Displaying publications 21 - 40 of 98 in total

Abstract:
Sort:
  1. Salihu SO, Bakar NKA
    Environ Monit Assess, 2018 May 30;190(6):369.
    PMID: 29850927 DOI: 10.1007/s10661-018-6727-y
    The analysis of total organic carbon (TOC) by the American Public Health Association (APHA) closed-tube reflux colorimetric method requires potassium dichromate (K2Cr2O7), silver sulfate (AgSO4), and mercury (HgSO4) sulfate in addition to large volumes of both reagents and samples. The method relies on the release of oxygen from dichromate on heating which is consumed by carbon associated with organic compounds. The method risks environmental pollution by discharging large amounts of chromium (VI) and silver and mercury sulfates. The present method used potassium monochromate (K2CrO4) to generate the K2Cr2O7 on demand in the first phase. In addition, miniaturizing the procedure to semi microanalysis decreased the consumption of reagents and samples. In the second phase, mercury sulfate was eliminated as part of the digestion mixture through the introduction of sodium bismuthate (NaBiO3) for the removal of chlorides from the sample. The modified method, the potassium monochromate closed-tube colorimetry with sodium bismuthate chloride removal (KMCC-Bi), generates the potassium dichromate on demand and eliminates mercury sulfate. The semi microanalysis procedure leads to a 60% reduction in sample volume and ≈ 33.33 and 60% reduction in monochromate and silver sulfate consumption respectively. The LOD and LOQ were 10.17 and 33.90 mg L-1 for APHA, and 4.95 and 16.95 mg L-1 for KMCC-Bi. Recovery was between 83 to 98% APHA and 92 to 104% KMCC-Bi, while the RSD (%) ranged between 0.8 to 5.0% APHA and 0.00 to 0.62% KMCC-Bi. The method was applied for the UV-Vis spectrometry determination of COD in water and wastewater. Statistics was done by MINITAB 17 or MS Excel 2016. ᅟ Graphical abstract.
    Matched MeSH terms: Sulfates
  2. Sabapathy L, Mohammed BS, Al-Fakih A, Wahab MMA, Liew MS, Amran YHM
    Materials (Basel), 2020 Jul 13;13(14).
    PMID: 32668788 DOI: 10.3390/ma13143125
    The objective of this research was to determine the durability of an engineered cementitious composite (ECC) incorporating crumb rubber (CR) and graphene oxide (GO) with respect to resistance to acid and sulphate attacks. To obtain the mix designs used for this study, response surface methodology (RSM) was utilized, which yielded the composition of 13 mixes containing two variables (crumb rubber and graphene oxide). The crumb rubber had a percentage range of 0-10%, whereas the graphene oxide was tested in the range of 0.01-0.05% by volume. Three types of laboratory tests were used in this study, namely a compressive test, an acid attack test to study its durability against an acidic environment, and a sulphate attack test to examine the length change while exposed to a sulphate solution. Response surface methodology helped develop predictive responsive models and multiple objectives that aided in the optimization of results obtained from the experiments. Furthermore, a rubberized engineered cementitious composite incorporating graphene oxide yielded better chemical attack results compared to those of a normal rubberized engineered cementitious composite. In conclusion, nano-graphene in the form of graphene oxide has the ability to enhance the properties and overcome the limitations of crumb rubber incorporated into an engineered cementitious composite. The optimal mix was attained with 10% crumb rubber and 0.01 graphene oxide that achieved 43.6 MPa compressive strength, 29.4% weight loss, and 2.19% expansion. The addition of GO enhances the performance of rubberized ECC, contributing to less weight loss due to the deterioration of acidic media on the ECC. It also contributes to better resistance to changes in the length of the rubberized ECC samples.
    Matched MeSH terms: Sulfates
  3. Rostam MA, Kamato D, Piva TJ, Zheng W, Little PJ, Osman N
    Cell Signal, 2016 08;28(8):956-66.
