Displaying publications 21 - 40 of 73 in total

Abstract:
Sort:
  1. Daud N, Taha RM
    Pak J Biol Sci, 2008 Apr 01;11(7):1055-8.
    PMID: 18810979
    Intact immature flower buds of African violet (Saintpaulia ionantha H. Wendl.) were used as explant sources for in vitro studies. The effect of exogenous hormones, NAA and BAP on the indirect organogenesis of this species was observed. Callus was formed on the cut end (base) of pedicels of floral buds where they were in contact with the medium. When maintained on the same medium, callus was differentiated into adventitious shoots after 10 weeks in culture. MS media supplemented with 2.0 mg L(-1) NAA and 1.0 mg L(-1) BAP gave the highest number of sterile or vegetative floral buds from the surface of callus of the explants, but these buds failed to develop further. The floral buds were expanded as abnormal flowers. The floral structures were smaller in size compared to intact flowers. Petals (corolla) were white to purple in colour but did not form any reproductive organs, i.e., stamens or pistils. All sterile or vegetative floral buds and abnormal flowers survived for 3 months in culture but failed to reach anthesis.
    Matched MeSH terms: Angiosperms/anatomy & histology; Angiosperms/physiology*
  2. Dyary HO, Arifah AK, Sharma RS, Rasedee A, Mohd-Aspollah MS, Zakaria ZA, et al.
    Trop Biomed, 2014 Mar;31(1):89-96.
    PMID: 24862048 MyJurnal
    Trypanosoma evansi, the causative agent of "surra", infects many species of wild and domestic animals worldwide. In the current study, the aqueous and ethanolic extracts of six medicinal plants, namely, Aquilaria malaccensis, Derris elliptica, Garcinia hombroniana, Goniothalamus umbrosus, Nigella sativa, and Strobilanthes crispus were screened in vitro for activity against T. evansi. The cytotoxic activity of the extracts was evaluated on green monkey kidney (Vero) cells using MTT-cell proliferation assay. The median inhibitory concentrations (IC50) of the extracts ranged between 2.30 and 800.97 μg/ml and the median cytotoxic concentrations (CC50) ranged between 29.10 μg/ml and 14.53 mg/ml. The aqueous extract of G. hombroniana exhibited the highest selectivity index (SI) value of 616.36, followed by A. malaccensis aqueous extract (47.38). Phytochemical screening of the G. hombroniana aqueous extract revealed the presence of flavonoids, phenols, tannins, and saponins. It is demonstrated here that the aqueous extract of G. hombroniana has potential antitrypanosomal activity with a high SI, and may be considered as a potential source for the development of new antitrypanosomal compounds.
    Matched MeSH terms: Angiosperms/chemistry*
  3. Ghasemzadeh A, Jaafar HZ, Rahmat A, Ashkani S
    BMC Complement Altern Med, 2015 Sep 23;15:335.
    PMID: 26399961 DOI: 10.1186/s12906-015-0838-6
    BACKGROUND: Etlingera elatior is a well-known herb in Malaysia with various pharmaceutical properties.

    METHODS: E. elatior flowers grown in three different locations of Malaysia (Kelantan, Pahang and Johor), were investigated for differences in their content of secondary metabolites (total phenolics [TPC], total flavonoids [TFC], and total tannin content [TTC]) as well as for their antioxidant, anticancer, and antibacterial properties. Phenolic acids and flavonoids were isolated and identified using ultra-high performance liquid chromatography (UHPLC). Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used to evaluate the antioxidant activities. The anticancer activity of extracts was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.

    RESULTS: When extracted with various solvents (aqueous and ethanolic), samples from the different locations yielded significantly different results for TPC, TFC, and TTC as well as antioxidant activity. Aqueous extracts of E. elatior flowers collected from Kelantan exhibited the highest values: TPC (618.9 mg/100 g DM), TFC (354.2 mg/100 g DM), TTC (129.5 mg/100 g DM), DPPH (76.4 %), and FRAP (6.88 mM of Fe (II)/g) activity with a half-maximal inhibitory concentration (IC50) of 34.5 μg/mL compared with extracts of flowers collected from the other two locations. The most important phenolic compounds isolated in this study, based on concentration, were: gallic acid > caffeic acid > tannic acid > chlorogenic acid; and the most important flavonoids were: quercetin > apigenin > kaempferol > luteolin > myricetin. Extracts of flowers from Kelantan exhibited potent anticancer activity with a IC50of 173.1 and 196.2 μg/mL against the tumor cell lines MCF-7 and MDA-MB-231 respectively, compared with extracts from Pahang (IC50 = 204.5 and 246.2 μg/mL) and Johor samples (IC50 = 277.1 and 296.7 μg/mL). Extracts of E. elatior flowers also showed antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes, Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa with minimal inhibitory concentrations (MIC) ranging from 30 to >100 μg/mL.

