Displaying publications 21 - 40 of 428 in total

Abstract:
Sort:
  1. Zhou Y, Sun Y, Pan D, Xia Q, Zhou C
    J Sci Food Agric, 2023 Aug 30;103(11):5412-5421.
    PMID: 37038882 DOI: 10.1002/jsfa.12616
    BACKGROUND: Goose meat is rough and embedded with dense connective tissue, impairing protein solubility. Therefore, to improve the functional properties of goose myofibrillar protein (GMP), ultrasound was used to assist the phosphorylation of GMP.

    RESULTS: The fact that GMP attached covalently with the phosphate group of sodium tripolyphosphate (GMP-STP) was disclosed directly by Fourier transform infrared spectroscopy. Furthermore, ultrasound significantly improved the hydrophobicity and solubility of GMP-STP, which could be attributed to the conversion of α-helix to β-sheet, β-turns, and random coils by sonication. The spatial stabilization of the protein phosphorylation process was boosted by ultrasound, making the droplets more dispersed, and thus an improvement in the functional properties of GMP-STP was observed. Water-holding capacity, oil-binding capacity, and emulsifying and foaming properties were best at an ultrasound power of 400 W.

    CONCLUSION: Ultrasound-assisted phosphorylation has great potential to modulate the structure-function relationship of proteins. © 2023 Society of Chemical Industry.

    Matched MeSH terms: Solubility
  2. Thalluri C, Amin R, Mandhadi JR, Gacem A, Emran TB, Dey BK, et al.
    Biomed Res Int, 2022;2022:2467574.
    PMID: 36046453 DOI: 10.1155/2022/2467574
    Ondansetron tablets that are directly compressed using crospovidone and croscarmellose as a synthetic super disintegrant are the subject of this investigation. A central composite, response surface, randomly quadratic, nonblock (version 13.0.9.0) 32 factorial design is used to optimize the formulation (two-factor three-level). To make things even more complicated, nine different formulation batches (designated as F1-F9) were created. There were three levels of crospovidone and croscarmellose (+1, 0, -1). In addition to that, pre- and postcompressional parameters were evaluated, and all evaluated parameters were found to be within acceptable range. Among all postcompressional parameter dispersion and disintegration time, in vitro drug release experiments (to quantify the amount of medication released from the tablet) and their percentage prediction error were shown to have a significant influence on three dependent variables. Various pre- and postcompression characteristics of each active component were tested in vitro. Bulk density, tap density, angle of repose, Carr's index, and the Hausner ratio were all included in this analysis, as were many others. This tablet's hardness and friability were also assessed along with its dimension and weight variations. Additional stability studies may be conducted using the best batch of the product. For this study, we utilised the Design-Expert software to select the formulation F6, which had dispersion times of 17.67 ± 0.03 seconds, disintegration times of 120.12 ± 0.55 seconds, and percentage drug release measurements of 99.25 ± 0.36 within 30 minutes. Predicted values and experimental data had a strong correlation. Fast dissolving pills of ondansetron hydrochloride may be created by compressing the tablets directly.
    Matched MeSH terms: Solubility
  3. Muchtaridi M, Triwahyuningtyas D, Muhammad Fakih T, Megantara S, Choi SB
    J Biomol Struct Dyn, 2024 Apr;42(6):3223-3232.
    PMID: 37286382 DOI: 10.1080/07391102.2023.2214237
    α-Mangostin is the most abundant compound contained in the mangostin (Garcinia mangostana L.) plant which have been developed and proven to have many promising pharmacological effects. However, the low water solubility of α-mangostin causes limitations in its development in clinical purpose. To increase the solubility of a compound, a method currently being developed is to make drug inclusion complexes using cyclodextrins. This research aimed to use in silico techniques namely molecular docking study and molecular dynamics simulation to explore the molecular mechanism and stability of the encapsulation of α-mangostin using cyclodextrins. Two types of cyclodextrins were used including β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin docked against α-mangostin. From the molecular docking results, it shows that the α-mangostin complex with 2-hydroxypropyl-β-cyclodextrin provides the lowest binding energy value of -7.99 Kcal/mol compared to β-cyclodextrin value of -6.14 Kcal/mol. The α-mangostin complex with 2-hydroxypropyl-β-cyclodextrin also showed good stability based on molecular dynamics simulation during 100 ns. From molecular motion, RDF, Rg, SASA, density, total energy analyzes, this complex shows increased solubility in water and provided good stability. This indicates that the encapsulation of α-mangostin with 2-hydroxypropyl-β-cyclodextrin can increase the solubility of the α-mangostin.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Solubility
  4. Alshati F, Alahmed TAA, Sami F, Ali MS, Majeed S, Murtuja S, et al.
    Curr Pharm Des, 2023;29(36):2853-2866.