    PMID: 27153775 DOI: 10.1016/j.cellsig.2016.05.002
    Hyperelongation of glycosaminoglycan chains on proteoglycans facilitates increased lipoprotein binding in the blood vessel wall and the development of atherosclerosis. Increased mRNA expression of glycosaminoglycan chain synthesizing enzymes in vivo is associated with the development of atherosclerosis. In human vascular smooth muscle, transforming growth factor-β (TGF-β) regulates glycosaminoglycan chain hyperelongation via ERK and p38 as well as Smad2 linker region (Smad2L) phosphorylation. In this study, we identified the involvement of TGF-β receptor, intracellular serine/threonine kinases and specific residues on transcription factor Smad2L that regulate glycosaminoglycan synthesizing enzymes. Of six glycosaminoglycan synthesizing enzymes, xylosyltransferase-1, chondroitin sulfate synthase-1, and chondroitin sulfotransferase-1 were regulated by TGF-β. In addition ERK, p38, PI3K and CDK were found to differentially regulate mRNA expression of each enzyme. Four individual residues in the TGF-β receptor mediator Smad2L can be phosphorylated by these kinases and in turn regulate the synthesis and activity of glycosaminoglycan synthesizing enzymes. Smad2L Thr220 was phosphorylated by CDKs and Smad2L Ser250 by ERK. p38 selectively signalled via Smad2L Ser245. Phosphorylation of Smad2L serine residues induced glycosaminoglycan synthesizing enzymes associated with glycosaminoglycan chain elongation. Phosphorylation of Smad2L Thr220 was associated with XT-1 enzyme regulation, a critical enzyme in chain initiation. These findings provide a deeper understanding of the complex signalling pathways that contribute to glycosaminoglycan chain modification that could be targeted using pharmacological agents to inhibit the development of atherosclerosis.
    Matched MeSH terms: Chondroitin Sulfates/metabolism
  4. Ramesh S, Yuen TF, Shen CJ
    PMID: 17600757
    Polymer electrolytes based on poly(ethylene oxide)-lithium triflate (PEO-LiCF3SO3) and poly(ethylene oxide)-lithium sulphate (PEO-Li2S4) were prepared by using solution casting method. Measurements of conductivity and dielectric were carried out on these films as a function of frequency at various temperatures. It was observed that PEO-LiCF3SO3 polymer electrolytes have higher conductivity. The interaction between PEO and Li salts were studied by Fourier transform infrared (FTIR).
    Matched MeSH terms: Sulfates/chemistry*
  5. Prommi T, Payakka A
    Sains Malaysiana, 2015;44:707-717.
    Biodiversity of aquatic insect and physicochemical water quality parameters in Mae Tao and Mae Ku watersheds were
    assessed bi-monthly from February 2011 to February 2012. A total of 59 families representing 9 orders were recorded.
    At order level, Trichoptera was found at the highest frequency in total abundance (45.75%) followed by Ephemeroptera
    (18.06%), Hemiptera (13.45%), Odonata (9.62%), Diptera (8.17%), Coleoptera (4.6%), Megaloptera (0.17%),
    Lepidoptera (0.11%) and Plecoptera (0.07%). The family Hydropsychidae was the most prominent and the most abundant
    aquatic insect taxa followed by Chironomidae. Water temperature, dissolved oxygen and ammonia-nitrogen were similar
    at all sampling stations. Significant variations in pH, electrical conductivity, total dissolved solids, sulfate, nitrate-nitrogen
    and alkalinity were found at all sampling stations. Taxa richness and diversity index significantly correlated with dissolved
    oxygen, sulfate, nitrate-nitrogen and ammonia-nitrogen (p<0.05, p<0.01). Physicochemical data and biological data
    showed that mostly the surface water quality in Mae Tao and Mae Ku watersheds were within Type III of The Surface
    Water Standard for Agriculture and Water Quality for Protection of Aquatic Resources in Thailand.
    Matched MeSH terms: Sulfates
  6. Pratika RA, Wijaya K, Utami M, Mulijani S, Patah A, Alarifi S, et al.
    Chemosphere, 2023 Nov;341:139822.