    CONCLUSIONS: In general, therefore, based on the potent antioxidant and anticancer activity of flower extracts, it appears that E. elatior grown in the North-east of Malaysia (Kelantan) is a potential source of therapeutic compounds with anti-cancer activity.

    Matched MeSH terms: Angiosperms/chemistry*
  4. Gnanaraj C, Shah MD, Makki JS, Iqbal M
    Pharm Biol, 2016 Aug;54(8):1420-33.
    PMID: 26810847 DOI: 10.3109/13880209.2015.1104697
    Context The antioxidative properties of plants or plant derivative products are well known for their free radical scavenging effects. Flagellaria indica L. (Flagellariaceae) (FI) is a tropical medicinal plant used by the natives of Sabah as medication for semi-paralysis. Objective This study evaluates the hepatoprotective mechanism of FI against carbon tetrachloride (CCl4)-mediated liver damage. Materials and methods Aqueous extract of FI leaves was orally administered to adult Sprague-Dawley rats once daily for 14 consecutive days at 300, 400, and 500 mg/kg b.w. prior to CCl4 treatment (1.0 mL/kg b.w.) on the 13th and 14th days. Results Total phenolic content in the aqueous extract of FI leaves was 65.88 ± 1.84 mg gallic acid equivalent/g. IC50 value for free radical scavenging activity of FI aqueous extract was reached at the concentration of 400 μg/mL. Biochemical studies show that the aqueous extract of FI was able to prevent the increase in levels of serum transaminases, alanine aminotransferase, and aspartate aminotransferase (38-74% recovery), and malondialdehyde formation (25-87% recovery) in a dose-dependent manner. Immunohistochemical results evidenced the suppression of oxidative stress markers (4-hydroxynonenal and 8-hydroxydeoxyguanosine) and pro-inflammatory markers (tumour necrosis factor-α, interleukin-6, prostaglandin E2). Histopathological and hepatocyte ultrastructural alterations proved that there were protective effects in FI against CCl4-mediated liver injury. Signs of toxicity were not present in rats treated with FI alone (500 mg/kg b.w.). Discussion and conclusion It can be concluded that the presence of phenolic constituents and their antioxidative effects can be credited to the hepatoprotective activity of FI.
    Matched MeSH terms: Angiosperms
  5. Haron NW, Chew MY
    ScientificWorldJournal, 2012;2012:234820.
    PMID: 22619629 DOI: 10.1100/2012/234820
    The carnivorous Utricularia (Lentibulariaceae) is a small herb of multifarious wet habitats worldwide. Eleven of the 14 Peninsular Malaysian species range into the mountains. Distribution, disturbance adaptability and collection frequency were used to formulate their commonness category. Common (U. aurea, U. bifida, and U. minutissima) and fairly common (U. gibba and U. uliginosa) species are mostly lowland plants that ascend to open montane microhabitats, while the fairly common (U. striatula), narrow-range (U. caerulea pink form and U. involvens), rare (U. furcellata and U. scandens), and endemic (U. vitellina) species are restricted to mountainous sites. Common species that colonise dystrophic to oligotrophic man-made sites in late succession could serve as predictors for general health and recovery of wet habitats. Rarer species are often locally abundant, their niches situated around pristine forest edges. When in decline, they indicate the beginning of problems affecting the forest. Utricularia is reportedly nutritious, mildly astringent, and diuretic. Preadapted to nutrient-poor, waterlogged soils, U. bifida is suitable as an alternative for small-scale herb cultivation on low pH, wet poor soils usually deemed not suitable for any crops.
    Matched MeSH terms: Angiosperms*
  6. Husain K, Jantan I, Kamaruddin N, Said IM, Aimi N, Takayama H
    Phytochemistry, 2001 Jun;57(4):603-6.
