Displaying publications 21 - 40 of 276 in total

Abstract:
Sort:
  1. Ahmad R, Salina M, Mamat MH, Teh AA, Kara M, Rusop M, et al.
    J Nanosci Nanotechnol, 2012 Oct;12(10):8153-7.
    PMID: 23421193
    This paper addresses the growth of nano-structured MgZnO thin films by sol-gel spin coating method which will be used as a template layer to grow carbon nanotubes. The nano-structured MgZnO films were deposited on platinized (100) silicon substrates. In this work, we focused on the effect of aging and Mg content on the film structure and resistivity. Sols with Mg content of 10, 30 and 50 at.% were subjected to aging times of between 3 to 240 hours. Results from scanning (SEM) and field emission scanning electron (FESEM) microscopes and surface profiler (SP) showed that the sol aging increased the thickness, grain size and surface roughness for aging up to 240 hours. The energy dispersive analysis by X-ray (EDAX) confirmed the element of Mg in the ZnO films. The electrical resistivity also increased with aging time as confirmed by four point probe method. The results suggest that appropriate aging of the sol is important for improving physical quality and electrical performance of MgZnO thin films derived from sol-gel technique.
    Matched MeSH terms: X-Rays
  2. Mohamed Abdelrasoul, Jahangir Bin Kamaldin, Jer Ping Ooi, Ahmed Abd El-Fattah, Gihan Kotry, Omneya Ramadan, et al.
    MyJurnal
    Introduction: Melatonin (MEL) loaded alginate-chitosan/beta-tricalcium phosphate (Alg-CH/β-TCP) composite hy- drogel has been formulated as a scaffold for bone regeneration. MEL in the scaffold was anticipated to accelerate bone regeneration. The objective of this study is to observe signs of systemic toxicity and physical changes on surface defected bone for bone regenerative performance of the composite. Methods: The proximal-medial metaphyseal cortex of the left tibia of New Zealand white rabbit was the surgical site of the defect. A total of nine rabbits were randomly allocated to three groups; Group I; implanted with MEL loaded Alg-CH/β-TCP, Group II; Alg-CH/β-TCP and Group III defects were sham control. The rabbits were daily observed to determine systemic toxicity effects by composites. The physical changes to implanted site were observed using digital x-ray radiography and computerized tomography at weeks 0, 2, 4, 6 and 8 of post-implantation. Results: There were no clinical signs of systemic toxicity for all groups of rabbits. Digital radiography did not show adverse effects to the bone. Computerized tomography showed reduction in the area size and depth volume of the implantation site, but accelerated regeneration within the 8 weeks was not significantly different (P
    Matched MeSH terms: X-Rays
  3. Norzaiti Mohd Kenali
    MyJurnal
    This is a novel study of the depth of penetration of bonding agents (BA) by using a
    miniaturised CT-scan, XMT.The Linear Attenuation Coefficient describes the fraction of a beam of
    x-rays or gamma rays that is absorbed or scattered per unit thickness of the absorber. The higher
    the LAC, the more opaque the image is. (Copied from article).
    Matched MeSH terms: X-Rays
  4. Benjamin Ng Han Sim
    MyJurnal
    Phasic ECG voltage changes or electrical alternans is a well-described ECG changes seen in the pericardial effusion and cardiac tamponade. Popular as once believed, this ECG features are no longer considered pathognomonic for pericardial effusion and cardiac tamponade. Electric alternans is observed in pneumothorax especially left-sided pneumothorax. This is a case of a 41-year-old man who presented with chest pain and breathlessness to the emergency department. Assessment in the emergency unit revealed an obvious distress man with a respiratory rate of 60 breaths/min with cyanosis There were generalised rhonchi and prolonged expiratory breath sound appreciated. Chest X-ray (CXR) was done and diagnosed to have left tension pneumothorax. Initial electrocardiogram (ECG) showed electrical alternans in all leads. He was intubated for respiratory distress followed by chest tube insertion. His initial ECG findings resolved after treatment of the tension pneumothorax. Doctors need to evaluate the cardiac findings along with respiratory findings.
    Matched MeSH terms: X-Rays
  5. Sakurama K, Kawai A, Tuan Giam Chuang V, Kanamori Y, Osa M, Taguchi K, et al.
    ACS Omega, 2018 Oct 31;3(10):13790-13797.
