Displaying publications 21 - 40 of 43 in total

Abstract:
Sort:
  1. Ong RM, Luddin N, Ahmed HM, Omar NS
    Singapore Dent J, 2012 Dec;33(1):19-23.
    PMID: 23739319 DOI: 10.1016/j.sdj.2012.11.001
    The aim of this study was to compare the cytotoxicity of accelerated-set white MTA (AWMTA) and accelerated-set Malaysian white PC (AMWPC) on stem cells from human exfoliated deciduous teeth (SHED). The test materials were introduced into paraffin wax moulds after mixing with calcium chloride dihydrate and sterile distilled water. Subsequently, the set cement specimens were sterilized, incubated in a prepared Dulbecco's modified Eagle medium (DMEM) for seven days. The biomarker CD166 was used for characterization of SHED using flow cytometry. The material extracts were diluted at five different concentrations and incubated for 72h with SHED. The cell viability was evaluated using Dimethylthiazol diphenyltetrazolium bromide (MTT) assay, and the data was analysed using Mann-Whitney test (P<0.05). The results showed that AWMTA revealed significantly greater cell viability at 25 and 12.5mg/ml concentrations (P<0.05). Concomitantly, AMWPC exhibited greater cell viability at concentrations <12.5mg/ml and the results were significant at 1.563mg/ml (P<0.05). Both materials demonstrated moderate cytotoxicity at 25mg/ml and slight cytotoxicity at 6.25 and 3.125mg/ml. At 1.563mg/ml, no cytotoxic activity was merely observed with AMWPC. In conclusion, AMWPC exhibited favourable and comparable cell viability to that of AWMTA, and has the potential to be used as an alternative and less costly material in dental applications.
    Matched MeSH terms: Aluminum Compounds
  2. Ahmad R, Abdullah MMAB, Ibrahim WMW, Hussin K, Ahmad Zaidi FH, Chaiprapa J, et al.
    Materials (Basel), 2021 Feb 25;14(5).
    PMID: 33669116 DOI: 10.3390/ma14051077
    The primary motivation of developing ceramic materials using geopolymer method is to minimize the reliance on high sintering temperatures. The ultra-high molecular weight polyethylene (UHMWPE) was added as binder and reinforces the nepheline ceramics based geopolymer. The samples were sintered at 900 °C, 1000 °C, 1100 °C, and 1200 °C to elucidate the influence of sintering on the physical and microstructural properties. The results indicated that a maximum flexural strength of 92 MPa is attainable once the samples are used to be sintered at 1200 °C. It was also determined that the density, porosity, volumetric shrinkage, and water absorption of the samples also affected by the sintering due to the change of microstructure and crystallinity. The IR spectra reveal that the band at around 1400 cm-1 becomes weak, indicating that sodium carbonate decomposed and began to react with the silica and alumina released from gels to form nepheline phases. The sintering process influence in the development of the final microstructure thus improving the properties of the ceramic materials.
    Matched MeSH terms: Aluminum Compounds
  3. Al-Haddad AY, Kacharaju KR, Haw LY, Yee TC, Rajantheran K, Mun CS, et al.
    J Contemp Dent Pract, 2020 Nov 01;21(11):1218-1221.
    PMID: 33850066
    AIM: This study aimed to evaluate the effect of the prior application of intracanal medicaments on the bond strength of OrthoMTA (mineral trioxide aggregate) and iRoot SP to the root dentin.

    MATERIALS AND METHODS: Thirty single-rooted mandibular premolars were standardized and prepared using ProTaper rotary files. The specimens were divided into a control group and two experimental groups receiving Diapex and Odontopaste medicament, either filled with iRoot SP or OrthoMTA, for 1 week. Each root was sectioned transversally, and the push-out bond strength and failure modes were evaluated. The data were analyzed using Kruskal Wallis and Mann-Whitney U post hoc test.

    RESULTS: There was no significant difference between the bond strength of iRoot SP and OrthoMTA without medicaments and with the prior placement of Diapex (p value > 0.05). However, iRoot SP showed significantly higher bond strength with the prior placement of Odontopaste (p value < 0.05). Also, there was no association between bond strength of OrthoMTA with or without intracanal medicament (p value > 0.05) and between failure mode and root filling materials (p value > 0.05). The prominent failure mode for all groups was cohesive.