    PMID: 37946351 DOI: 10.2174/0113816128266398231027100119
    Many methods, including solid dispersion, micellization, and inclusion complexes, have been employed to increase the solubility of potent drugs. Beta-cyclodextrin (βCD) is a cyclic oligosaccharide consisting of seven glucopyranoside molecules, and is a widely used polymer for formulating soluble inclusion complexes of hydrophobic drugs. The enzymatic activity of Glycosyltransferase or α-amylase converts starch or its derivatives into a mixture of cyclodextrins. The βCD units are characterized by α -(1-4) glucopyranose bonds. Cyclodextrins possess certain properties that make them very distinctive because of their toroidal or truncated cage-like supramolecular configurations with multiple hydroxyl groups at each end. This allowed them to encapsulate hydrophobic compounds by forming inclusion complexes without losing their solubility in water. Chemical modifications and newer derivatives, such as methylated βCD, more soluble hydroxyl propyl methyl βCD, and sodium salts of sulfobutylether-βCD, known as dexolve® or captisol®, have envisaged the use of CDs in various pharmaceutical, medical, and cosmetic industries. The successful inclusion of drug complexes has demonstrated improved solubility, bioavailability, drug resistance reduction, targeting, and penetration across skin and brain tissues. This review encompasses the current applications of β-CDs in improving the disease outcomes of antimicrobials and antifungals as well as anticancer and anti-tubercular drugs.
    Matched MeSH terms: Solubility
  5. Low ZX, Teo MYM, Juliana Nordin F, Palanirajan VK, Morak-Młodawska B, Saleem Qazi A, et al.
    PLoS One, 2024;19(7):e0305171.
    PMID: 39058699 DOI: 10.1371/journal.pone.0305171
    Curcuminoids originating from turmeric roots are renowned for their diverse pharmacological applications, particularly as a natural anticancer agent. Unfortunately, harnessing the full potential of curcumin derivatives in cancer therapy has been impeded by its inherent limitations, specifically instabilities owing to poor solubility, leading to low systemic bioavailability under normal physiological circumstances. To circumvent this, a novel organic-based drug delivery system employing physically adsorbed β-cyclodextrin (βCD) as an excipient was developed in this study. This resulted in improved aqueous dispersion coupled with anticancer enhancements of tetrahydrocurcumin (THC) at a molar ratio of 2:1. Encapsulation of this agent was confirmed by physicochemical characterisation using UV-vis spectroscopy, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and both in vitro and in vivo approaches. Through the presence of an inclusion complex, a higher aqueous dispersion (65-fold) resulting in a higher drug content and an elevated release profile was achieved. Athymic nude (Nu/Nu) mice exposed to this treatment displayed improvements in tumour regression compared to stand-alone agents, consistent with in vitro cytotoxicity assays with an SI value > 10. The inclusion complex further enhanced apoptosis, as well as anti-migration and anti-invasion rates. Mechanistically, this formulation was consistent in terms of caspase 3 activation. Furthermore, the inclusion complex exhibited reduced systemic toxicity, including reduced inflammation in vital organs as examined by hematoxylin and eosin (H&E) staining. This study also revealed a notable sequential reduction in serum levels of tumour markers, including carcinoembryonic antigen (CEA) and mouse Cytochrome P450 1A2 (CYP1A2), correlating with a significant decrease in tumour bulk volume upon treatment commencement. These compelling findings highlight the potential of this formulation to empower insoluble or poorly soluble hydrophobic agents, thus offering promising prospects for their effective utilisation in colorectal cancer (CRC) chemotherapy.
    Matched MeSH terms: Solubility*
  6. Watanabe A, Moroi K, Sato H, Tsutsuki K, Maie N, Melling L, et al.
    Chemosphere, 2012 Aug;88(10):1265-8.