    PMID: 30411049 DOI: 10.1021/acsomega.8b02057
    Aripiprazole (ARP), a quinolinone derivative, is an atypical antipsychotic drug that is used in the treatment of schizophrenia. ARP has an extensive distribution and more than 99% of the ARP and dehydro-ARP, the main active metabolite, is bound to plasma proteins. However, information regarding the protein binding of ARP is limited. In this study, we report on a systematic study of the protein binding of ARP. The interaction of ARP and structurally related compounds with human serum albumin (HSA) was examined using equilibrium dialysis, circular dichroism (CD) spectroscopy, fluorescent probe displacement, and an X-ray crystallographic analysis. The binding affinities (nK) for ARP and its main metabolite, dehydro-ARP with HSA were found to be significantly higher than other structurally related compounds. The results of equilibrium dialysis experiments and CD spectral data indicated that the chloro-group linked to the phenylpiperazine ring in the ARP molecule plays a major role in the binding of these ligands to HSA. Furthermore, fluorescent probe displacement results indicated that ARP appears to bind at the site II pocket in subdomain III. A detailed CD spectral analysis suggests that the chloro-group linked to the phenylpiperazine ring may control the geometry of the ARP molecule when binding in the site II binding pocket. X-ray crystallographic analysis of the ARP-HSA complex revealed that the distance between the chlorine atom at the 3-positon of dichlorophenyl-piperazine on ARP and the sulfur atom of Cys392 in HSA was 3.4-3.6 Å. A similar halogen bond interaction has also been observed in the HSA structure complexed with diazepam, which also contains a chloro-group. Thus, the mechanism responsible for the binding of ARP to a protein elucidated here should be relevant for assessing the pharmacokinetics and pharmacodynamics of ARP in various clinical situations and for designing new drugs.
    Matched MeSH terms: X-Rays
  6. Yang X, Wang S, King TL, Kerr CJ, Blanchet C, Svergun D, et al.
    Faraday Discuss, 2016 Jul 18.
    PMID: 27430046
    We have developed a new class of lanthanide nano-clusters that self-assemble using flexible Schiff base ligands. Cd-Ln and Ni-Ln clusters, [Ln8Cd24(L(1))12(OAc)39Cl7(OH)2] (Ln = Nd, Eu), [Eu8Cd24(L(1))12(OAc)44], [Ln8Cd24(L(2))12(OAc)44] (Ln = Nd, Yb, Sm) and [Nd2Ni4(L(3))2(acac)6(NO3)2(OH)2], were constructed using different types of flexible Schiff base ligands. These molecular nano-clusters exhibit anisotropic architectures that differ considerably depending upon the presence of Cd (nano-drum) or Ni (square-like nano-cluster). Structural characterization of the self-assembled particles has been undertaken using crystallography, transmission electron microscopy and small-angle X-ray scattering. Comparison of the metric dimensions of the nano-drums shows a consistency of size using these techniques, suggesting that these molecules may share similar structural features in both solid and solution states. Photophysical properties were studied by excitation of the ligand-centered absorption bands in the solid state and in solution, and using confocal microscopy of microspheres loaded with the compounds. The emissive properties of these compounds vary depending upon the combination of lanthanide and Cd or Ni present in these clusters. The results provide new insights into the construction of novel high-nuclearity nano-clusters and offer a promising foundation for the development of new functional nanomaterials.
    Matched MeSH terms: X-Rays
  7. Lin R, Hu E, Liu M, Wang Y, Cheng H, Wu J, et al.
    Nat Commun, 2019 04 09;10(1):1650.
    PMID: 30967531 DOI: 10.1038/s41467-019-09248-0
    Despite the importance of studying the instability of delithiated cathode materials, it remains difficult to underpin the degradation mechanism of lithium-rich cathode materials due to the complication of combined chemical and structural evolutions. Herein, we use state-of-the-art electron microscopy tools, in conjunction with synchrotron X-ray techniques and first-principle calculations to study a 4d-element-containing compound, Li2Ru0.5Mn0.5O3. We find surprisingly, after cycling, ruthenium segregates out as metallic nanoclusters on the reconstructed surface. Our calculations show that the unexpected ruthenium metal segregation is due to its thermodynamic insolubility in the oxygen deprived surface. This insolubility can disrupt the reconstructed surface, which explains the formation of a porous structure in this material. This work reveals the importance of studying the thermodynamic stability of the reconstructed film on the cathode materials and offers a theoretical guidance for choosing manganese substituting elements in lithium-rich as well as stoichiometric layer-layer compounds for stabilizing the cathode surface.