    CONCLUSION: Prior application of Diapex has no effect on the bond strength of iRoot SP and OrthoMTA. However, Odontopaste improved the bond strength of iRoot SP.

    CLINICAL SIGNIFICANCE: Dislodgment resistance of root canal filling from root dentin could be an indicator of the durability and prognosis of endodontic treated teeth.

    Matched MeSH terms: Aluminum Compounds
  4. Islam R, Toida Y, Chen F, Tanaka T, Inoue S, Kitamura T, et al.
    Int Endod J, 2021 Oct;54(10):1902-1914.
    PMID: 34096634 DOI: 10.1111/iej.13587
    AIM: To evaluate the dental pulp response to a novel mineral trioxide aggregate containing phosphorylated pullulan (MTAPPL) in rats after direct pulp capping.

    METHODS: Ninety-six cavities were prepared in the maxillary first molars of 56 male Wistar rats. The dental pulps were intentionally exposed and randomly divided into four groups according to the application of pulp capping materials: MTAPPL; phosphorylated pullulan (PPL); a conventional MTA (Nex-Cem MTA, NCMTA; positive control); and Super-Bond (SB; negative control). All cavities were restored with SB and observed for pulpal responses at 1-, 3-, 7- and 28-day intervals using a histological scoring system. Statistical analysis was performed using Kruskal-Wallis and Mann-Whitney U-test with Bonferroni's correction, and the level of significance was set at 0.05. DMP1 and CD34 antigen were used to evaluate odontoblast differentiation and pulpal vascularization, respectively.

    RESULTS: On day 1, mild inflammatory cells were present in MTAPPL and NCMTA groups; fewer inflammatory cells were present in the PPL, whereas SB was associated with a mild-to-moderate inflammatory response. A significant difference was observed between PPL and SB (p  .05). SB exhibited incomplete mineralized tissue barriers, significantly different from NCMTA, MTAPPL and PPL (p 

