Displaying publications 21 - 40 of 132 in total

Abstract:
Sort:
  1. Ooi KL, Loh SI, Tan ML, Muhammad TS, Sulaiman SF
    J Ethnopharmacol, 2015 Mar 13;162:55-60.
    PMID: 25554642 DOI: 10.1016/j.jep.2014.12.030
    The juice of the entire fresh herb and infusion of dried sample of Murdannia bracteata are consumed to treat liver cancer and diabetes in Malaysia. However, no scientific evidence of these bioactivities has been reported.
    Matched MeSH terms: alpha-Glucosidases/metabolism
  2. Mohd Bukhari DA, Siddiqui MJ, Shamsudin SH, Rahman MM, So'ad SZM
    J Pharm Bioallied Sci, 2017 Jul-Sep;9(3):164-170.
    PMID: 28979070 DOI: 10.4103/jpbs.JPBS_35_17
    Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs) from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes.
    Matched MeSH terms: alpha-Glucosidases
  3. Kong, C. K., Tan, Y. N., Chye, F. Y., Sit, N. W.
    MyJurnal
    The edible shoots of Dendrocalamus asper (family Poaceae) is an underutilised food. The
    present work was conducted to evaluate the nutritional compositions, biological activities, and
    phytochemical contents of the shoots of D. asper obtained from different regions of Malaysia,
    Peninsular (DP) and East Malaysia (DS). The nutritional analysis was conducted using the
    Official Methods of Analysis of the AOAC International. All minerals were quantified using
    an inductively coupled plasma-mass spectrometer, except for potassium which was measured
    using a flame atomic absorption spectrometer. Total phenolic content (TPC) was determined
    using the Folin-Ciocalteu method. Antibacterial and antifungal activities were assayed using
    a colourimetric broth microdilution method, while antioxidant activity was tested using DPPH
    radical scavenging activity, ferric-reducing antioxidant power, and cellular antioxidant activity (CAA) assays. Enzyme inhibitory activities were examined using α-amylase and α-glucosidase. Both bamboo shoots (boiled at 100°C for 20 min) were high in moisture (> 93 g/100 g
    FW), crude protein (> 21 g/100 g DW), and crude fibre contents (> 9 g/100 g DW), but low in
    fat content (< 4 g/100 g DW). Potassium was the most abundant mineral at 205.67 and 203.83
    µg/100 g DW of bamboo shoots of DP and DS, respectively. The extracts (hexane, ethyl
    acetate, ethanol, and water) of both shoots showed stronger antifungal activity than antibacterial activity against selected human pathogens. All extracts of DP shoots demonstrated higher
    CAA in HeLa cells and α-amylase inhibitory activity than that of DS shoots. In contrast, the
    extracts of DS shoots exhibited stronger inhibition on α-glucosidase and contained higher
    TPC than that of DP shoots. The D. asper shoots obtained from the Peninsular Malaysia and
    East Malaysia contained different types of secondary metabolites which account for the differences in the biological activities. In conclusion, D. asper shoots have potential as a nutritional
    and functional food.
    Matched MeSH terms: alpha-Glucosidases
  4. Munawaroh HSH, Pratiwi RN, Gumilar GG, Aisyah S, Rohilah S, Nurjanah A, et al.
    Int J Biol Macromol, 2023 Mar 15;231:123248.
    PMID: 36642356 DOI: 10.1016/j.ijbiomac.2023.123248
    Gelatin hydrogel is widely employed in various fields, however, commercially available gelatin hydrogels are mostly derived from mammalian which has many disadvantages due to the supply and ethical issues. In this study, the properties of hydrogels from fish-derived collagen fabricated with varying Glutaraldehyde (GA) determined. The antidiabetic properties of salmon gelatin (SG) and tilapia gelatin (TG) was also evaluated against α-glucosidase. Glutaraldehyde-crosslinked salmon gelatin and tilapia gelatin were used, and compared with different concentrations of GA by 0.05 %, 0.1 %, and 0.15 %. Water absorbency, swelling, porosity, pore size and water retention of the hydrogels were dependent on the degree of crosslinking. The synthesis of hydrogels was confirmed by FTIR study. Scanning electron microscope (SEM) observation showed that all hydrogels have a porous structure with irregular shapes and heterogeneous morphology. Performance tests showed that gelatin-GA 0.05 % mixture had the best performance. Antidiabetic bioactivity in vitro and in silico tests showed that the active peptides of SG and TG showed a high binding affinity to α-glucosidase enzyme. In conclusion, SG and TG cross-linked GA 0.05 % have the potential as an antidiabetic agent and as a useful option over mammalian-derived gelatin.