    PMID: 37598950 DOI: 10.1016/j.chemosphere.2023.139822
    The dehydration of ethanol into diethyl ether over a SO4/SiO2 catalyst was investigated. The SO4/SiO2 catalysts were prepared by the sulfation method using 1, 2, and 3 M of sulfuric acid (SS1, SS2, and SS3) via hydrothermal treatment. This study is focused on the synthesis of a SO4/SiO2 catalyst with high total acidity that can be subsequently utilized to convert ethanol into diethyl ether. The total acidity test revealed that the sulfation process increased the total acidity of SiO2. The SS2 catalyst (with 2 M sulfuric acid) displayed the highest total acidity of 7.77 mmol/g, whereas the SiO2 total acidity was only 0.11 mmol/g. Meanwhile, the SS3 catalyst (with 3 M sulfuric acid) has a lower total acidity of 7.09 mmol/g due to the distribution of sulfate groups on the surface having reached its optimum condition. The crystallinity and structure of the SS2 catalyst were not affected by the hydrothermal treatment or the sulfate process on silica. Furthermore, The SS2 catalyst characteristics in the presence of sulfate lead to a flaky surface in the morphology and non-uniform particle size. In addition, the surface area and pore volume of the SS2 catalyst decreased (482.56-172.26 m2/g) and (0.297-0.253 cc/g), respectively, because of the presence of sulfate on the silica surface. The SS2 catalyst's pore shape information explains the formation of non-uniform pore sizes and shapes. Finally, the activity and selectivity of SO4/SiO2 catalysts in the conversion of ethanol to diethyl ether yielded the highest ethanol conversion of 70.01% and diethyl ether product of 9.05% from the SS2 catalyst (the catalyst with the highest total acidity). Variations in temperature reaction conditions (175-225 °C) show an optimum reaction temperature to produce diethyl ether at 200 °C (11.36%).
    Matched MeSH terms: Sulfates
  7. Prasanth VV, Puratchikody A, Mathew ST, Ashok KB
    Res Pharm Sci, 2014 Jul-Aug;9(4):259-68.
    PMID: 25657797
    The purpose of this work was to study the effect of various permeation enhancers on the permeation of salbutamol sulphate (SS) buccal patches through buccal mucosa in order to improve the bioavailability by avoiding the first pass metabolism in the liver and possibly in the gut wall and also achieve a better therapeutic effect. The influence of various permeation enhancers, such as dimethyl sulfoxide (DMSO), linoleic acid (LA), isopropyl myristate (IPM) and oleic acid (OA) on the buccal absorption of SS from buccal patches containing different polymeric combinations such as hydroxypropyl methyl cellulose (HPMC), carbopol, polyvinyl alcohol (PVA), polyvinyl pyrollidone (PVP), sodium carboxymethyl cellulose (NaCMC), acid and water soluble chitosan (CHAS and CHWS) and Eudragit-L100 (EU-L100) was investigated. OA was the most efficient permeation enhancer increasing the flux greater than 8-fold compared with patches without permeation enhancer in HPMC based buccal patches when PEG-400 was used as the plasticizer. LA also exhibited a better permeation enhancing effect of over 4-fold in PVA and HPMC based buccal patches. In PVA based patches, both OA and LA were almost equally effective in improving the SS permeation irrespective of the plasticizer used. DMSO was more effective as a permeation enhancer in HPMC based patches when PG was the plasticizer. IPM showed maximum permeation enhancement of greater than 2-fold when PG was the plasticizer in HPMC based buccal patches.
    Matched MeSH terms: Sulfates
  8. Panhwar QA, Naher UA, Shamshuddin J, Jusop S, Othman R, Latif MA, et al.
    PLoS One, 2014;9(10):e97241.
    PMID: 25285745 DOI: 10.1371/journal.pone.0097241
    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c) kg(-1), respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.
    Matched MeSH terms: Sulfates/chemistry*
  9. Othman M, Latif MT, Matsumi Y
    Ecotoxicol Environ Saf, 2019 Apr 15;170:739-749.