    Matched MeSH terms: X-Rays
  8. Norinsan Kamil Othman, Solhan Yahya, Denni Asra Awizar
    Sains Malaysiana, 2016;45:1253-1258.
    Anticorrosive properties of nano silicate from paddy husk in salt medium was investigated via weight loss method, Tafel
    polarization and impedance techniques. Prior to the corrosion test, the silica powder was obtained from burning the
    rice husk and extended with a chemical treatment process. The size of silica powder was characterized via zeta sizer and
    showed the amount of micro silica particle appear more than the nano size particle. Nano silica powder was produced
    from the refluxing process of micro silica to enhance the good properties of silica particle. The corrosion inhibition
    efficiency of nano silicate showed good inhibition with increased in inhibitor concentrations. Weight loss test exhibits
    high inhibition as more than 80% even, immersed in the corrosive medium until 14 days. The nano silicate inhibitor
    affected the anodic reaction as showed by Tafel plot analysis. Impedance results also correlated with other test as shown
    by the large size of Nyquist semicircle which represents as high resistance of charge transfer. The surface morphology
    of inhibited specimen showed a smooth surface after nano silicate inhibitor applied in the NaCl medium as observed
    through scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX).
    Matched MeSH terms: X-Rays
  9. Tevan, R., Govindaraju, Mugilan, Jayakumar, Saravanan, Govindan, Natanamurugaraj, Mohd Hasbi Ab. Rahim, Maniam, Gaanty Pragas, et al.
    MyJurnal
    A biological method was employed to synthesize silver nanoparticles through marine diatom Amphora sp. Antimicrobial efficacy test against different pathogenic bacteria were performed through synthesized silver nanoparticles. The physio-chemical properties of synthesized silver nanoparticles were studied using analytical techniques such as UV-Vis spectrophotometer, Field Emission Scanning Electron Microscopy (FESEM), EnergyDispersive X-ray Spectroscopy (EDX) and Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Powder Diffraction (XRD). UV-Vis color intensity study and higher magnification of the Field Emission Scanning Electron Microscopy image showed the synthesized silver nanoparticles were rod shaped with a size range from 42 nm to 46 nm. The synthesized nanoparticles exhibited antibacterial activities in varying magnitudes. About 10 mg/ml of silver nanoparticles were able to inhibit the growth of gram-negative bacteria while gram-positive bacteria were resistant towards similar concentrations of silver nanoparticles.
    Matched MeSH terms: X-Rays
  10. Damulira E, Yusoff MNS, Omar AF, Mohd Taib NH, Ahmed NM
    Appl Radiat Isot, 2021 Apr;170:109622.
    PMID: 33592486 DOI: 10.1016/j.apradiso.2021.109622
    This study compares the real-time dosimetric performance of a bpw34 photodiode (PD) and cold white light-emitting diodes (LEDs) based on diagnostic X-ray-induced signals. Signals were extracted when both the transducers were under identical exposure settings, including source-to-detector distance (SDD), tube voltage (kVp), and current-time product (mAs). The transducers were in a photovoltaic configuration, and black vinyl tape was applied on transducer active areas as a form of optical shielding. X-ray beam spectra and energies were simulated using Matlab-based Spektr functions. Transducer performance analysis was based on signal linearity to mAs and air kerma, and sensitivity dependence on absorbed dose, energy, and dose rate. Bpw34 PD and cold white LED output signals were 84.8% and 85.5% precise, respectively. PD signals were 94.7% linear to mAs, whereas LED signals were 91.9%. PD and LED signal linearity to dose coefficients were 0.9397 and 0.9128, respectively. Both transducers exhibited similar dose and energy dependence. However, cold white LEDs were 0.73% less dose rate dependent than the bpw34 PD. Cold white LEDs demonstrated potential in detecting diagnostic X-rays because their performance was similar to that of the bpw34 PD. Moreover, the cold white LED array's dosimetric response was independent of the heel effect. Although cold white LED signals were lower than bpw34 PD signals, they were quantifiable and electronically amplifiable.
    Matched MeSH terms: X-Rays
  11. Jalilavi M, Zoveidavianpoor M, Attarhamed F, Junin R, Mohsin R
    Sci Rep, 2014;4:3645.