    Matched MeSH terms: alpha-Glucosidases
  5. Jamil W, Shaikh J, Yousuf M, Taha M, Khan KM, Shah SAA
    J Biomol Struct Dyn, 2022;40(23):12723-12738.
    PMID: 34514955 DOI: 10.1080/07391102.2021.1975565
    This study reports synthesis of flavone hydrazide Schiff base derivatives with diverse functionalities for the cure of diabetic mellitus and their a-glucosidase inhibitor and in silico studies. In this regard, Flavone derivatives 1-20 has synthesized and characterized by various spectroscopic techniques. These compounds showed significant potential towards a-glucosidase enzyme inhibition activity and found to be many fold better active than the standard Acarbose (IC50 = 39.45 ± 0.11 µM). The IC50values ranges 1.02-38.1 µM. Among these, compounds 1(IC50 = 4.6 ± 0.23 µM), 2(IC50 = 1.02 ± 0.2 µM), 3(IC50 = 7.1 ± 0.11 µM), 4(IC50 = 8.3 ± 0.34 µM), 5(IC50 = 7.4 ± 0.15 µM), 6(IC50 = 8.5 ± 0.27 µM) and 18 (IC50 = 1.09 ± 0.26 µM) showed highest activity. It was revealed that the analogues having -OH substitution have higher activity than their look likes. The molecular docking analysis revealed that these molecules have high potential to interact with the protein molecule and have high ability to bind with the enzyme. Furthermore, in silico pharmacokinetics, physicochemical studies were also performed for these derivatives. The bioavailability radar analysis explored that of all these compounds have excellent bioavailability for five (5) descriptors, however, the sixth descriptor of instauration is slightly increased in all compounds.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: alpha-Glucosidases/chemistry
  6. Anouar el H, Zakaria NS, Alsalme A, Shah SA
    Mini Rev Med Chem, 2015;15(14):1148-58.
    PMID: 26205959
    A natural pentacyclic triterpenoid oleanolic acid 1 and its biotransformed metabolites 2-3 are potential α-glucosidase inhibitors. To elucidate the inhibitory mechanism of compounds 1, 2 and 3 against α-glucosidase, we calculated (i) their electronic and optical properties using DFT and TD-DFT at the B3LYP/6-31G(d) level in gas and IEF-PCM solvent; and (ii) their binding energies to α-glucosidase via docking study. DFT results showed that the α-glucosidase inhibtion is mainly depend on the polarity parameters of the studied compounds. Docking results revealed that the activity increased with binding energies (i.e. the stability of ligand-receptor complex). The specroscopic data of oleanolic acid 1 and its metabolites 2 and 3 are well predicetd for 13C NMR chemical shifts (R2=99%) and 1H NMR chemical shifts (R2=90%); and for (ii) UV/vis spectra. The assignments and interpretation of NMR chemical shifts and bathochromic shift of λMAX absorption bands are discussed.
    Matched MeSH terms: alpha-Glucosidases/metabolism*; alpha-Glucosidases/chemistry
  7. Tariq QU, Malik S, Khan A, Naseer MM, Khan SU, Ashraf A, et al.
    Bioorg Chem, 2019 03;84:372-383.
    PMID: 30530108 DOI: 10.1016/j.bioorg.2018.11.053
    Xanthenone based hydrazone derivatives (5a-n) have been synthesized as potential α-glucosidase inhibitors. All synthesized compounds (5a-n) are characterized by their FTIR, 1H NMR, 13C NMR and HRMS, and in case of 5g also by X-ray crystallographic technique. The compounds unveiled a varying degree of α-glucosidase inhibitory activity when compared with standard acarbose (IC50 = 375.38 ± 0.12 µM). Amongst the series, compound 5l (IC50 = 62.25 ± 0.11 µM) bearing a trifluoromethyl phenyl group is found to be the most active compound. Molecular modelling is performed to establish the binding pattern of the more active compound 5l, which revealed the significance of substitution pattern. The pharmacological properties of molecules are also calculated by MedChem Designer which determines the ADME (absorption, distribution, metabolism, excretion) properties of molecules. The solid state self-assembly of compound 5g is discussed to show the conformation and role of iminoamide moiety in the molecular packing.