    PMID: 30583285 DOI: 10.1016/j.ecoenv.2018.12.042
    It is important to assess indoor air quality in school classrooms where the air quality may significantly influence school children's health and performance. This study aims to determine the concentrations of PM2.5 and dust chemical compositions in indoor and outdoor school classroom located in Kuala Lumpur City Centre. The PM2.5 concentration was measured from 19th September 2017-16th February 2018 using an optical PM2.5 sensor. Indoor and outdoor dust was also collected from the school classrooms and ion and trace metal concentrations were analysed using ion chromatography (IC) and inductively couple plasma-mass spectrometry (ICP-MS) respectively. This study showed that the average indoor and outdoor 24 h PM2.5 was 11.2 ± 0.45 µg m-3 and 11.4 ± 0.44 µg m-3 respectively. The 8 h PM2.5 concentration ranged between 3.2 and 28 µg m-3 for indoor and 3.2 and 19 µg m-3 for outdoor classrooms. The highest ion concentration in indoor dust was Ca2+ with an average concentration of 38.5 ± 35.0 µg g-1 while for outdoor dust SO42- recorded the highest ion concentration with an average concentration of 30.6 ± 9.37 µg g-1. Dominant trace metals in both indoor and outdoor dust were Al, Fe and Zn. Principle component analysis-multiple linear regression (PCA-MLR) demonstrated that the major source of indoor dust was road dust (69%), while soil dominated the outdoor dust (74%). Health risk assessment showed that the hazard quotient (HQ) value for non-carcinogenic trace metals was
    Matched MeSH terms: Sulfates/analysis
  10. Opitz L, Lehmann S, Reichl U, Wolff MW
    Biotechnol Bioeng, 2009 Aug 15;103(6):1144-54.
    PMID: 19449393 DOI: 10.1002/bit.22345
    Strategies to control outbreaks of influenza, a contagious respiratory tract disease, are focused mainly on prophylactic vaccinations in conjunction with antiviral medications. Currently, several mammalian cell culture-based influenza vaccine production processes are being established, such as the technologies introduced by Novartis Behring (Optaflu) or Baxter International Inc. (Celvapan). Downstream processing of influenza virus vaccines from cell culture supernatant can be performed by adsorbing virions onto sulfated column chromatography beads, such as Cellufine sulfate. This study focused on the development of a sulfated cellulose membrane (SCM) chromatography unit operation to capture cell culture-derived influenza viruses. The advantages of the novel method were demonstrated for the Madin Darby canine kidney (MDCK) cell-derived influenza virus A/Puerto Rico/8/34 (H1N1). Furthermore, the SCM-adsorbers were compared directly to column-based Cellufine sulfate and commercially available cation-exchange membrane adsorbers. Sulfated cellulose membrane adsorbers showed high viral product recoveries. In addition, the SCM-capture step resulted in a higher reduction of dsDNA compared to the tested cation-exchange membrane adsorbers. The productivity of the SCM-based unit operation could be significantly improved by a 30-fold increase in volumetric flow rate during adsorption compared to the bead-based capture method. The higher flow rate even further reduced the level of contaminating dsDNA by about twofold. The reproducibility and general applicability of the developed unit operation were demonstrated for two further MDCK cell-derived influenza virus strains: A/Wisconsin/67/2005 (H3N2) and B/Malaysia/2506/2004. Overall, SCM-adsorbers represent a powerful and economically favorable alternative for influenza virus capture over conventional methods using Cellufine sulfate.
    Matched MeSH terms: Sulfates/metabolism
  11. Nurimatussolehah Sarijan, Sabariah Md Noor, Tun Maizura Mohd Fathullah, Malina Osman, Zainina Seman
    MyJurnal
    Percentage of haemolysis is widely used as a quality parameter to assess red blood cell viability in blood banking. In certain blood banks, serum potassium level is used due to the unavailability of the former test. The relationship between these two tests, however, is still unclear. The objective of this study is to determine the association between haemolysis measured using two different methods for quality control. Methods: A total of forty-four samples of packed red cell in citrate-phosphate-dextrose with optisol were randomly selected from donation drives. Nine millilitres of blood was collected weekly starting from day-2 of storage, followed by day-7, 14, 21, 28, 35 and 42 for assessment of red blood cell haemolysis by measuring serum potassium level and percentage of haemolysis.Results: These two parameters were correlated significantly with a positive moderate linear relationship on day 7, 21 and 28 with r = 0.393, 0.448 and 0.425, respectively and p-values less than 0.01. The linear regression analysis showed there was a significant regression equation which could be used to predict the serum potassium level from the percentage of haemolysis. Conclusion: There were significant increases in the percentage of haemolysis and serum potassium level in the packed red cell units with storage. The serum potassium level would be able to be predicted from the percentage of haemolysis using the regression equations on day 7, 21 and 28. The serum potassium measurement could be used as an alternative test to the percentage of haemolysis before issuing blood.