    Matched MeSH terms: Aluminum Compounds
  5. Affendi, A.F., Hasmaliza, M., Srimala, S.
    MyJurnal
    In these studies, cordierite was mechanically synthesized after a sol-gel process. The effect of milling time of cordierite was investigated. Aluminium nitrate nonahydrate, magnesium nitrate hexahydrate and tetraethylorthosilicate (TEOS) were used as starting materials. Gels obtained were mechanically activated in planetary ball mill by at 300rpm grinding speed and grinding time (15min, 30min, 45min and 60min). Powders produced were characterized by X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-Ray (EDX). XRD analysis proved that α-cordierite was formed at lower temperature (1200°C) as compliment to without grinding, whereby it is formed at1300°C. FESEM analysis shows the size of the cordierite were in submicron scale. EDX analysis proved that magnesium, aluminium, silicon and oxygen are elements existed in cordierite.
    Matched MeSH terms: Aluminum Compounds
  6. Tan, K.P., Khoo, H.E., Azrina, A.
    MyJurnal
    This study aimed to determine and compare antioxidant components and antioxidant capacity in different parts (skin, pulp, mace and seed) of nutmeg. Freeze dried samples were extracted using 80% methanol, while Folin-Ciocalteu assay was employed to determine total phenolic content, aluminium chloride assay was applied to determine total flavonoid content and ascorbic acid was assessed by titrimetric method. Antioxidant activities were evaluated by ferric reducing antioxidant power and trolox equivalent antioxidant capacity (TEAC) assays. Results revealed that nutmeg seed contained the highest TPC followed by mace, skin and pulp. Similar observation was also found for TFC. The highest ascorbic acid content was found in nutmeg mace, while the lowest was in its pulp. For antioxidant activity, nutmeg seed possessed the highest FRAP and TEAC values, while nutmeg pulp had the lowest as compared to other parts. Phenolic compounds in nutmeg samples have exhibited strong correlation with antioxidant capacity. Therefore, nutmeg is a potential functional food with high antioxidants, especially nutmeg seed. Phenolic compounds in nutmeg samples have exhibited strong correlation with antioxidant capacity. Therefore, nutmeg is a potential functional food with high antioxidants, especially nutmeg seed.
    Matched MeSH terms: Aluminum Compounds
  7. Hutagalung, Sabar D., Woon, Wu S., Khatijah A. Yaacob, Lockman, Zainovia
    MyJurnal
    P-type transparent conductive oxide of copper aluminum oxide (CuAlO2) thin films were prepared by using sol-gel method with nitrate solutions as starting precursor. Copper nitrate and aluminum nitrate were selected as raw materials that provide the copper and aluminum source. The CuAlO2 thin films were deposited on pre-cleaned silicon substrate by spin-coating technique. To study of phase formation of CuAlO2, as prepared sample was dried and subjected to heat treatment at various temperatures. The heat-treated samples were characterized by x-ray diffraction (XRD) and energy dispersive x-ray (EDX). From XRD analysis result found that CuAlO2 phase was formed after annealing at 1100 o C for 4 hrs. EDX result of annealed sample at 1100 o C shows composition of Cu and Al that indicate the possibility of forming CuAlO2.