    Matched MeSH terms: alpha-Glucosidases/metabolism; alpha-Glucosidases/chemistry*
  8. Ado MA, Abas F, Ismail IS, Ghazali HM, Shaari K
    J Sci Food Agric, 2015 Feb;95(3):635-42.
    PMID: 25048579 DOI: 10.1002/jsfa.6832
    The aim of the current study was (i) to evaluate the bioactive potential of the leaf methanolic extract of Cynometra cauliflora L., along with its respective hexane, dichloromethane, ethyl acetate (EtOAc), n-butanol (n-BuOH) and aqueous fractions, in inhibiting the enzymes α-glucosidase, acetylcholinesterase (AChE) and tyrosinase as well as evaluating their antioxidant activities. (ii) In addition, in view of the limited published information regarding the metabolite profile of C. cauliflora, we further characterized the profiles of the EtOAc and n-BuOH fractions using liquid chromatography-diode array detection-electrospray ionization-tandem mass spectrometry.
    Matched MeSH terms: alpha-Glucosidases/metabolism*
  9. Abbasi MA, Hassan M, Ur-Rehman A, Siddiqui SZ, Hussain G, Shah SAA, et al.
    Comput Biol Chem, 2018 Dec;77:72-86.
    PMID: 30245349 DOI: 10.1016/j.compbiolchem.2018.09.007
    The heterocyclic compounds have been extensively reported for their bioactivity potential. The current research work reports the synthesis of some new multi-functional derivatives of 2-furoic piperazide (1; 1-(2-furoyl)piperazine). The synthesis was initiated by reacting the starting compound 1 with 3,5-dichloro-2-hydroxybenzenesulfonyl chloride (2) in a basic, polar and protic medium to obtain the parent sulfonamide 3 which was then treated with different electrophiles, 4a-g, in a polar and aprotic medium to acquire the designed molecules, 5a-g. These convergent derivatives were evaluated for their inhibitory potential against α-glucosidase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Acarbose was used as a reference standard for α-glucosidase inhibition while eserine for AChE and BChE inhibition. Some of the synthesized compounds were identified as promising inhibitors of these three enzymes and their bioactivity potentials were also supported by molecular docking study. The most active compounds among the synthetic analogues might be helpful in drug discovery and development for the treatment of type 2 diabetes and Alzhiemer's diseases.
    Matched MeSH terms: alpha-Glucosidases/metabolism
  10. Al-Zuaidy MH, Hamid AA, Ismail A, Mohamed S, Abdul Razis AF, Mumtaz MW, et al.
    J Food Sci, 2016 May;81(5):C1080-90.
    PMID: 27074520 DOI: 10.1111/1750-3841.13293
    Diabetes mellitus is normally characterized by chronic hyperglycemia associated with disturbances in the fat, carbohydrate, and protein metabolism. There is an increasing trend of using natural products instead of synthetic agents as alternative therapy for disorders due to their fewer side effects. In this study, antidiabetic and antioxidant activities of different Melicope lunu-ankenda (ML) ethanolic extracts were evaluated using inhibition of α-glucosidase and 2,2-diphenyl-l-picrylhydrazyl (DPPH) radicals scavenging activity, respectively; whereas, proton nuclear magnetic resonance ((1) H NMR) and ultra-high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) techniques were used for metabolite profiling of ML leaf extracts at different concentrations of ethanol and water. Sixty percent of ethanolic ML extract showed highest inhibitory effect against α-glucosidase enzyme (IC50 of 37 μg/mL) and DPPH scavenging activity (IC50 of 48 μg/mL). Antidiabetic effect of ML extracts was also evaluated in vivo and it was found that the high doses (400 mg/Kg BW) of ML extract exhibited high suppression in fasting blood glucose level by 62.75%. The metabolites responsible for variation among ML samples with variable ethanolic levels have been evaluated successfully using (1) H-NMR-based metabolomics. The principal component analysis (PCA) and partial least squares(PLS) analysis scores depicted clear and distinct separations into 4 clusters representing the 4 ethanolic concentrations by PC1 and PC2, with an eigenvalue of 69.9%. Various (1) H-NMR chemical shifts related to the metabolites responsible for sample difference were also ascribed. The main bioactive compounds identified attributing toward the separation included: isorhamnetin, skimmianine, scopoletin, and melicarpinone. Hence, ML may be used as promising medicinal plant for the development of new functional foods, new generation antidiabetic drugs, as a single entity phytomedicine or in combinational therapy.