    Matched MeSH terms: Chondroitin Sulfates
  12. Nur Azam Badarulzaman, Ng, Jun Wei, Ahmad Azmin Mohamad, Purwadaria, Sunara, Zainal Arifin Ahmad
    MyJurnal
    A co-deposition of nickel-phosphorus-alumina (NiPA) composite coatings were obtained from an ordinary sulphate-based plating bath consisting of 5 g/l alumina (Al2O3) particles. The particles were dispersed by using mechanical agitation at 125 rpm. The presence of Ni3P and Al2O3 phases in the coatings was confirmed by XRD analysis. SEM/EDX results indicated that a smooth Ni3P coating was obtained and Al2O3 particles were embedded into the coating. Microscopic observation showed that the bonding between the Ni3P metal matrix and the Al2O3 ceramic particles was compact.
    Matched MeSH terms: Sulfates
  13. Nur Akma Mahat, Norinsan Kamil Othman, Mohd Nazri Idris, Fathul Karim Sahrani
    Sains Malaysiana, 2015;44:1587-1591.
    The efficiency of cetyltrimethylammonium bromide (CTAB) to reduce the activity of consortium bacteria consisting of
    sulphate-reducing bacteria (C-SRB) has been investigated on variable concentration by weight loss test, potentiodynamic
    polarization and diffusion disk methods. C-SRB was isolated from tropical crude oil of Malaysian offshore. Biofilm analysis
    was also evaluated by variable pressure scanning electron microscopy (VPSEM). Weight loss and potentiodynamic
    polarization analyses showed that CTAB is able to inhibit the biocorrosion process and their inhibition efficiency had
    reached to 85 and 65% at 300 ppm CTAB, respectively. Increasing of CTAB efficiency as a function of concentration was
    also supported by diffusion disk analysis. Biofilm analysis showed that less of C-SRB and their metabolic by-product had
    been observed. It was concluded that CTAB was able to reduce the C-SRB activity and prevent biocorrosion process on
    carbon steel surface.
    Matched MeSH terms: Sulfates
  14. Noor Hashim, N.H., Maulidiani, M., Mediani, A., Abas, F.
    MyJurnal
    Persicaria hydropiper, locally known as kesum, is an herb belongs to the family Polygonaceae. It has been used widely in many countries as food flavoring and possesses a wide range of medicinal values. The total phenolic content and xanthine oxidase inhibitory activity of the methanolic extract of P. hydropiper and fractions were determined spectrophotometrically. The butanol fraction was found to contain high phenolic content and was able to inhibit xanthine oxidase activity. Online profiling using liquid chromatography coupled with electrospray ionisation spectrometry (LC-ESIMS/MS) has revealed ten constituents in this active fraction. The major components were flavonoid derivatives and flavonoid sulphates, which were confirmed by comparison with an authentic standards as well as their MS/MS fragmentation patterns and UV spectra.
    Matched MeSH terms: Sulfates
  15. Ng KA, Low KH, Tay KS
    Water Environ Res, 2023 Apr;95(4):e10862.