    PMID: 22564456 DOI: 10.1016/j.chemosphere.2012.04.005
    Wetlands are an important source of DOM. However, the quantity and quality of wetlands' DOM from various climatic regions have not been studied comprehensively. The relationship between the concentrations of DOM (DOC), humic substances (HS) and non-humic substances (NHS) in wetland associated sloughs, streams and rivers, in cool temperate (Hokkaido, Japan), sub-tropical (Florida, USA), and tropical (Sarawak, Malaysia) regions was investigated. The DOC ranged from 1.0 to 15.6 mg CL(-1) in Hokkaido, 6.0-24.4 mg CL(-1) in Florida, and 18.9-75.3 mg CL(-1) in Sarawak, respectively. The relationship between DOC and HS concentrations for the whole sample set was regressed to a primary function with y-intercept of zero (P<0.005) and a slope value of 0.841. A similar correlation was observed between DOC and NHS concentrations, with a smaller slope value of 0.159. However, the correlation coefficient of the latter was much larger when the data was regressed to a logarithmic curve. These observations suggest the presence of a general tendency that the increased DOC in the river waters was mainly due to the increased supply of HS from wetland soils, whereas the rate of the increase in the NHS supply has an upper limit which may be controlled by primary productivity.
    Matched MeSH terms: Solubility
  7. Zhao P, Wang Y, Zhang Y, Guo T, Zhang Z, Zhang WJ, et al.
    Saudi J Biol Sci, 2016 May;23(3):353-7.
    PMID: 27081360 DOI: 10.1016/j.sjbs.2015.08.007
    In this study, the selenium enriched peanuts and the different solubility proteins extracted from them were investigated. The dried defatted selenium enriched peanuts (SeP) powder (0.3147 μg/g) had a 2.5-fold higher mean total selenium concentration than general peanuts (GP) power (0.1233 μg/g). The SeP had higher concentration of selenium, manganese and zinc than that of GP, but less calcium. The rate of extraction of protein was 23.39% for peanuts and alkali soluble protein was the main component of protein in SeP, which accounted for 92.82% of total soluble protein and combined selenium was 77.33% of total selenium protein. In different forms of proteins from SeP, the WSePr due to higher concentration of selenium had higher DPPH free-radical scavenging activity, higher reducing activity and longer induction time than other proteins.
    Matched MeSH terms: Solubility
  8. Mansor AF, Azmi AI, Zain MZM, Jamaluddin R
    Heliyon, 2020 Aug;6(8):e04812.
    PMID: 32913911 DOI: 10.1016/j.heliyon.2020.e04812
    Nickel-titanium shape memory alloy (NiTi) has a unique capacity to restore its initial shape after deformation, which is highly applicable to orthopaedic implantations, especially for the minimization of invasive surgeries. The high nickel content of this alloy can lead to unfavourable effects on the human body upon dissolution; thus, a reliable barrier of coatings on the NiTi surface is required to alleviate the nickel migration and increase its biocompatibility. In this paper, analyses of a titanium oxide layer development on NiTi surface using electrical discharge coating (EDC) process is presented. The recast layer thickness, crater sizes, and surface roughness were characterized based on five parameters; polarity, discharge duration, pulse interval, peak current, and gap voltage. The results show that the discharge duration is the most significant parameter to influence all responses, followed by peak current. The surface characteristics of the EDC substrate is depending on the crater formations and is highly correlated with the discharge energy intensity. As a result, appropriate parametric conditions of the electrical discharge coating process can enhance the NiTi surface for future medical applications, without compromising the shape memory effect.
    Matched MeSH terms: Solubility
  9. Teoh XY, Goh CF, Aminu N, Chan SY
    J Pharm Biomed Anal, 2021 Jan 05;192:113631.
    PMID: 33011581 DOI: 10.1016/j.jpba.2020.113631
    Atovaquone (ATQ) is a poorly soluble drug. Therefore, formulating ATQ into its supersaturated state through solid dispersion for bioavailability enhancement can be of great value. However, due to fast crystallising properties of ATQ, the quantification of ATQ in a supersaturated solid dispersion system can be complicated. Therefore, in pursuit of accurate quantification of such sample, a simple HPLC analytical method utilising a C18 column (250 × 4.6 mm ID, 5 μm) for the quantitation of ATQ has been developed and validated. Atovaquone elution using the proposed method demonstrated a retention time around 7.6 min with good linearity (R2 > 0.999). The system suitability is also detailed with the tailing factor at 1.365 ± 0.002. The addition of solubilising agent as sample treatment step aided in ensuring the accurate quantitation of the fast crystallising ATQ. The developed HPLC quantitation method has been successfully employed in the analysis of ATQ from solid dispersion samples in in vitro dissolution as well as ex vivo permeation studies for formulation development.