    PMID: 11394866
    Three new indole alkaloids with methyl chanofruticosinates skeletal system, viz., methyl 12-methoxy-N1-decarbomethoxychanofruticosinate, methyl 12-methoxychanofruticosinate and methyl 11,12-dimethoxychanofruticosinate, in addition to methyl 11,12-methylenedioxy-N1-decarbomethoxychanofruticosinate, have been isolated from the leaves of Kopsia flavida Blume. The structures of these three new indole alkaloids were assigned by NMR spectral data using various 2D-techniques.
    Matched MeSH terms: Angiosperms/chemistry*
  7. Isa N, Lockman Z
    Environ Sci Pollut Res Int, 2019 Apr;26(11):11482-11495.
    PMID: 30806934 DOI: 10.1007/s11356-019-04583-7
    Silver nanoparticles (AgNPs) were prepared by reacting Kyllinga brevifolia extract (KBE) with AgNO3 aqueous solution at room temperature (22 ± 3 °C). The phytochemical constituents in KBE responsible for the reduction process were identified as carbohydrate, protein, and plant sterols (stigmasterol and campesterol). KBE was also found to function as a capping agent for stabilization of AgNPs. The AgNPs were stable at room temperature and had a quasi-spherical shape with an average particle size 22.3 nm. The use of KBE offers not only eco-friendly and non-pathogenic path for AgNPs formation, it also induced rapid formation of the AgNPs. Methylene blue (MB) removal was then done on the AgNPs in the presence of either KBE or NaBH4. Ninety-three percent removal of MB was achieved with a rate of reaction 0.2663 min-1 in the solution with KBE+AgNPs (pH 2). However, in NaBH4+AgNPs system, 100% MB removal was achieved at pH 8-10. The reaction rate was 2.5715 min-1 indicating a fast removal rate of MB dye. The process of reduction occurs via electron relay effect whereas in KBE+AgNPs system, sedimentation occurred along with the reduction process. Nevertheless, the use of KBE+AgNPs system is preferred as the reducing agent is more benign to the environment.
    Matched MeSH terms: Angiosperms/chemistry*
  8. Jia M, Wei Y, Ma Y, Shen Y, Zhang Y
    Zhongguo Zhong Yao Za Zhi, 1997 Aug;22(8):454-8, 510.
    PMID: 11038909
    Through the investigation on botanical origin, output and sales of Togcao in producing areas, it has been proved that there are twenty-two species of six families used as Tongcao. The medicinal parts are the pith of stems or petioles. The provinces featuring more species and larger output of Tongcao are Sichuan, Yunnan, Guizhou, Guangxi, Hunan and Shaanxi. A hundred and two pieces of commercial samples collected from twenty-six provinces in China, Hongkong area, Japan, Malaysia, Thailand, Singapore and Republic of Korea have been identified. The result shows that both Xiaotongcao and Datongcao are called by the same name Tongcao. The main species is Xiaotongcao, which takes a proportion of 70% in Tongcao. And the Tongcao(Tetrapanax papyriferus, taking a proportion of 20%) as recorded in the Chinese Pharmacopoeia (1995 edition) is seldom used.
    Matched MeSH terms: Angiosperms/classification
  9. Juanssilfero AB, Kahar P, Amza RL, Yopi, Sudesh K, Ogino C, et al.
    J Biosci Bioeng, 2019 Jun;127(6):726-731.
    PMID: 30642786 DOI: 10.1016/j.jbiosc.2018.12.002
    The ability of oleaginous yeast Lipomyces starkeyi to efficiently produce lipids when cultivated on sap extracted from felled oil palm trunk (OPT) as a novel inexpensive renewable carbon source was evaluated. OPT sap was found to contain approximately 98 g/L glucose and 32 g/L fructose. Batch fermentations were performed using three different OPT sap medium conditions: regular sap, enriched sap, and enriched sap at pH 5.0. Under all sap medium conditions, the cell biomass and lipid production achieved were approximately 30 g/L and 60% (w/w), respectively. L. starkeyi tolerated acidified medium (initial pH ≈ 3) and produced considerable amounts of ethanol as well as xylitol as by-products. The fatty acid profile of L. starkeyi was remarkably similar to that of palm oil, one of the most common vegetable oil feedstock used in biodiesel production with oleic acid as the major fatty acid followed by palmitic, stearic and linoleic acids.
    Matched MeSH terms: Angiosperms/chemistry*
  10. Khuzaimah N, Nour UM, Maitra S
    J Environ Sci Eng, 2011 Jul;53(3):257-62.