    Matched MeSH terms: Aluminum Compounds
  8. Rajan, S., Awang, H., Pooi, A.H., Hassan, H., Devi, S.
    Ann Dent, 2008;15(1):5-10.
    MyJurnal
    Objective: An in vitro assessment of MG-63 human osteosarcoma cells' alkaline phosphatase (ALP) activity when in contact with calcium hydroxide powder (CH), paste (CHP) and grey mineral trioxide aggregate (MTA). Methods: MG-63 cells were seeded to the three selected materials for durations of 0.25, 0.5, 1, 24, 48 and 72 hours. BCIP-NBT assay was used and ALP activity quantified using ELISA reader at 410 nm. Results: The overall analysis for ALP activity indicated significant interaction between test materials and control (maintenance medium). Subsequently, the test materials were paired and analysed for initial (0.25, 0.5, 1 hour) and delayed response (24, 48 and 72 hours). During the initial response, CH exhibited an increased ALP activity compared to MTA. This interaction was not dependant on duration. The delayed response exhibited elevated ALP activity with CHP when compared to MTA and CH. The interaction of CHP was dependant on duration. Conclusion: All three materials exhibited increased ALP activity.
    Matched MeSH terms: Aluminum Compounds
  9. Abbas, F.M.A., Foroogh, B., Liong, M.T., Azhar, M.E.
    MyJurnal
    Four types of soft dates (SD), three types of semi-dried dates (SDD) and one type of dried dates (DD) were used in this study. The antioxidant activities were assessed using TEAC method (ABTS assay) and the ferric reducing/antioxidant power method (FRAP assay), while total phenolic content (TPC) and total flavonoid content (TFC) were measured using Folin-Ciocalteau and aluminum chloride colorimetric methods. Multivariate analysis of variance (MANOVA), discriminant analysis (DA) and principal component analysis (PCA) were used to analyze the data. MANOVA showed a strong significant difference between the eight types of dates. DA identified the relative contribution of each parameter in distinguishing the dates. DA also identified two functions responsible for discriminating the dates and showed the difference between different types of dates. The first function distinguished DD from other types of dates, whilst the second function discriminated SD and SDD, affording 100% correct assignation. PCA identified only one component responsible for explaining 98.85% of the total variance in antioxidant data. It is suggested that the TEAC method and the quantitative determination of TPC and TFC was suitable for differentiation of dates and quality control.
    Matched MeSH terms: Aluminum Compounds
  10. Snigdha NTS, Kamarudin A, Baharin F, Ghani NRNA, Bin Yhaya MF, Ahmad WMAW, et al.
    BMC Oral Health, 2023 Jul 08;23(1):462.
    PMID: 37420224 DOI: 10.1186/s12903-023-03129-1
    OBJECTIVE: To compare the sealing ability and marginal adaptation of three calcium silicate-based cement (Biodentine, Pro root MTA, MTA Angelus) using a bacterial leakage model and scanning electron microscope (SEM).