    PMID: 24413195 DOI: 10.1038/srep03645
    Formation of carbonate minerals by CO2 sequestration is a potential means to reduce atmospheric CO2 emissions. Vast amount of alkaline and alkali earth metals exist in silicate minerals that may be carbonated. Laboratory experiments carried out to study the dissolution rate in Pahang Sandstone, Malaysia, by CO2 injection at different flow rate in surficial condition. X-ray Powder Diffraction (XRD), Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDX), Atomic Absorption Spectroscopy (AAS) and weight losses measurement were performed to analyze the solid and liquid phase before and after the reaction process. The weight changes and mineral dissolution caused by CO2 injection for two hours CO2 bubbling and one week' aging were 0.28% and 18.74%, respectively. The average variation of concentrations of alkaline earth metals in solution varied from 22.62% for Ca(2+) to 17.42% for Mg(2+), with in between 16.18% observed for the alkali earth metal, potassium. Analysis of variance (ANOVA) test is performed to determine significant differences of the element concentration, including Ca, Mg, and K, before and after the reaction experiment. Such changes show that the deposition of alkali and alkaline earth metals and the dissolution of required elements in sandstone samples are enhanced by CO2 injection.
    Matched MeSH terms: X-Rays
  12. Nur Farahana Pauzi, Zafri Azran Abdul Majid, Wan Muhamad Nasuha Wan Hussin, Abdul Halim Sapuan, Mohd Zulfaezal Che Azemin
    MyJurnal
    X-ray is produced in form of divergent beam. The beam divergence results to blurring effect that influences image diagnosis. Thus, the blurring effect assessment should be enrolled within the quality control (QC) program of an imaging unit.
    Matched MeSH terms: X-Rays
  13. Sabar Bauk, Abd. Aziz Tajuddin
    MyJurnal
    The linear and the mass attenuation coefficients of Rhizophora spp. wood in the photon energy range of 11.22 - 28.43 keV were determined. This was done by studying the attenuation of x-ray fluorescent (XRF) photons from selenium, molybdenum, silver and tin targets. Both the Kα and Kβ peaks were utilised. The results were compared with theoretical values for average breast tissues for youngage, middle-age and old-age groups calculated by using a XCOM computer programme. The mass attenuation coefficient of Rhizophora spp. was found to be close to that of the calculated young-age breast in this photon energy range.
    Matched MeSH terms: X-Rays
  14. Hussein AM, Sharifai AG, Alia OM, Abualigah L, Almotairi KH, Abujayyab SKM, et al.
    Sci Rep, 2024 Jan 04;14(1):534.
    PMID: 38177156 DOI: 10.1038/s41598-023-47038-3
    The most widely used method for detecting Coronavirus Disease 2019 (COVID-19) is real-time polymerase chain reaction. However, this method has several drawbacks, including high cost, lengthy turnaround time for results, and the potential for false-negative results due to limited sensitivity. To address these issues, additional technologies such as computed tomography (CT) or X-rays have been employed for diagnosing the disease. Chest X-rays are more commonly used than CT scans due to the widespread availability of X-ray machines, lower ionizing radiation, and lower cost of equipment. COVID-19 presents certain radiological biomarkers that can be observed through chest X-rays, making it necessary for radiologists to manually search for these biomarkers. However, this process is time-consuming and prone to errors. Therefore, there is a critical need to develop an automated system for evaluating chest X-rays. Deep learning techniques can be employed to expedite this process. In this study, a deep learning-based method called Custom Convolutional Neural Network (Custom-CNN) is proposed for identifying COVID-19 infection in chest X-rays. The Custom-CNN model consists of eight weighted layers and utilizes strategies like dropout and batch normalization to enhance performance and reduce overfitting. The proposed approach achieved a classification accuracy of 98.19% and aims to accurately classify COVID-19, normal, and pneumonia samples.
    Matched MeSH terms: X-Rays
  15. Mansourvar M, Ismail MA, Herawan T, Raj RG, Kareem SA, Nasaruddin FH
    Comput Math Methods Med, 2013;2013:391626.
    PMID: 24454534 DOI: 10.1155/2013/391626
    Bone age assessment (BAA) of unknown people is one of the most important topics in clinical procedure for evaluation of biological maturity of children. BAA is performed usually by comparing an X-ray of left hand wrist with an atlas of known sample bones. Recently, BAA has gained remarkable ground from academia and medicine. Manual methods of BAA are time-consuming and prone to observer variability. This is a motivation for developing automated methods of BAA. However, there is considerable research on the automated assessment, much of which are still in the experimental stage. This survey provides taxonomy of automated BAA approaches and discusses the challenges. Finally, we present suggestions for future research.