    Matched MeSH terms: Solubility
  10. Mst Kamrun Nahar, Uda Hashim, Zarina Zakaria, Md Fazlul Bari
    Sains Malaysiana, 2017;46:719-724.
    This study examined the influence of pH and salt concentration on the protein solubility of slaughtered and non-slaughtered broiler chicken meat. Three types of salt (NaCl, Na2SO4, and (NH4)2SO4), five different pH levels (5.0, 6.0, 7.0, 8.0 and 9.0) and five salt concentrations (0.4, 0.8, 1.2, 1.6, and 2.0 M) were examined. Each type of salt showed distinctive activities for slaughtered and non-slaughtered meat protein solubility. Soluble protein concentration increased as pH increased (p<0.05) from pH5.0 to 8.0 and decreased from pH8.0 to 9.0. It was also observed that protein solubility increased as the salt concentration increased. Protein solubility significantly increased (p<0.05) in the non-slaughtered meat compared to the slaughtered meat at pH8.0 for Na2SO4 at 1.2 M.
    Matched MeSH terms: Solubility
  11. Nur Atiqah Zaharulli
    ESTEEM Academic Journal, 2020;16(2):88-95.
    MyJurnal
    Questioned document examination becomes a great interest and one of the broad fields in forensic science. It involves the analysis of ink, handwriting and signature examination, paper’s physical structure analysis and the ageing of a document. Ink analysis in forensic document examination is a challenging process. Questioned documents examiners are dealing with unknown source of ink and minute sample size. Ink extraction needs to be done before the ink analysis. 17 gel pen ink samples were chosen in this study. Solubility test has been done to determine the degree of solubility of ink in a variety of organic solvents. Extraction solvent optimization is a process to evaluate the efficiency of organic solvents to extract ink samples. Ethanoic acid showed the ability to dissolve most of the ink samples and displayed maximum absorbance of UV-Vis spectra.
    Matched MeSH terms: Solubility
  12. Ng PQ, Ling LSC, Chellian J, Madheswaran T, Panneerselvam J, Kunnath AP, et al.
    Curr Pharm Des, 2020;26(36):4580-4590.
    PMID: 32520681 DOI: 10.2174/1381612826666200610111013
    Many plant-based bioactive compounds have been serving as the origin of drugs since long ago and many of them have been proven to have medicinal value against various chronic diseases, including, cancer, arthritis, hepatic diseases, type-2 diabetes and cardiovascular diseases. However, their clinical applications have been limited due to their poor water solubility, stability, low bioavailability and extensive transformation due to the first-pass metabolism. The applications of nanocarriers have been proven to be able to improve the delivery of bioactive phytoconstituents, resulting in the enhancement of various pharmacokinetic properties and thereby increasing the therapeutic value of phytoconstituents. These biocompatible nanocarriers also exert low toxicity to healthy cells. This review focuses on the uses and applications of different types of nanocarriers to enhance the delivery of phytoconstituents for the treatment of various chronic diseases, along with comparisons related to bioavailability and therapeutic efficacy of nano phytoconstituents with native phytoconstituents.
    Matched MeSH terms: Solubility
  13. Azman SEN, Abd Razak FS, Kamal WHBW, Zheng GK, Ming LC, Uddin AH, et al.
    Int J Pharm Compd, 2020 11 21;24(6):509-514.