    METHODS: Recently extracted lower first premolars were randomly categorized into three experimental groups (n = 15 samples), positive control (n = 5 samples), and negative control group (n = 5 sample). Samples from the experimental groups and positive control group were subject to cavity Class I occlusal preparation followed by modified coronal pulpotomy. Different types of bioceramic dressing material were placed in 3 mm thickness accordingly, group 1 (Biodentine), group 2 (MTA Angelus), and group 3 (ProRoot MTA). No dressing material was placed in the positive control group (group 4). All samples were placed in the incubator for 24 h at 37℃, 100% humidity, for the materials to be completely set. The final restoration was placed using the Z350 resin composite. A double layer of nail varnish was applied over all the sample surfaces except the occlusal site. Whereas the samples' surfaces in the negative control, were completely covered. A 3 mm length was measured from the root apex of the samples from each group, before proceeding with the resection. The bacterial leakage test was performed using Enterococcus faecalis TCC 23,125, and a sample from each experimental group was randomly chosen for SEM. Data analysis was conducted under the One-way ANOVA test, completed by Tukey's post hoc test.

    RESULTS: There is a significant difference in sealing ability and marginal adaptation between the groups. (p 

    Matched MeSH terms: Aluminum Compounds
  11. Khairil M, Burslem DFRP
    Tree Physiol, 2018 11 01;38(11):1752-1760.
    PMID: 30137635 DOI: 10.1093/treephys/tpy082
    Aluminium (Al) accumulation is a common trait expressed in at least 60 plant families and particularly prevalent in tropical woody plants. However, the functional significance and genetic or physiological controls on Al accumulation are currently unknown. We tested the hypothesis that differential expression of Al accumulation among wild populations of the Al-accumulating tropical shrub Melastoma malabathricum L. is associated with habitat-related variation in total and exchangeable soil Al concentrations. Mature leaves and seeds were sampled from 20 populations of M. malabathricum growing in six habitats across Peninsular Malaysia, and soil was collected from each site. The seeds were grown in hydroponic solutions comprising 50% Hoagland's solution amended with Al in the form of 1.0 mM AlCl3 to test the hypothesis that differential expression of foliar Al accumulation is an inherited trait. Foliar Al concentrations varied significantly among populations, but were not consistently different among plants growing in different habitats and showed no relationship to total or exchangeable Al concentrations in soils collected at the 20 sites. Mean foliar Al concentration in wild plants was positively correlated with foliar calcium (Ca) concentrations, and with total soil nitrogen (N), Ca and magnesium (Mg) concentrations, across the 20 populations, and Al addition increased foliar concentrations of phosphorus, Ca, Mg and potassium in seedlings. The differential expression of Al accumulation in M. malabathricum populations is uncoupled to local variation in soil Al concentrations, but may be sensitive to local soil-related variation in the availability of other macro-nutrients, in particular N, Ca and Mg. Further research on the factors controlling Al uptake should focus on the plasticity of this trait within populations of Al accumulators and interactions with micro-habitat variation in the availability of the macronutrient cations.
    Matched MeSH terms: Aluminum Compounds
  12. Abdullah D, Eziana Hussein F, Abd Ghani H
    Iran Endod J, 2017;12(2):257-260.
    PMID: 28512497 DOI: 10.22037/iej.2017.50
    This case report describes the endodontic treatment of an idiopathic perforated internal root resorption. A 24-year-old male Malay patient presented with internal root resorption of two of his anterior teeth. The medical history was non-contributory and he had no history of traumatic injury or orthodontic treatment. Cone-beam computed tomography (CBCT) determined the nature, location and severity of the resorptive lesion. Non-surgical root canal treatment of tooth #22 and combined non-surgical and surgical approach for tooth #11 were carried out using mineral trioxide aggregate (MTA) as the filling material. The clinical and radiographic examination three years after completion of treatment revealed evidences of periapical healing. The appropriate diagnosis and the treatment of internal root resorption allowed good healing of these lesions and maintained the tooth in function for as long as possible.
    Matched MeSH terms: Aluminum Compounds
  13. Thenapakiam S, Kumar DG, Pushpamalar J, Saravanan M
    Carbohydr Polym, 2013 Apr 15;94(1):356-63.
    PMID: 23544549 DOI: 10.1016/j.carbpol.2013.01.004
    The carboxymethyl sago pulp (CMSP) with a degree of substitution of 0.4% was synthesized from sago waste. The CMSP beads with an average diameter of 3.1-4.8 mm were formed by aluminium chloride gelation as well as further cross-linked by irradiation. To evaluate colon targeted release, a model drug, 5-aminosalicylic acid (5-ASA) was encapsulated in CMSP beads. Fourier-transform infrared spectroscopy and X-ray diffraction studies indicated intact and amorphous nature of entrapped drug. A pH dependent drug release was observed, and about 90% of the drug was released only at pH 7.4 over 9 h. Irradiated beads were resisted the drug release in an acidic environment at a higher extent than non-irradiated beads. The drug release from 6% (w/w) of 5-ASA loaded bead followed zero order, whereas, 15 and 22% loaded beads followed first order. The release exponent n value suggests non-fickian transport of 5-ASA from the beads.
    Matched MeSH terms: Aluminum Compounds/chemistry*
  14. Pratima B, Chandan GD, Nidhi T, Nitish I, Sankriti M, Nagaveni S, et al.
    J Indian Soc Pedod Prev Dent, 2018 9 25;36(3):308-314.
    PMID: 30246755 DOI: 10.4103/JISPPD.JISPPD_1132_17
    Aim: The present study is an attempt to compare and evaluate postoperative assessment of diode laser zinc oxide eugenol (ZOE) pulpotomy and diode laser mineral trioxide aggregate (MTA) pulpotomy procedures in children.