    Matched MeSH terms: alpha-Glucosidases/analysis; alpha-Glucosidases/metabolism*
  11. Ahda M, Jaswir I, Khatib A, Ahmed QU, Mahfudh N, Ardini YD, et al.
    Sci Rep, 2023 Oct 09;13(1):17012.
    PMID: 37813908 DOI: 10.1038/s41598-023-43251-2
    Ocimum aristatum, commonly known as O. stamineus, has been widely studied for its potential as an herbal medicine candidate. This research aims to compare the efficacy of water and 100% ethanolic extracts of O. stamineus as α-glucosidase inhibitors and antioxidants, as well as toxicity against zebrafish embryos. Based on the study findings, water extract of O. stamineus leaves exhibited superior inhibition activity against α-glucosidase, ABTS, and DPPH, with IC50 values of approximately 43.623 ± 0.039 µg/mL, 27.556 ± 0.125 µg/mL, and 95.047 ± 1.587 µg/mL, respectively. The major active compounds identified in the extract include fatty acid groups and their derivates such as linoleic acid, α-eleostearic acid, stearic acid, oleanolic acid, and corchorifatty acid F. Phenolic groups such as caffeic acid, rosmarinic acid, 3,4-Dihydroxybenzaldehyde, norfenefrine, caftaric acid, and 2-hydroxyphenylalanine and flavonoids and their derivates including 5,7-Dihydroxychromone, 5,7-Dihydroxy-2,6-dimethyl-4H-chromen-4-one, eupatorin, and others were also identified in the extract. Carboxylic acid groups and triterpenoids such as azelaic acid and asiatic acid were also present. This study found that the water extract of O. stamineus is non-toxic to zebrafish embryos and does not affect the development of zebrafish larvae at concentrations lower than 500 µg/mL. These findings highlight the potential of the water extract of O. stamineus as a valuable herbal medicine candidate, particularly for its potent α-glucosidase inhibition and antioxidant properties, and affirm its safety in zebrafish embryos at tested concentrations.
    Matched MeSH terms: alpha-Glucosidases
  12. Maulana AF, Maksum IP, Sriwidodo S, Rukayadi Y
    J Mol Model, 2024 Apr 18;30(5):136.
    PMID: 38634946 DOI: 10.1007/s00894-024-05934-z
    CONTEXT: Further understanding of the molecular mechanisms is necessary since it is important for designing new drugs. This study aimed to understand the molecular mechanisms involved in the design of drugs that are inhibitors of the α-glucosidase enzyme. This research aims to gain further understanding of the molecular mechanisms underlying antidiabetic drug design. The molecular docking process yielded 4 compounds with the best affinity energy, including γ-Mangostin, 1,6-dimethyl-ester-3-isomangostin, 1,3,6-trimethyl-ester-α-mangostin, and 3,6,7-trimethyl-ester-γ-mangostin. Free energy calculation with molecular mechanics with generalized born and surface area solvation indicated that the 3,6,7-trimethyl-γ-mangostin had a better free energy value compared to acarbose and simulated maltose together with 3,6,7-trimethyl-γ-mangostin compound. Based on the analysis of electrostatic, van der Waals, and intermolecular hydrogen interactions, 3,6,7-trimethyl-γ-mangostin adopts a noncompetitive inhibition mechanism, whereas acarbose adopts a competitive inhibition mechanism. Consequently, 3,6,7-trimethyl-ester-γ-mangostin, which is a derivative of γ-mangostin, can provide better activity in silico with molecular docking approaches and molecular dynamics simulations.