    PMID: 33217741
    Orally disintegrating tablets are a solid dosage form that will disintegrate rapidly within 3 minutes upon contact with saliva. Fillers or diluents are excipients that are used to make up the volume of orally disintegrating tablets, and some might act as a disintegrant or binder that will affect the physical properties of orally disintegrating tablets. The objective of this study was to formulate and evaluate physical properties of orally disintegrating tablets containing Annona muricata leaves extract by a freeze-drying method using different fillers at different concentrations. In this study, fifteen formulations of orally disintegrating tablets were prepared by a freeze-drying method with different fillers such as starch, lactose, microcrystalline cellulose, StarLac, and CombiLac at 5%, 10%, and 15%. The orally disintegrating tablets were evaluated for hardness, thickness, weight variation, friability, and disintegration time test. The optimum formulation was chosen and incorporated with Annona muricata leaves extract. The results obtained in this work indicated that Formulation 3, with 15% starch, was the most optimum formulation due to the shortest disintegration time (21.08 seconds ± 4.24 seconds), and all the physical tests were within the acceptable range. The orally disintegrating tablets containing Annona muricata leaves extract possessed antioxidant activity and stable at least for 3 months under 60°C and 75% relative humidity.
    Matched MeSH terms: Solubility
  14. Chan SW, Mirhosseini H, Taip FS, Ling TC, Nehdi IA, Tan CP
    Food Sci Biotechnol, 2016;25(Suppl 1):53-62.
    PMID: 30263486 DOI: 10.1007/s10068-016-0098-3
    The present study is aimed to prepare κ-carrageenan microparticles for the encapsulation of model drug, coenzyme Q10 (CoQ10). A face-centered central composite design was employed to study the effects of three different formulation variables (κ-carrageenan, emulsifier, and oil). The powder yield was found inversely affected by the κ-carrageenan and oil concentration. The encapsulation efficiency was maximized in the region of the middle level κ-carrageenan concentration, the high level emulsifier concentration, and the low level oil concentration. The emulsifier concentration was the most influential variable on the particle size of powder. The optimal formulation was reported as 0.91% (w/v) κ-carrageenan concentration, 0.64% (w/v) emulsifier, and 1.0% (w/w) oil. Both differential scanning colorimeter and X-ray diffraction analyses proved that incorporation of CoQ10 into κ- carrageenan microcapsules resulted in amorphous powder with significantly (p<0.05) higher water solubility compared to pure CoQ10 and physical mixture in the crystalline form.
    Matched MeSH terms: Solubility
  15. Salma H, Melha YM, Sonia L, Hamza H, Salim N
    J Pharm Sci, 2021 06;110(6):2531-2543.
    PMID: 33548245 DOI: 10.1016/j.xphs.2021.01.032
    The purpose of this study was to simultaneously predict the drug release and skin permeation of Piroxicam (PX) topical films based on Chitosan (CTS), Xanthan gum (XG) and its Carboxymethyl derivatives (CMXs) as matrix systems. These films were prepared by the solvent casting method, using Tween 80 (T80) as a permeation enhancer. All of the prepared films were assessed for their physicochemical parameters, their in vitro drug release and ex vivo skin permeation studies. Moreover, deep learning models and machine learning models were applied to predict the drug release and permeation rates. The results indicated that all of the films exhibited good consistency and physicochemical properties. Furthermore, it was noticed that when T80 was used in the optimal formulation (F8) based on CTS-CMX3, a satisfactory drug release pattern was found where 99.97% of PX was released and an amount of 1.18 mg/cm2 was permeated after 48 h. Moreover, Generative Adversarial Network (GAN) efficiently enhanced the performance of deep learning models and DNN was chosen as the best predictive approach with MSE values equal to 0.00098 and 0.00182 for the drug release and permeation kinetics, respectively. DNN precisely predicted PX dissolution profiles with f2 values equal to 99.99 for all the formulations.
    Matched MeSH terms: Solubility
  16. Kang, O.L., Yong, P.F., Ma’aruf, A.G., Osman, H., Nazaruddin, R.
    MyJurnal
    In this work, oven-dried, freeze-dried and spray-dried agaro-oligosaccharide powders were characterized to investigate their physicochemical and antioxidant properties. Agaro-oligosaccharide powders were shown to exhibit high water solubility index (88.73 – 95.88%), water absorption capacity (0.96 – 2.57 g/g) and oil absorption capacity (0.40 – 0.45 g/g). Agaro-oligosaccharide powders were shown to possess moderate DPPH radical scavenging activity (10.65 – 14.59%), ABTS radical scavenging activity (44 .47 – 65.61%) and ferric reducing antioxidant activity (0.165 – 0.353). Agaro-oligosaccharide powders were further characterized with respect to thermal and pH stability. Agaro-oligosaccharide powders were shown to exhibit high temperature resistance (≤ 100oC) and acid/alkaline resistance.