    Materials and Methods: Forty carious primary molars indicated for pulpotomy within the age group of 4-9 years were selected and divided into two groups of 20 each using simple randomization, Group 1: Diode laser MTA and Group 2: Diode laser ZOE pulpotomy. The teeth were evaluated clinically for 1 year at 3, 6, and 12 months interval and radiologically for 6 and 12 months.

    Results: Clinically and radiographically, 100% teeth treated with diode laser MTA and 94% treated with diode laser ZOE were considered successful after 12-month follow-up interval. No significant difference was seen between two groups.

    Conclusion: Despite the success rate, the cost factor of diode laser and MTA could be the limiting factor in its judicious use in pulpotomy procedure.

    Matched MeSH terms: Aluminum Compounds/therapeutic use*
  15. Eili M, Shameli K, Ibrahim NA, Wan Yunus WMZ
    Int J Mol Sci, 2012;13(7):7938-7951.
    PMID: 22942682 DOI: 10.3390/ijms13077938
    Recent environmental problems and societal concerns associated with the disposal of petroleum based plastics throughout the world have triggered renewed efforts to develop new biodegradable products compatible with our environment. This article describes the preparation, characterization and biodegradation study of poly(lactic acid)/layered double hydroxide (PLA/LDH) nanocomposites from PLA and stearate-Zn(3)Al LDH. A solution casting method was used to prepare PLA/stearate-Zn(3)Al LDH nanocomposites. The anionic clay Zn(3)Al LDH was firstly prepared by co-precipitation method from a nitrate salt solution at pH 7.0 and then modified by stearate anions through an ion exchange reaction. This modification increased the basal spacing of the synthetic clay from 8.83 Å to 40.10 Å. The morphology and properties of the prepared PLA/stearate-Zn(3)Al LDH nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TGA), tensile tests as well as biodegradation studies. From the XRD analysis and TEM observation, the stearate-Zn(3)Al LDH lost its ordered stacking-structure and was greatly exfoliated in the PLA matrix. Tensile test results of PLA/stearate-Zn(3)Al LDH nanocomposites showed that the presence of around 1.0-3.0 wt % of the stearate-Zn(3)Al LDH in the PLA drastically improved its elongation at break. The biodegradation studies demonstrated a significant biodegradation rate improvement of PLA in the presence of stearate-Zn(3)Al LDH nanolayers. This effect can be caused by the catalytic role of the stearate groups in the biodegradation mechanism leading to much faster disintegration of nanocomposites than pure PLA.
    Matched MeSH terms: Aluminum Compounds/chemistry*
  16. Chiroma SM, Mohd Moklas MA, Mat Taib CN, Baharuldin MTH, Amon Z
    Biomed Pharmacother, 2018 Jul;103:1602-1608.
    PMID: 29864948 DOI: 10.1016/j.biopha.2018.04.152
    Cognitive impairments and cholinergic dysfunctions have been well reported in old age disorders including Alzheimer's disease (AD). d-galactose (D-gal) has been reported as a senescence agent while aluminium act as a neurotoxic metal, but little is known about their combined effects at different doses. The aim of this study was to establish an animal model with cognitive impairments by comparing the effects of different doses of co-administrated D-gal and aluminium chloride (AlCl3). In this study male albino wistar rats were administered with D-gal 60 mg/kg.bwt intra peritoneally (I.P) injected and AlCl3 (100, 200, or 300 mg/kg.bwt.) was orally administered once daily for 10 consecutive weeks. Performance of the rats were evaluated through behavioural assessments; Morris water maze (MWM) and open field tests (OFT); histopathological examination was performed on the hippocampus; moreover biochemical measurements of acetylcholinesterase (AChE) and hyperphosphorylated tau protein (p-tau) were examined. The results of this experiment on rats treated with D-gal 60 + AlCl3 200 mg/kg.bwt showed near ideal cognitive impairments. The rats exhibited an obvious memory and learning deficits, marked neuronal loss in hippocampus, showed increase in AChE activities and high expression of p-tau within the tissues of the brain. This study concludes that D-gal 60 + AlCl3 200 mg/kg.bwt as the ideal dose for mimicking AD like cognitive impairments in albino wistar rats. It is also crucial to understand the pathogenesis of this neurodegenerative disease and for drug discovery.
    Matched MeSH terms: Aluminum Compounds/administration & dosage; Aluminum Compounds/toxicity*
  17. Gupta G, Chellappan DK, Agarwal M, Ashwathanarayana M, Nammi S, Pabreja K, et al.
    Cent Nerv Syst Agents Med Chem, 2017;17(3):196-200.
    PMID: 27834136 DOI: 10.2174/1871524917666161111095335
    BACKGROUND: Elevation in brain levels of aluminium can be neurotoxic and can cause learning and memory deficiencies. In Chinese medicine, Morus alba is used as a neuroprotective herb. The current study was intended to discover the recuperative effect of morusin against aluminium trichloride (AlCl3)-induced memory impairment in rats along with biochemical mechanism of its protective action.

    METHODS: Memory deficiency was produced by AlCl3 (100 mg/kg; p.o.) in experimental animals. Learning and memory activity was measured using Morris water maze (MWM) test model. Central cholinergic activity was evaluated through the measurement of brain acetylcholinesterase (AChE) activity. In addition to the above, oxidative stress was determined through assessment of brain thiobarbituric acid-reactive species (TBARS) and glutathione (GSH) levels.

    RESULTS: AlCl3 administration prompted significant deficiency of learning and memory in rats, as specified by a noticeable reduction in MWM presentation. AlCl3 administration also produced a significant deterioration in brain AChE action and brain oxidative stress (increase in TBARS and decrease in GSH) levels. Treatment with morusin (5.0 and 10.0 mg/kg, dose orally) significantly overturned AlCl3- induced learning and memory shortages along with diminution of AlCl3-induced rise in brain AChE activity and brain oxidative stress levels.

    CONCLUSION: It may be concluded that morusin exerts a memory-preservative outcome in mental discrepancies of rats feasibly through its various activities.