    Matched MeSH terms: X-Rays
  16. Barua PD, Muhammad Gowdh NF, Rahmat K, Ramli N, Ng WL, Chan WY, et al.
    PMID: 34360343 DOI: 10.3390/ijerph18158052
    COVID-19 and pneumonia detection using medical images is a topic of immense interest in medical and healthcare research. Various advanced medical imaging and machine learning techniques have been presented to detect these respiratory disorders accurately. In this work, we have proposed a novel COVID-19 detection system using an exemplar and hybrid fused deep feature generator with X-ray images. The proposed Exemplar COVID-19FclNet9 comprises three basic steps: exemplar deep feature generation, iterative feature selection and classification. The novelty of this work is the feature extraction using three pre-trained convolutional neural networks (CNNs) in the presented feature extraction phase. The common aspects of these pre-trained CNNs are that they have three fully connected layers, and these networks are AlexNet, VGG16 and VGG19. The fully connected layer of these networks is used to generate deep features using an exemplar structure, and a nine-feature generation method is obtained. The loss values of these feature extractors are computed, and the best three extractors are selected. The features of the top three fully connected features are merged. An iterative selector is used to select the most informative features. The chosen features are classified using a support vector machine (SVM) classifier. The proposed COVID-19FclNet9 applied nine deep feature extraction methods by using three deep networks together. The most appropriate deep feature generation model selection and iterative feature selection have been employed to utilise their advantages together. By using these techniques, the image classification ability of the used three deep networks has been improved. The presented model is developed using four X-ray image corpora (DB1, DB2, DB3 and DB4) with two, three and four classes. The proposed Exemplar COVID-19FclNet9 achieved a classification accuracy of 97.60%, 89.96%, 98.84% and 99.64% using the SVM classifier with 10-fold cross-validation for four datasets, respectively. Our developed Exemplar COVID-19FclNet9 model has achieved high classification accuracy for all four databases and may be deployed for clinical application.
    Matched MeSH terms: X-Rays
  17. Baharum NN, Ariffin F, Hanafiah M, Sulaiman SH
    Korean J Fam Med, 2021 Jan;42(1):84-87.
    PMID: 32447880 DOI: 10.4082/kjfm.19.0021
    Avascular necrosis, or osteonecrosis of the femoral head, is a debilitating condition which leads to the destruction of the hip joint due to an interruption in the blood supply to the bony region and is most commonly due to trauma. The case discussed here has been highlighted as it presented as non-traumatic osteonecrosis of the femoral head with an absence of risk factors in a healthy adult male. A 37-year-old male presented with a 4-month history of recurrent left hip pain, which worsened with initiation of movement and weightbearing on the affected side. The patient was overweight but normotensive with a full range of movement of the hips bilaterally. There were no abnormalities detected on initial X-ray images of the left hip. However, due to the persistent pain and sclerotic changes in a subsequent X-ray, a magnetic resonance image of the bilateral hips was obtained, leading to the diagnosis of osteonecrosis of the bilateral femoral heads. Due to the lack of improvement with physiotherapy and analgesia, the patient was subjected to conservative surgery of the symptomatic left hip with concurring evidence of avascular necrosis based on intraoperative anatomical biopsy. This case emphasizes the importance of identifying underlying issues during history taking and physical examination in adults without risk factors. The early diagnosis of osteonecrosis assists in preventing joint collapse and can delay the requirement of joint replacements. High levels of suspicion are necessary to instigate investigation in persistent cases without the presence of risk factors.
    Matched MeSH terms: X-Rays
  18. Matuzahroh N, Fitriani N, Ardiyanti PE, Kuncoro EP, Budiyanto WD, Isnadina DRM, et al.
    Heliyon, 2020 Apr;6(4):e03736.