    METHOD: This research commenced with retrieving protein structures from the RCSB database, generating the formation of ligands using the ChemDraw Professional software, conducting molecular docking with the Autodock Vina software, and performing molecular dynamics simulations using the Amber software, along with the evaluation of RMSD values and intermolecular hydrogen bonds. Free energy, electrostatic interactions, and Van der Waals interaction were calculated using MM/GBSA. Acarbose, used as a positive control, and maltose are simulated together with test compound that has the best free energy. The forcefields used for molecular dynamics simulations are ff19SB, gaff2, and tip3p.

    Matched MeSH terms: alpha-Glucosidases*
  13. Zawawi NK, Taha M, Ahmat N, Ismail NH, Wadood A, Rahim F, et al.
    Bioorg Chem, 2015 Dec;63:36-44.
    PMID: 26432614 DOI: 10.1016/j.bioorg.2015.09.004
    Biscoumarin analogs 1-18 have been synthesized, characterized by EI-MS and (1)H NMR and evaluated for α-glucosidase inhibitory potential. All compounds showed variety of α-glucosidase inhibitory potential ranging in between 13.5±0.39 and 104.62±0.3μM when compared with standard acarbose having IC50 value 774.5±1.94μM. The binding interactions of the most active analogs were confirmed through molecular docking. The compounds showed very good interactions with enzyme. All synthesized compounds 1-18 are new. Our synthesized compounds can further be studied to developed lead compounds.
    Matched MeSH terms: alpha-Glucosidases
  14. Solangi M, Kanwal, Mohammed Khan K, Saleem F, Hameed S, Iqbal J, et al.
    Bioorg Med Chem, 2020 Nov 01;28(21):115605.
    PMID: 33065441 DOI: 10.1016/j.bmc.2020.115605
    One of the most prevailing metabolic disorder diabetes mellitus has become the global health issue that has to be addressed and cured. Different marketed drugs have been made available for the treatment of diabetes but there is still a need of introducing new therapeutic agents that are economical and have lesser or no side effects. The current study deals with the synthesis of indole acrylonitriles (3-23) and the evaluation of these compounds for their potential for α-glucosidase inhibition. The structures of these synthetic molecules were deduced by using different spectroscopic techniques. Acarbose (IC50 = 2.91 ± 0.02 μM) was used as standard in this study and the synthetic molecules (3-23) have shown promising α-glucosidase inhibitory activity. Compounds 4, 8, 10, 11, 14, 18, and 21 displayed superior inhibition of α-glucosidase enzyme in the range of (IC50 = 0.53 ± 0.01-1.36 ± 0.04 μM) as compared to the standard acarbose. Compound 10 (IC50 = 0.53 ± 0.01 μM) was the most effective inhibitor of this library and displayed many folds enhanced activity in contrast to the standard. Molecular docking of synthetic compounds was performed to verify the binding interactions of ligand with the active site of enzyme. This study had identified a number of potential α-glucosidase inhibitors that can be used for further research to identify a potent therapeutic agent against diabetes.
    Matched MeSH terms: alpha-Glucosidases
  15. Babatunde O, Hameed S, Salar U, Chigurupati S, Wadood A, Rehman AU, et al.
    Mol Divers, 2021 Mar 01.
    PMID: 33650031 DOI: 10.1007/s11030-021-10196-5
    A variety of dihydroquinazolin-4(1H)-one derivatives (1-37) were synthesized via "one-pot" three-component reaction scheme by treating aniline and different aromatic aldehydes with isatoic anhydride in the presence of acetic acid. Chemical structures of compounds were deduced by different spectroscopic techniques including EI-MS, HREI-MS, 1H-, and 13C-NMR. Compounds were subjected to α-amylase and α-glucosidase inhibitory activities. A number of derivatives exhibited significant to moderate inhibition potential against α-amylase (IC50 = 23.33 ± 0.02-88.65 ± 0.23 μM) and α-glucosidase (IC50 = 25.01 ± 0.12-89.99 ± 0.09 μM) enzymes, respectively. Results were compared with the standard acarbose (IC50 = 17.08 ± 0.07 μM for α-amylase and IC50 = 17.67 ± 0.09 μM for α-glucosidase). Structure-activity relationship (SAR) was rationalized by analyzing the substituents effects on inhibitory potential. Kinetic studies were implemented to find the mode of inhibition by compounds which revealed competitive inhibition for α-amylase and non-competitive inhibition for α-glucosidase. However, in silico study identified several important binding interactions of ligands (synthetic analogues) with the active site of both enzymes.