    Matched MeSH terms: Aluminum Compounds/toxicity*
  18. Thau, Wilson Lym Yon, Henry, Erle Stanley, Janna Ong Abdullah
    Trop Life Sci Res, 2010;21(2):-.
    MyJurnal
    Genetic engineering is a powerful tool for the improvement of plant traits. Despite reported successes in the plant kingdom, this technology has barely scratched the surface of the Melastomataceae family. Limited studies have led to some optimisation of parameters known to affect the transformation efficiency of these plants. The major finding of this study was to optimise the presence of selected enhancers [e.g., monosaccharides (D-glucose, D-galactose and D-fructose), tyrosine, aluminium chloride (AICI3) and ascorbic
    acid] to improve the transformation efficiency of Tibouchina semidecandra. Agrobacterium tumefaciens strain LBA4404 harbouring the disarmed plasmid pCAMBIA1304 was used to transform shoots and nodes of T. semidecandra. Different concentrations of the transformation enhancers were tested by using green fluorescent protein (GFP) as a reporter. The results obtained were based on the percentage of GFP expression, which was observed 14 days post-transformation. A combination of 120 µM galactose and 100
    µM tyrosine supplemented with 600 µM AICI3 in the presence of 15 mg/l ascorbic acid gave the highest percentage of positive transformants for T. semidecandra shoots. Whereas 60 µM galactose and 50 µM tyrosine with 200 µM AICI3 in the presence of 15 mg/l ascorbic acid was optimum for T. semidecandra nodes. The presence of the hygromycin phosphotransferase II (hptII) transgene in the genomic DNA of putative
    T. semidecandra transformants was verified by PCR amplification with specific primers.
    Matched MeSH terms: Aluminum Compounds
  19. Mojani, M.S., Ghasemzadeh, A., Rahmat, A., Loh, S.P., Ramasamy, R.
    MyJurnal
    In current work, the nutritional composition, bioactive compounds, total phenolic contents and anti-oxidant activity of young Malaysian ginger rhizome were investigated. Proximate analysis and high performance liquid chromatography (HPLC) recruited to determine nutritional composition and bioactive compounds. The total flavonoid (TF) and total phenolic contents (TPC) of ginger rhizome were determined by aluminium chloride calorimetric assay and Folin-Ciocalteau reagent, respectively. 2,2’-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method were used to measure antioxidant capacity. The rhizome contained high moisture content and low level of carbohydrate and energy. 6-gingerol was the most abundant component in the selected ginger, and total flavonoid and phenolic content were reported to be 3.66±0.45 mg gallic acid/g and 10.22±0.87 mg quercetin/g of dry weight of rhizome, respectively. The rhizome also showed lower antioxidant activity than controls, with the IC 50 value of 46.5 vs. 15.5 for α-tocopherol and 22 for BHT. The results of this study predicted that the young ginger rhizome originated from Malaysia may exhibit anti-oxidative and anti-inflammatory potentials due to high levels of gingerols, total flavonoid and phenolic compounds and antioxidant capacity.
    Matched MeSH terms: Aluminum Compounds
  20. Azizah Othman, Nor Juwariah Mukhtar, Nurul Syakirin Ismail, Sui Kiat Chang
    MyJurnal
    Water and ethanolic extracts of four Malaysian local herbs, Tenggek burung (Melicope Iunu-ankenda), Kesum (Polygonum minus), Curry leave (Murraya Koenigii) and Salam (Eugenia polyantha) were investigated for their total phenolic content (TPC), total flavonoids content (TFC) and antioxidant activities (AA). Total phenolic content (TPC) of the herbs was determined using Folin-Ciocalteu reagent assay while the total flavonoid content (TFC) was determined based on aluminium chloride-flavonoid assay. The determination of AA was done using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activitiy and β-carotene bleaching assays (BCB). Different extraction solvents significantly affected the TPC, TFC and AA of all herbs studied (p < 0.05). Both Tenggek burung and Kesum showed highest TPC, TFC and AA regardless of extraction solvents compared to Curry leave and Salam. All herbs showed strong positive correlation between TPC and DPPH assay. However, negative and low correlation between TFC and AA were obtained for all herbs studied. This showed that phenolic compounds of certain structures were responsible for the AA of all the herbs in this study. In conclusion, all herbs in this study except curry leave could be inexpensive sources of good natural antioxidants with nutraceutical potential in food industry.
    Matched MeSH terms: Aluminum Compounds
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links