    PMID: 32280804 DOI: 10.1016/j.heliyon.2020.e03736
    The previous research showed that slow sand filtration (SSF) can remove the total coli by approximately 99% because of the schmutzecke layer in the filter. The presented study aimed to complete the previous research on SSF, especially on the schmuztdecke layer mechanism, to remove total coli. Total coli is a parameter of water quality standard in Indonesia, and the behavior of schmutzdecke affects the total coli removal. In the present study, the raw water from Amprong River was treated using horizontal roughing filter (HRF) and SSF. The variations in SSF rate used were 0.2 and 0.4 m/h. Total coliforms were analyzed using the most probable number test, and schmutzdecke visualization was conducted through scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX). The best coliform concentration in water treated by the combination of HRF and SSF was 4,386 colonies per 100 mL of sample using the filtration rate of 0.2 m/h, and its removal efficiency was 99.60%. However, the quality of water treated by the combination of HRF and SSF did not meet the drinking water quality standard because the removal of total coli must be 100%. The SEM-EDX visualization results in schmutzdecke showed that the average bacteria in the schmutzdecke layer were small, white, opaque, and circular, with entire edge and flat elevation. The Gram test results showed that the schmutzdecke bacteria consisted of Gram-positive and Gram-negative bacteria with basil as the common cell form.
    Matched MeSH terms: X-Rays
  19. Shamsudin R, Abdul Azam F', Abdul Hamid MA, Ismail H
    Materials (Basel), 2017 Oct 17;10(10).
    PMID: 29039743 DOI: 10.3390/ma10101188
    The aim of this study was to prepare β-wollastonite using a green synthesis method (autoclaving technique) without organic solvents and to study its bioactivity. To prepare β-wollastonite, the precursor ratio of CaO:SiO₂ was set at 55:45. This mixture was autoclaved for 8 h and later sintered at 950 °C for 2 h. The chemical composition of the precursors was studied using X-ray fluorescence (XRF), in which rice husk ash consists of 89.5 wt % of SiO₂ in a cristobalite phase and calcined limestone contains 97.2 wt % of CaO. The X-ray diffraction (XRD) patterns after sintering showed that only β-wollastonite was detected as the single phase. To study its bioactivity and degradation properties, β-wollastonite samples were immersed in simulated body fluid (SBF) for various periods of time. Throughout the soaking period, the molar ratio of Ca/P obtained was in the range of 1.19 to 2.24, and the phase detected was amorphous calcium phosphate, which was confirmed by scanning electron microscope with energy dispersive X-ray analysis (SEM/EDX) and XRD. Fourier-transform infrared spectroscopy (FTIR) analysis indicated that the peaks of the calcium and phosphate ions increased when an amorphous calcium phosphate layer was formed on the surface of the β-wollastonite sample. A cell viability and proliferation assay test was performed on the rice husk ash, calcined limestone, and β-wollastonite samples by scanning electron microscope. For heavy metal element evaluation, a metal panel that included As, Cd, Pb, and Hg was selected, and both precursor and β-wollastonite fulfilled the requirement of an American Society for Testing and Materials (ASTM F1538-03) standard specification. Apart from that, a degradation test showed that the loss of mass increased incrementally as a function of soaking period. These results showed that the β-wollastonite materials produced from rice husk ash and limestone possessed good bioactivity, offering potential for biomedical applications.
    Matched MeSH terms: X-Rays
  20. Nur Zazarina Ramly, Nor Muhammad Mahadi, Noorul Aini Sulaiman
    Trop Life Sci Res, 2019;30(2):1-14.
    MyJurnal
    Pencirian enzim ekstraselular protease daripada bakteria Alkalophilic Bacillus lehensis G1 dari Malaysia telah dikaji. Enzim protease yang dirembeskan diuji pada agar susu skim 2%. Keputusan menunjukkan protease ekstraselular mampu mengekalkan aktiviti sehingga suhu 60°C di dalam julat pH yang luas iaitu 3 hingga 11 dengan suhu optimum pada 40°C dan pH optimum pada 7.0. Aktiviti enzim juga diperhatikan akan meningkat dengan penambahan beberapa ion iaitu Mn2+, Fe2+, Cu2+, Mg2+ dan Co2+. Manakala aktiviti protease didapati sedikit direncat dengan kehadiran ion Ca2+, K+ dan Ni2+ dengan baki aktiviti sebanyak 85%, 81% dan 75%. Protease ekstraselular juga didapati serasi dengan beberapa cecair detergen komersial dari Malaysia, yang menunjukkan protease ini boleh dimanfaatkan sebagai pembersih kotoran pada pakaian. Selain itu, potensi kegunaan protease yang dihasilkan oleh B. lehensis G1 ke atas penguraian gelatin dari filem X-ray yang telah digunakan juga telah dilakukan di dalam kajian ini.
    Matched MeSH terms: X-Rays
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links