    PMID: 23029925
    The presence of heavy metals in the environment results in a number of environmental problems. In this study, the potential of Rambai stem (Baccaurea motleyana) of Malaysia in removing nickel ion from aqueous solution has been evaluated. The raw material used in this study was obtained from local orchard. The collected material passed through physical preparation and treatment process. The adsorbent was thoroughly characterized by SEM, EDX and FTIR studies. The effect of initial nickel concentration, dosage of adsorbent and pH on the adsorption process were investigated. The highest adsorption capacity obtained at weak acidic conditions (pH 4-5) when dosage and initial concentrations are 0.1 and 30 ppm respectively. The percentage of removal of nickel from the solution was found to be 51%. The experimental data fitted well in Freundlich isotherms indicating the adsorption of nickel on Rambai stem (Baccaurea motleyana) followed heterogenous surface phenomena.
    Matched MeSH terms: Angiosperms
  11. Lee XW, Mat-Isa MN, Mohd-Elias NA, Aizat-Juhari MA, Goh HH, Dear PH, et al.
    PLoS One, 2016;11(12):e0167958.
    PMID: 27977777 DOI: 10.1371/journal.pone.0167958
    Rafflesia is a biologically enigmatic species that is very rare in occurrence and possesses an extraordinary morphology. This parasitic plant produces a gigantic flower up to one metre in diameter with no leaves, stem or roots. However, little is known about the floral biology of this species especially at the molecular level. In an effort to address this issue, we have generated and characterised the transcriptome of the Rafflesia cantleyi flower, and performed a comparison with the transcriptome of its floral bud to predict genes that are expressed and regulated during flower development. Approximately 40 million sequencing reads were generated and assembled de novo into 18,053 transcripts with an average length of 641 bp. Of these, more than 79% of the transcripts had significant matches to annotated sequences in the public protein database. A total of 11,756 and 7,891 transcripts were assigned to Gene Ontology categories and clusters of orthologous groups respectively. In addition, 6,019 transcripts could be mapped to 129 pathways in Kyoto Encyclopaedia of Genes and Genomes Pathway database. Digital abundance analysis identified 52 transcripts with very high expression in the flower transcriptome of R. cantleyi. Subsequently, analysis of differential expression between developing flower and the floral bud revealed a set of 105 transcripts with potential role in flower development. Our work presents a deep transcriptome resource analysis for the developing flower of R. cantleyi. Genes potentially involved in the growth and development of the R. cantleyi flower were identified and provide insights into biological processes that occur during flower development.
    Matched MeSH terms: Angiosperms/genetics*
  12. Ling LT, Radhakrishnan AK, Subramaniam T, Cheng HM, Palanisamy UD
    Molecules, 2010 Apr;15(4):2139-51.
    PMID: 20428033 DOI: 10.3390/molecules15042139
    Thirteen Malaysian plants; Artocarpus champeden, Azadirachta indica, Fragaria x ananassa, Garcinia mangostana, Lawsonia inermis, Mangifera indica, Nephelium lappaceum, Nephelium mutobile, Peltophorum pterocarpum, Psidium guajava and Syzygium aqueum, selected for their use in traditional medicine, were subjected to a variety of assays. Antioxidant capability, total phenolic content, elemental composition, as well as it cytotoxity to several cell lines of the aqueous and ethanolic extracts from different parts of these selected Malaysian plants were determined. In general, the ethanolic extracts were better free radical scavengers than the aqueous extracts and some of the tested extracts were even more potent than a commercial grape seed preparation. Similar results were seen in the lipid peroxidation inhibition studies. Our findings also showed a strong correlation of antioxidant activity with the total phenolic content. These extracts when tested for its heavy metals content, were found to be below permissible value for nutraceutical application. In addition, most of the extracts were found not cytotoxic to 3T3 and 4T1 cells at concentrations as high as 100 microg/mL. We conclude that although traditionally these plants are used in the aqueous form, its commercial preparation could be achieved using ethanol since a high total phenolic content and antioxidant activity is associated with this method of preparation.
    Matched MeSH terms: Angiosperms/chemistry*
  13. Loh SP, Hadira O
    Malays J Nutr, 2011 Apr;17(1):77-86.
    PMID: 22135867 MyJurnal
    This study was conducted to determine the inhibitory potential of selected Malaysian plants against key enzymes related to type 2 diabetes and hypertension.
    Matched MeSH terms: Angiosperms*
  14. Maulidiani, Shaari K, Paetz C, Stanslas J, Abas F, Lajis NH
    Nat Prod Commun, 2009 Aug;4(8):1031-6.
