METHODS: Blood from 30 patients with primary OSCC and 1:1 age-sex-matched controls was subjected to qPCR and ELISA to detect VEGF-A gene expression and serum level. Tumors of the 30 patients were investigated for VEGF Receptor-2 (VEGFR-2) expression and were analyzed using Image J software version 1.52 for DAB percentage (DAB-P) area and optical density (OD).
RESULTS: VEGF-A relative gene expression among patients was 2.43-fold higher compared to the healthy control group. Well-differentiated had a 1.98-fold increment, while poorly differentiated had a 3.58-fold increment. Serum VEGF-A was significantly elevated among the patients compared to controls (458.7 vs 253.2, p=0.0225). Poorly differentiated had a higher serum VEGF concentration (1262.0±354.7pg/ml) compared with other two. Mean VEGFR-2 DAB-P level in OSCC was 42.41±5.61(p=0.15). Well-differentiated had a DAB-P of 41.20±5.32 while poorly differentiated had DAB-P 46.21±3.78. The mean OD in OSCC was 0.54±0.16. VEGFR-2 OD in well and poorly differentiated OSCC were 0.48±0.12 and 0.68±0.17, respectively.
CONCLUSIONS: VEGF-A gene expression, serum levels, and tissue VEGFR-2 levels correlated linearly with the stage and grade of the tumor. This study justifies the value of VEGF-A as a potential biomarker in OSCC in early detection of OSCC. More studies are needed to accept the use of VEGF-A.
PATIENTS AND METHODS: Materials and methods: Based on autopsy materials, we conducted a morphological study of patients (n = 20) aged 45 to 55 years who were observed in cardiac and neurological hospitals for 5-7 years. We removed kidney, heart and aorta samples from patients. For the study, a histological and immunohistochemical methods were used.
RESULTS: Results and conclusions: Morphological study of vessels endothelium of kidneys, heart and aorta demonstrated that in the majority of observations intima underwentprofound pathological changes, manifested by different degrees of disorganization of endothelial lining and violations of structural and functional organization of the endotheliocytes, subendothelial layer, basal membrane. These pathological processes in all cases had similar features with the development of immune inflammation. Inflammatory infiltration was represented by macrophages, mast cells, plasma cells. Biological mediators of the presented cells can aggravate the damage to endothelial cells. Indirect signs of low ability to restore the structure of the vessel wall and endothelial lining may be a weak expression of the VEGF and bcl-2 vascular endothelial growth factor.
MATERIALS AND METHODS: Adipose stromal cells were cultured in three different types of medium: (i) F12/DMEM (FD) supplemented with 10% FBS from passage 0 (P0) to P6; (ii) FD supplemented with 2% FBS at P6; and (iii) FD supplemented with 2% FBS plus 50 ng/ml of VEGF at P6. Morphological changes and growth rate of ASCs were recorded. Changes in stemness, angiogenic and endogenic genes' expressions were analysed using Real-Time PCR.
RESULTS: Adipose stromal cells changed from fibroblast-like shape when cultured in 10% FBS medium to polygonal when cultured in 2% FBS plus VEGF-supplemented medium. Their growth rate was lower in 2% FBS medium, but increased with addition of VEGF. Real-Time PCR showed that ASCs maintained most of their stemness and angiogenic genes' expression in 10% FBS at P1, P5 and P6, but this increased significantly in 2% FBS at P6. Endogenic genes expression such as PECAM-1, VE chaderin and VEGFR-2 decreased after serial passage in 10% FBS, but increased significantly at P6 in 2% FBS. Addition of VEGF did not cause any significant change in gene expression level.
CONCLUSION: Adipose stromal cells had greater angiogenic potential when cultured in reduced serum conditions. VEGF did not enhance their angiogenic potential in 2% FBS-supplemented medium.
BIOLOGICAL SIGNIFICANCE: Comprehensive venom proteomes of D. russelii from different locales will facilitate better understanding of the geographical variability of the venom in both qualitative and quantitative terms. This is essential to provide scientific basis for the interpretation of differences in the clinical presentation of Russell's viper envenomation. The study revealed a unique venom proteome of the Pakistani D. russelii from the wild (Indus Delta), in which PLA2 predominated (~60% of total venom proteins). The finding unveiled remarkable differences in the venom compositions between the wild (present study) and the captive specimens reported previously. The integration of toxicity tests enabled the correlation of the venom proteome with the envenoming pathophysiology, where the venom showed potent lethality mediated through coagulopathic activity. The Indian VINS Polyvalent Antivenom (VPAV) showed binding activity toward the venom protein antigens; however the immunorecognition of small proteins and PLA2-dominating fractions was low to moderate. Consistently, the antivenom neutralized the toxicity of the wild Pakistani Russell's viper venom at moderate efficacies. Our results suggest that it may be possible to enhance the Indian antivenom potency against the Pakistani viper venom by the inclusion of venoms from a wider geographical range including that from Pakistan into the immunogen formulation.
AIM OF THE STUDY: To investigate the anti-angiogenic mechanism of EC and its anti-tumor effect by suppressing angiogenesis.
MATERIALS AND METHODS: The in vitro anti-angiogenic effect was evaluated using HUVECs model induced by VEGF and zebrafish model in vivo. The influence of the EC on phosphorylation of VEGFR2 and its downstream signaling pathways were evaluated by western blotting assay. Molecule docking technology was conducted to explore the interaction between EC and VEGFR2. SPR assay was used for detecting the binding affinity between EC and VEGFR2. To further investigate the molecular mechanism of EC on anti-angiogenesis, VEGFR2 knockdown in HUVECs and examined the influence of the EC. Anti-tumor activity of EC was evaluated using colony formation assay and apoptosis assay. The inhibitory effect of EC on tumor growth was explored using HT29 colon cancer xenograft model.
RESULTS: EC obviously inhibited proliferation, migration, invasion and tube formation of VEGF-induced HUVECs. EC also induced apoptosis of HUVECs. Moreover, it inhibited the development of vessel formation in zebrafish. Further investigations demonstrated that EC could suppress the phosphorylation of VEGFR2, and its downstream signaling pathways were altered in VEGF-induced HUVECs. EC formed a hydrogen bond to bind with the ATP binding site of the VEGFR2, and EC-VEGFR2 interaction was shown in SPR assay. The suppressive effect of EC on angiogenesis was abrogated after VEGFR2 knockdown in HUVECs. EC inhibited the colon cancer cells colony formation and induced apoptosis. In addition, EC suppressed tumor growth in colon cancer xenograft model, and no detectable hepatotoxicity and nephrotoxicity. In addition, it inhibited the phosphorylation of VEGFR2, and its downstream signal pathways in tumor.
CONCLUSIONS: EC could inhibit tumor growth in colon cancer by suppressing angiogenesis via VEGFR2 signaling pathway, and suggested EC as a promising candidate for colon cancer treatment.