    PMID: 37032435 DOI: 10.1002/wer.10862
    The combination of UV and water-soluble Fe(III) complexes is an effective method for generating Fe(II) in situ for activating advanced oxidation processes. This study explored the potential of Fe(III)-diethylenetriaminepentaacetic acid (Fe(III)-DTPA) and Fe(III)-ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (Fe(III)-EGTA) in activating the UV/persulfate (UV/PS) for sulfamethazine removal. The initial screening showed that Fe(III)-EGTA and Fe(III)-DTPA could significantly improve the rate of sulfamethazine removal. The optimum molar ratios of persulfate to Fe(III)-DTPA and Fe(III)-EGTA were 100:1 and 100:2.5. The predicted percentage of sulfamethazine removal under the optimized conditions, obtained using response surface methodology, was ~99% for both catalysts. The pH range of 6 to 8 did not significantly affect the performance of UV/PS in the removal of sulfamethazine. The percentage sulfamethazine removal in the selected water samples was ranged from 93.6% to 99.6%, agreeing with the predicted value. The performance of both catalysts in activating UV/PS is comparable with that of the frequently used Fe(III)-EDDS. PRACTITIONERS POINTS: The potential of Fe(III)-DTPA and Fe(III)-EGTA in activating UV/persulfate (UV/PS) was explored. Fe(III)-DTPA and Fe(III)-EGTA improved the performance of UV/PS in sulfamethazine removal. Fe(III)-DTPA and Fe(III)-EGTA are effective in catalyzing UV/PS under pH 6 to 8. The performance of Fe(III)-DTPA and Fe(III)-EGTA is comparable with well-studied Fe(III)-EDDS.
    Matched MeSH terms: Sulfates/chemistry
  16. Ng CH, Lim CW, Teoh SG, Fun HK, Usman A, Ng SW
    Inorg Chem, 2002 Jan 14;41(1):2-3.
    PMID: 11782136
    Treatment of vanadium(V) oxide with an ethanol-concentrated sulfuric acid mixture, followed by the addition of an equimolar amount of beta-alanine and sodium hydroxide, and finally raising the pH to 3.9 with sodium carbonate solution, under continuous heating in a water bath and in the presence of air, leads to the polyionic sodium cyclo-[mu(6)-(sulfato-O,O',O'')tris[mu-(beta-alanine-O,O')-mu-oxo]tris(mu-hydroxo-mu-oxo)hexa[oxovanadium(V)]] sulfate tridecahydrate which crystallizes in the monoclinic P2(1)/n space group [a = 9.5192(4), b = 20.1185(9), c = 22.6174(9) A, beta = 97.011(1) degrees; Z = 4]. The crown-shaped polyoxovanadium(V) cluster cation, with carboxylate-bridging amino acid ligands, has an Anderson structure with two unique capping sulfato ligands. Its structural analysis, together with IR, UV-vis, and preliminary data on its solution properties, is presented.
    Matched MeSH terms: Sulfates
  17. Nasir Mohamad, Shariff Halim, Mohd Ekhwan Toriman, Nor Hidayah Abu Bakar, Ahmad Zubaidi A. Latif
    MyJurnal
    Zamzam is holy water believed by Muslim to have remedial power for all kinds of diseases. It contains
    many electrolytes and the concentration of the electrolytes may be affected by the types of container
    used for its storage. This study was carried out to determine the difference in ions concentration of
    Zamzam water stored in plastic and glass containers, and to determine cytotoxicity effects of Zamzam
    water against U-87 cell line (human primary glioblastoma cell line). Ion Chromatography (IC) was used
    to analyze the concentration. The analyzed anions in the Zamzam water include bromide, chloride,
    phosphate, nitrite, nitrate, sulfate and fluoride whereas the cations were ammonium, lithium, potassium,
    sodium, calcium and magnesium. Subsequently, MTT assay was used to determine the cytotoxicity of
    Zamzam water on U-87 cell line. This study reveals that Zamzam water anions and cations
    concentration was not statistically significant neither in plastic nor glass container. In addition, the
    Zamzam water did not cause any toxicity on the U87 cell line. We postulate that types of container do
    not have much influence on the ion concentration of Zamzam water and it is non-toxic on U87 cell line.
    Matched MeSH terms: Sulfates
  18. Muhammad SN, Kusin FM, Md Zahar MS, Mohamat Yusuff F, Halimoon N
    Environ Technol, 2017 Aug;38(16):2003-2012.