    PMID: 19768978
    Phytochemical investigation on Globba pendula resulted in the isolation of a new naturally occurring 16-oxo-(8)17-12-labdadien-15,11-olide 1 and benzofuran-2-carboxaldehyde 2. Other known compounds including isoandrographolide, indirubin, vanillin, vanillic acid, 2(3H)-benzoxazolone, as well as beta-sitosteryl-beta-D-glucopyranoside, beta-sitosterol, and 7alpha-hydroxysitosterol were also isolated. The structures were established based on spectroscopic data and comparison with the literature. Furthermore, the compound isoandrographolide has demonstrated strong cytotoxic properties towards a panel of cancer cell lines (MCF-7, PC-3, and H-460) with the IC50 values of 7.9, 8.7, and 9.0 microM, respectively.
    Matched MeSH terms: Angiosperms/drug effects; Angiosperms/chemistry*
  15. Moghadamtousi SZ, Goh BH, Chan CK, Shabab T, Kadir HA
    Molecules, 2013 Aug 30;18(9):10465-83.
    PMID: 23999722 DOI: 10.3390/molecules180910465
    Swietenia macrophylla King (Meliaceae) is an endangered and medicinally important plant indigenous to tropical and subtropical regions of the World. S. macrophylla has been widely used in folk medicine to treat various diseases. The review reveals that limonoids and its derivatives are the major constituents of S. macrophylla. There are several data in the literature indicating a great variety of pharmacological activities of S. macrophylla, which exhibits antimicrobial, anti-inflammatory, antioxidant effects, antimutagenic, anticancer, antitumor and antidiabetic activities. Various other activities like anti-nociceptive, hypolipidemic, antidiarrhoeal, anti-infective, antiviral, antimalarial, acaricidal, antifeedant and heavy metal phytoremediation activity have also been reported. In view of the immense medicinal importance of S. macrophylla, this review aimed at compiling all currently available information on its ethnomedicinal uses, phytochemistry and biological activities of S. macrophylla, showing its importance.
    Matched MeSH terms: Angiosperms/chemistry*
  16. Mohd Abd Razak MR, Afzan A, Ali R, Amir Jalaluddin NF, Wasiman MI, Shiekh Zahari SH, et al.
    PMID: 25510573 DOI: 10.1186/1472-6882-14-492
    The development of resistant to current antimalarial drugs is a major challenge in achieving malaria elimination status in many countries. Therefore there is a need for new antimalarial drugs. Medicinal plants have always been the major source for the search of new antimalarial drugs. The aim of this study was to screen selected Malaysian medicinal plants for their antiplasmodial properties.
    Matched MeSH terms: Angiosperms*
  17. Muhamad MAH, Che Hasan R, Md Said N, Ooi JL
    PLoS One, 2021;16(9):e0257761.
    PMID: 34555110 DOI: 10.1371/journal.pone.0257761
    Integrating Multibeam Echosounder (MBES) data (bathymetry and backscatter) and underwater video technology allows scientists to study marine habitats. However, use of such data in modeling suitable seagrass habitats in Malaysian coastal waters is still limited. This study tested multiple spatial resolutions (1 and 50 m) and analysis window sizes (3 × 3, 9 × 9, and 21 × 21 cells) probably suitable for seagrass-habitat relationships in Redang Marine Park, Terengganu, Malaysia. A maximum entropy algorithm was applied, using 12 bathymetric and backscatter predictors to develop a total of 6 seagrass habitat suitability models. The results indicated that both fine and coarse spatial resolution datasets could produce models with high accuracy (>90%). However, the models derived from the coarser resolution dataset displayed inconsistent habitat suitability maps for different analysis window sizes. In contrast, habitat models derived from the fine resolution dataset exhibited similar habitat distribution patterns for three different analysis window sizes. Bathymetry was found to be the most influential predictor in all the models. The backscatter predictors, such as angular range analysis inversion parameters (characterization and grain size), gray-level co-occurrence texture predictors, and backscatter intensity levels, were more important for coarse resolution models. Areas of highest habitat suitability for seagrass were predicted to be in shallower (<20 m) waters and scattered between fringing reefs (east to south). Some fragmented, highly suitable habitats were also identified in the shallower (<20 m) areas in the northwest of the prediction models and scattered between fringing reefs. This study highlighted the importance of investigating the suitable spatial resolution and analysis window size of predictors from MBES for modeling suitable seagrass habitats. The findings provide important insight on the use of remote acoustic sonar data to study and map seagrass distribution in Malaysia coastal water.