    Matched MeSH terms: alpha-Glucosidases
  16. Saleem F, Kanwal, Khan KM, Chigurupati S, Solangi M, Nemala AR, et al.
    Bioorg Chem, 2021 01;106:104489.
    PMID: 33272713 DOI: 10.1016/j.bioorg.2020.104489
    Diabetes being a chronic metabolic disorder have attracted the attention of medicinal chemists and biologists. The introduction of new and potential drug candidates for the cure and treatment of diabetes has become a major concern due to its increased prevelance worldwide. In the current study, twenty-seven azachalcone derivatives 3-29 were synthesized and evaluated for their antihyperglycemic activities by inhibiting α-amylase and α-glucosidase enzymes. Five compounds 3 (IC50 = 23.08 ± 0.03 µM), (IC50 = 26.08 ± 0.43 µM), 5 (IC50 = 24.57 ± 0.07 µM), (IC50 = 27.57 ± 0.07 µM), 6 (IC50 = 24.94 ± 0.12 µM), (IC50 = 27.13 ± 0.08 µM), 16 (IC50 = 27.57 ± 0.07 µM), (IC50 = 29.13 ± 0.18 µM), and 28 (IC50 = 26.94 ± 0.12 µM) (IC50 = 27.99 ± 0.09 µM) demonstrated good inhibitory activities against α-amylase and α-glucosidase enzymes, respectively. Acarbose was used as the standard in this study. Structure-activity relationship was established by considering the parent skeleton and different substitutions on aryl ring. The compounds were also subjected for kinetic studies to study their mechanism of action and they showed competitive mode of inhibition against both enzymes. The molecular docking studies have supported the results and showed that these compounds have been involved in various binding interactions within the active site of enzyme.
    Matched MeSH terms: alpha-Glucosidases/metabolism*
  17. Ali F, Khan KM, Salar U, Taha M, Ismail NH, Wadood A, et al.
    Eur J Med Chem, 2017 Sep 29;138:255-272.
    PMID: 28672278 DOI: 10.1016/j.ejmech.2017.06.041
    Acarbose, miglitol, and voglibose are the inhibitors of α-glucosidase enzyme and being clinically used for the management of type-II diabetes mellitus. However, many adverse effects are also associated with them. So, the development of new therapeutic agents is an utmost interest in medicinal chemistry research. Current study is based on the identification of new α-glucosidase inhibitors. For that purpose, hydrazinyl arylthiazole based pyridine derivatives 1-39 were synthesized via two step reaction and fully characterized by spectroscopic techniques EI-MS, HREI-MS, (1)H-, and (13)C NMR. However, stereochemistry of the iminic bond was confirmed by NOESY. All compounds were subjected to in vitro α-glucosidase inhibitory activity and found many folds active (IC50 = 1.40 ± 0.01-236.10 ± 2.20 μM) as compared to the standard acarbose having IC50 value of 856.45 ± 5.60 μM. A limited structure-activity relationship was carried out in order to make a presumption about the substituent's effect on inhibitory activity which predicted that substituents of more negative inductive effect played important role in the activity as compared to the substituents of less negative inductive effect. However, in order to have a good understanding of ligand enzyme interactions, molecular docking study was also conducted. In silico study was confirmed that substituents like halogens (Cl) and nitro (NO2) which have negative inductive effect were found to make important interactions with active site residues.
    Matched MeSH terms: alpha-Glucosidases/metabolism*
  18. Koh WY, Utra U, Ahmad R, Rather IA, Park YH
    Food Sci Biotechnol, 2018 Oct;27(5):1369-1376.
    PMID: 30319846 DOI: 10.1007/s10068-018-0360-y
    A total of eight strains of lactic acid bacteria were isolated from water kefir grains and assessed for their in vitro α-glucosidase inhibitory activity. Lactobacillus mali K8 demonstrated significantly higher inhibition as compared to the other strains, thus was selected for in vitro probiotic potential characterization, antibiotic resistance, hemolytic activity and adaptation to pumpkin fruit puree. L. mali K8 demonstrated tolerance to pH 2.5 and resisted the damaging effects of bile salts, pepsin and pancreatin, comparable to that of Lactobacillus rhamnosus GG ATCC 53103 (reference strain). Lack of hemolytic activity and susceptibility to the five standard antibiotics indicated the safety of the K8 strain. This strain showed singular properties to be used as starters in the pumpkin fruit puree fermentation. These preliminary in vitro tests indicated the safety and functionality of the K8 strain and its potential as a probiotic candidate.