    PMID: 27745113 DOI: 10.1080/09593330.2016.1244568
    Passive bioremediation of metal- and sulfate-containing acid mine drainage (AMD) has been investigated in a batch study. Multiple substrates were used in the AMD remediation using spent mushroom compost (SMC), limestone, activated sludge (AS), and woodchips (WC) under anoxic conditions suitable for bacterial sulfate reduction (BSR). Limestones used were of crushed limestone (CLS) and uncrushed limestone, provided at two different ratios in mixed substrates treatment and varied by the proportion of SMC and limestone. The SMC greatly assisted the removals of sulfate and metals and also acted as an essential carbon source for BSR. The mixed substrate composed of 40% CLS, 30% SMC, 20% AS, and 10% WC was found to be effective for metal removal. Mn, Cu, Pb, and Zn were greatly removed (89-100%) in the mixed substrates treatment, while Fe was only removed at 65%. Mn was found to be removed at a greatly higher rate than Fe, suggesting important Mn adsorption onto organic materials, that is, greater sorption affinity to the SMC. Complementary with multiple treatment media was the main mechanism assisting the AMD treatment through microbial metal reduction reactions.
    Matched MeSH terms: Sulfates
  19. Muhamad II, Zulkifli N, Selvakumaran SA, Lazim NAM
    Curr Pharm Des, 2019;25(11):1147-1162.
    PMID: 31258069 DOI: 10.2174/1381612825666190618152133
    BACKGROUND: In recent decades, there has been an increased interest in the utilization of polysaccharides showing biological activity for various novel applications owing to their biocompatibility, biodegradability, non-toxicity, and some specific therapeutic activities. Increasing studies have started in the past few years to develop algal polysaccharides-based biomaterials for various applications.

    METHODS: Saccharide mapping or enzymatic profiling plays a role in quality control of polysaccharides. Whereby, in vitro and in vivo tests as well as toxicity level discriminating polysaccharides biological activities. Extraction and purification methods are performed in obtaining algal derived polysaccharides followed by chromatographic profiles of their active compounds, structural features, physicochemical properties, and reported biological activities.

    RESULTS: Marine algae are capable of synthesizing Glycosaminoglycans (GAGs) and non-GAGs or GAG mimetics such as sulfated glycans. The cell walls of algae are rich in sulfated polysaccharides, including alginate, carrageenan, ulvan and fucoidan. These biopolymers are widely used algal-derived polysaccharides for biological and biomedical applications due to their biocompatibility and availability. They constitute biochemical compounds that have multi-functionalization, therapeutic potential and immunomodulatory abilities, making them promising bioactive products and biomaterials with a wide range of biomedical applications.

    CONCLUSION: Algal-derived polysaccharides with clearly elucidated compositions/structures, identified cellular activities, as well as desirable physical properties have shown the potential that may create new opportunities. They could be maximally exploited to serve as therapeutic tools such as immunoregulatory agents or drug delivery vehicles. Hence, novel strategies could be applied to tailor multi-functionalization of the polysaccharides from algal species with vast biomedical application potentials.

    Matched MeSH terms: Sulfates
  20. Mohd Nazri Idris, Abdul Razak Daud, Nur Akma Mahat, Mohd Hafizuddin Ab Ghani, Norinsan Kamil Othman, Fathul Karim Sahrani
    Sains Malaysiana, 2015;44:1593-1598.
    The performance of pipeline system used in petroleum industry is crucially declined by natural microbial activities and
    demanding extra operational cost. Requirement on high capability of functional substances is attracting worldwide
    research interest. The aim of this paper was to study the effectiveness of benzyltriethylammonium chloride (BTC) on
    reducing the activity of a consortium bacteria consisting of sulfate-reducing bacteria (C-SRB). C-SRB was isolated from
    tropical crude oil and enumeration of this consortium was measured by viable cell count technique. The effectiveness of
    BTC was calculated from potentiodynamic polarization method and biofilm analysis was performed by scanning electron
    microscope. The viable cell count technique indicated that the maximum growth of C-SRB was approximately 160 trillion
    CFU/mL at 7 days incubation period. BTC was capable of reducing biocorrosion activity due to adsorption process and
    mitigating SRB species. Biofilm analysis has proven that C-SRB activity is minimized due to less presence of bacterial
    growth, extracellular polymeric substances and corrosion product. In conclusion, BTC is capable to inhibit C-SRB activity
    on biocorrosion of carbon steel pipeline.
    Matched MeSH terms: Sulfates
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links