    Matched MeSH terms: Angiosperms/growth & development*
  18. Ng SM, Lee XW, Mat-Isa MN, Aizat-Juhari MA, Adam JH, Mohamed R, et al.
    Sci Rep, 2018 Nov 22;8(1):17258.
    PMID: 30467394 DOI: 10.1038/s41598-018-35173-1
    Parasitic plants are known to discard photosynthesis thus leading to the deletion or loss of the plastid genes. Despite plastid genome reduction in non-photosynthetic plants, some nucleus-encoded proteins are transported back to the plastid to carry out specific functions. In this work, we study such proteins in Rafflesia cantleyi, a member of the holoparasitic genus well-known for producing the largest single flower in the world. Our analyses of three transcriptome datasets, two holoparasites (R. cantleyi and Phelipanche aegyptiaca) and one photosynthetic plant (Arabidopsis thaliana), suggest that holoparasites, such as R. cantleyi, retain some common plastid associated processes such as biosynthesis of amino acids and lipids, but are missing photosynthesis components that can be extensions of these pathways. The reconstruction of two selected biosynthetic pathways involving plastids correlates the trend of plastid retention to pathway complexity - transcriptome evidence for R. cantleyi suggests alternate mechanisms in regulating the plastidial heme and terpenoid backbone biosynthesis pathways. The evolution to holoparasitism from autotrophy trends towards devolving the plastid genes to the nuclear genome despite the functional sites remaining in the plastid, or maintaining non-photosynthetic processes in the plastid, before the eventual loss of the plastid and any site dependent functions.
    Matched MeSH terms: Angiosperms/genetics; Angiosperms/physiology*
  19. Nikolov LA, Tomlinson PB, Manickam S, Endress PK, Kramer EM, Davis CC
    Ann Bot, 2014 Aug;114(2):233-42.
    PMID: 24942001 DOI: 10.1093/aob/mcu114
    Species in the holoparasitic plant family Rafflesiaceae exhibit one of the most highly modified vegetative bodies in flowering plants. Apart from the flower shoot and associated bracts, the parasite is a mycelium-like endophyte living inside their grapevine hosts. This study provides a comprehensive treatment of the endophytic vegetative body for all three genera of Rafflesiaceae (Rafflesia, Rhizanthes and Sapria), and reports on the cytology and development of the endophyte, including its structural connection to the host, shedding light on the poorly understood nature of this symbiosis.
    Matched MeSH terms: Angiosperms/anatomy & histology*; Angiosperms/microbiology*
  20. Nikolov LA, Endress PK, Sugumaran M, Sasirat S, Vessabutr S, Kramer EM, et al.
    Proc Natl Acad Sci U S A, 2013 Nov 12;110(46):18578-83.
    PMID: 24167265 DOI: 10.1073/pnas.1310356110
    Rafflesiaceae, which produce the world's largest flowers, have captivated the attention of biologists for nearly two centuries. Despite their fame, however, the developmental nature of the floral organs in these giants has remained a mystery. Most members of the family have a large floral chamber defined by a diaphragm. The diaphragm encloses the reproductive organs where pollination by carrion flies occurs. In lieu of a functional genetic system to investigate floral development in these highly specialized holoparasites, we used comparative studies of structure, development, and gene-expression patterns to investigate the homology of their floral organs. Our results surprisingly demonstrate that the otherwise similar floral chambers in two Rafflesiaceae subclades, Rafflesia and Sapria, are constructed very differently. In Rafflesia, the diaphragm is derived from the petal whorl. In contrast, in Sapria it is derived from elaboration of a unique ring structure located between the perianth and the stamen whorl, which, although developed to varying degrees among the genera, appears to be a synapomorphy of the Rafflesiaceae. Thus, the characteristic features that define the floral chamber in these closely related genera are not homologous. These differences refute the prevailing hypothesis that similarities between Sapria and Rafflesia are ancestral in the family. Instead, our data indicate that Rafflesia-like and Sapria-like floral chambers represent two distinct derivations of this morphology. The developmental repatterning we identified in Rafflesia, in particular, may have provided architectural reinforcement, which permitted the explosive growth in floral diameter that has arisen secondarily within this subclade.
    Matched MeSH terms: Angiosperms/growth & development*; Angiosperms/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links