    Matched MeSH terms: Solubility
  17. Nahar, M.K., Hashim, U., Zakaria, Z.
    MyJurnal
    This work was investigated the protein solubility properties of meat from chicken in different
    body part. The effects of fresh and freezing condition were studied on the protein solubility as
    a functional property of slaughter and non slaughtering chicken meat. Solubility of proteins
    was significantly reduced for slaughtering fresh meat and in contrast, non slaughtering fresh
    meat shows the higher protein solubility. On the other hand, frozen storage meat showed the
    difference amount of protein solubility between slaughtering and non slaughtering condition
    meat. Freezing condition also showed that the different solubility of different body part meat.
    The protein solubility of some parts was significantly increased and some were decreased
    between the slaughtering and non slaughtering condition.
    Matched MeSH terms: Solubility
  18. Jusoh N, Yeong YF, Lock SSM, Yub Harun N, Mohd Yusoff MH
    Polymers (Basel), 2019 Nov 04;11(11).
    PMID: 31689895 DOI: 10.3390/polym11111807
    The bottleneck of conventional polymeric membranes applied in industry has a tradeoff between permeability and selectivity that deters its widespread expansion. This can be circumvented through a hybrid membrane that utilizes the advantages of inorganic and polymer materials to improve the gas separation performance. The approach can be further enhanced through the incorporation of amine-impregnated fillers that has the potential to minimize defects while simultaneously enhancing gas affinity. An innovative combination between impregnated Linde T with different numbers of amine-functional groups (i.e., monoamine, diamine, and triamine) and 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA)-derived polyimide has been elucidated to explore its potential in CO2/CH4 separation. Detailed physical properties (i.e., free volume and glass transition temperature) and gas transport behavior (i.e., solubility, permeability, and diffusivity) of the fabricated membranes have been examined to unveil the effect of different numbers of amine-functional groups in Linde T fillers. It was found that a hybrid membrane impregnated with Linde T using a diamine functional group demonstrated the highest improvement compared to a pristine polyimide with 3.75- and 1.75-fold enhancements in CO2/CH4 selectivities and CO2 permeability, respectively, which successfully lies on the 2008 Robeson's upper bound. The novel coupling of diamine-impregnated Linde T and 6FDA-derived polyimide is a promising candidate for application in large-scale CO2 removal processes.
    Matched MeSH terms: Solubility
  19. NUR SURIANNI AHAMAD SUFFIN, ANASYIDA ABU SEMAN, ZUHAILAWATI HUSSAIN
    Sains Malaysiana, 2013;42:1755-1761.
    Aluminum foams were fabricated by sintering dissolution process (SDP) using sodium chloride (NaCl) as space holder. The compositions of space holder, used in this study were 40 and 60 wt. % with different dissolution times; 1, 2 and 3 h. The effect of different dissolution times on compressive behavior and energy absorption of foams were evaluated. The result showed that by increasing space holder and dissolution times, energy absorption capability increases. For aluminum foam contains 60 wt. % NaCl, longer dissolution times resulted in thinner cell wall and cell structure become more unstable which lead to lower plateau region.
    Matched MeSH terms: Solubility
  20. Ahmad Zaharin Aris, Mohd Harun Abdullah, Praveena SM
    Groundwater is the prime source of freshwater in most small islands. A detailed groundwater and seawater chemistry study was undertaken from March 2006 to January 2007 to examine the evolution of groundwater in the shallow aquifer of Manukan Island, Sabah, Malaysia. Coastal groundwater aquifers especially for small islands are often exposed to heavy pumping and consequently to risks of seawater intrusion. Major ion chemistry analysis showed that the groundwater quality of the island experienced changes attributed to seawater intrusion. The groundwater has undergone a compositional change from Ca-rich to Na-rich which can be explained mostly by simple mixing process and cation exchange process. From the PHREEQC simulation model, calcite, dolomite and aragonite solubility showed positive mean values (0.65; 1.11; 0.51, respectively) of the saturation indices (SI) indicating supersaturation which attributed from the simple mixing and eventually cation exchange process. This information is important in protecting and remediating the disturbed aquifer situation.
    Matched MeSH terms: Solubility
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links