each prepared formulation was determined using disk-diffusion method against various strains of microorganisms. All the prepared formulations were found to be stable and exhibited suitable physicochemical characteristics including pH, viscosity and spreadability which are necessary for an ideal topical preparation, in addition to strong antimicrobial activity. Carbopol gel base was found to be the most suitable dermatological base for Cocos nucifera Linn. in comparsion to other bases. Cocos nucifera Linn. formulations showed great potential for wounds and local bacterial infections. Moreover, carbopol gel base with its aesthetic appeal was found to be a suitable dermatological base for Cocos nucifera Linn. semisolid formulation as it had demonstrated significant physicochemical properties and greater diffusion when assessed using disk- diffusion method.
    Matched MeSH terms: Rheology
  19. Amin MC, Abadi AG, Katas H
    Carbohydr Polym, 2014 Jan;99:180-9.
    PMID: 24274495 DOI: 10.1016/j.carbpol.2013.08.041
    Bacterial cellulose (BC) is a biopolymer with significant potential for the development of novel materials. This work aimed to prepare and characterize BC powders from nata de coco, and assess the possible enhancement of the powder properties by spray drying. Therefore, BC powders prepared by acid treatment and mechanical processing were spray-dried, and characterized according to their morphology, flowability, thermal stability, water retention capacity, and compared with commercial microcrystalline cellulose (MCC). The powders redispersibility and suspensions rheology were also evaluated. SEM showed that spray-dried BC microparticles exhibited semispherical shape and had flow rate of 4.23 g s(-1) compared with 0.52 g s(-1) for MCC. Particle size analysis demonstrated that spray-dried BC microparticles could be redispersed. TGA showed that BC samples had higher thermal stability than MCC. Water retention capacities of BC samples were greater than MCC. These findings provide new insight on the potential applications of spray-dried BC as a promising pharmaceutical excipient.
    Matched MeSH terms: Rheology
  20. Mamat H, Hill SE
    J Food Sci Technol, 2014 Sep;51(9):1998-2005.
    PMID: 25190856 DOI: 10.1007/s13197-012-0708-x
    Fat is an important ingredient in baking products and it plays many roles in providing desirable textural properties of baking products, particularly biscuit. In this study, the effect of fat types on dough rheological properties and quality of semi-sweet biscuit (rich tea type) were investigated using various techniques. Texture profile and extensibility analysis were used to study the dough rheology, while three-point bend test and scanning electron microscopy were used to analyse the textural characteristics of final product. TPA results showed that the type of fat significantly influenced dough textural properties. Biscuit produced with higher solid fat oil showed higher breaking force but this was not significantly different when evaluated by sensory panel. Scanning electron microscopy showed that biscuit produced with palm mid-fraction had an open internal microstructure and heterogeneous air cells as compared to other samples.
    Matched MeSH terms: Rheology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links