    Matched MeSH terms: alpha-Glucosidases
  19. Vyas K, Prabaker S, Prabhu D, Sakthivelu M, Rajamanikandan S, Velusamy P, et al.
    Int J Biol Macromol, 2024 Feb;259(Pt 1):129222.
    PMID: 38185307 DOI: 10.1016/j.ijbiomac.2024.129222
    The substantial nutritional content and diversified biological activity of plant-based nutraceuticals are due to polyphenolic chemicals. These chemicals are important and well-studied plant secondary metabolites. Their protein interactions are extensively studied. This relationship is crucial for the logical development of functional food and for enhancing the availability and usefulness of polyphenols. This study highlights the influence of protein types and polyphenols on the interaction, where the chemical bindings predominantly consist of hydrophobic interactions and hydrogen bonds. The interaction between polyphenolic compounds (PCs) and digestive enzymes concerning their inhibitory activity has not been fully studied. Therefore, we have examined the interaction of four digestive enzymes (α-amylase, pepsin, trypsin, and α-chymotrypsin) with four PCs (curcumin, diosmin, morin, and 2',3',4'-trihydroxychalcone) through in silico and in vitro approaches. In vitro plate assays, enzyme kinetics, spectroscopic assays, molecular docking, and simulations were performed. We observed all these PCs have significant docking scores and preferable interaction with the active site of the digestive enzymes, resulting in the reduction of enzyme activity. The enzyme-substrate binding mechanism was determined using the Lineweaver Burk plot, indicating that the inhibition occurred competitively. Among four PCs diosmin and morin has the highest interaction energy over digestive enzymes with IC50 value of 1.13 ± 0.0047 and 1.086 ± 0.0131 μM. Kinetic studies show that selected PCs inhibited pepsin, trypsin, and chymotrypsin competitively and inhibited amylase in a non-competitive manner, especially by 2',3',4'-trihydroxychalcone. This study offers insights into the mechanisms by which the selected PCs inhibit the enzymes and has the potential to enhance the application of curcumin, diosmin, morin, and 2',3',4'-trihydroxychalcone as natural inhibitors of digestive enzymes.
    Matched MeSH terms: alpha-Glucosidases/metabolism
  20. Sulaiman SF, Ooi KL
    J Agric Food Chem, 2014 Oct 1;62(39):9576-85.
    PMID: 25198055 DOI: 10.1021/jf502912t
    The present study compared pH, total soluble solids, vitamin C, and total phenolic contents, antioxidant activities, and α-glucosidase inhibitory activities of 40 fresh juices. The juice of Baccaurea polyneura showed the highest yield (74.17 ± 1.44%) and total soluble solids (32.83 ± 0.27 °Brix). The highest and lowest pH values were respectively measured from the juices of Dimocarpus longan (6.87 ± 0.01) and Averrhoa bilimbi (1.67 ± 0.67). The juice of Psidium guajava gave the highest total phenolic (857.24 ± 12.65 μg GAE/g sample) and vitamin C contents (590.31 ± 7.44 μg AAE/g sample). The juice of Phyllanthus acidus with moderate contents of total phenolics and vitamin C was found to exhibit the greatest scavenging (613.71 ± 2.59 μg VCEAC/g sample), reducing (2784.89 ± 3.93 μg TEAC/g sample), and α-glucosidase inhibitory activities (95.37 ± 0.15%). The juice of Barringtonia racemosa was ranked second in the activities and total phenolic content. Gallic and ellagic acids, which were quantified as the major phenolics of the respective juices, are suggested to be the main contributors to the antioxidant activities. The α-glucosidase inhibitory activity of the juices could be derived from myricetin and quercetin (that were previously reported as potent α-glucosidase inhibitors) in the hydrolyzed juice extracts. The juice of Syzygium samarangense, which was found to be highest in metal chelating activity (82.28 ± 0.10%), also was found to have these phenolics.
    Matched MeSH terms: alpha-Glucosidases/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links