Displaying publications 21 - 40 of 70 in total

Abstract:
Sort:
  1. Jeyaletchumi, P., Ardi, A, Noraliza, M.A., Nurul Aini, I., Maizatul Akmar, H., Suraya, H., et al.
    MyJurnal
    Two hundred and sixty four samples of ready -to-eat foods (RTE) were obtained over a period of six months (April to September 2005) from 33 school hostel kitchens and canteens previously implicated in food poisoning outbreaks from 2000 to 2004. Sampling was done by food technologists and assistant environmental health ofhcers from various districts in Pahang while microbiological analysis was carried out at the Mentakab Food Quality Control Laboratory. The objective of the study was to obtain a comprehensive picture on the microbiological status of the foods that may have accounted for food poisoning outbreaks at school hostels and canteens in Pahang. Each food sample was analyzed for Total Plate Count (TPC), Salmonella, Coliform, Escheria coli, Staphylococcus aerus and Bacillus cereus. lt was found that none of the ready-to-eat foods sampled contained Salmonella although hve samples contained Bacillus cereus , four samples contained Staphylococcus aerus. High Coliform Counts were found in 15 food samples while Escheria coli was detected in two samples. Overall, it was found that 10.2 % of the samples had unsatisfactory counts.
    Matched MeSH terms: Bacillus cereus
  2. Abu Bakar A, Abdul Rafa AA, Abdullah Sani A
    MyJurnal
    Food contamination is a crucial health problem as it could result in food-borne illness. This research aimed to evaluate the microbiological quality of ready-to-eat (RTE) fried rice dishes sold at different type of food premises in Kuantan city, Pahang. Total Plate Count (TPC), Staphylococcus aureus, Bacillus cereus and Aeromonas spp. bacteria were used as microbiological contamination indicators. About 52 samples were collected stratified randomly from four types of food premises (restaurant, cafeteria, food stall and night market) where about 13 samples were respectively collected from each type of the food premises. The results showed that TPC had medium mean count (6.30x105±1.47x105 cfu/g), S. aureus and B. cereus had high mean counts (7.70x104±2.22x105 cfu/g and 3.85x105±1.67x106 cfu/g respectively), while Aeromonas spp. had medium mean count (7.13x104±2.42x105 cfu/g). The mean counts of TPC in the samples collected from cafeteria were highest compare to other food premises.
    Matched MeSH terms: Bacillus cereus
  3. Lesley, M.B., Velnetti, L., Kasing, A., Samuel, L., Yousr, A.N.
    MyJurnal
    Bacillus cereus is a soil inhabitant gram positive bacterium, and is known to cause severe food poisoning. The objective of this study was to isolate and identify the presence of Bacillus cereus s.l. from selected ready to eat cereals purchased randomly from local supermarkets in Kuching and Kota Samarahan, Sarawak. The result showed that four of the 30 food samples were detected to be contaminated by B. cereus s.l. . Our findings suggested that it is important for the public to be aware of the safety of RTE cereals consumption, as it is possible that B. cereus s.l. may be present in high count number and pose hazardous health effects to the consumers.
    Matched MeSH terms: Bacillus cereus
  4. Huang L, Ahmad NH, Juneja V, Stapp-Kamotani E, Gabiola J, Minocha U, et al.
    Food Microbiol, 2024 Apr;118:104420.
    PMID: 38049265 DOI: 10.1016/j.fm.2023.104420
    During commercial production of liquid egg yolk (LEY), phospholipase A2 (PLA2) is used to improve its emulsification capacity and thermal stability. The enzymatic treatment may occur at elevated temperatures such as 50 °C, potentially allowing foodborne pathogens, such as Bacillus cereus, to grow. Little knowledge is available concerning growth of B. cereus in LEY during PLA2 treatment. Therefore, the objective of this study was to investigate the growth kinetics of B. cereus during PLA2 treatment using pathogenic B. cytotoxicus NVH391-98, the most thermotolerant member in the B. cereus group, as a surrogate. Inoculated LEY samples were placed in precision programmable incubators to observe the growth of B. cytotoxicus NVH391-98 under multiple isothermal and dynamic temperature conditions between 20 and 53 °C. The bacterial growth was described using the differential Baranyi model coupled with two different secondary models. The kinetic parameters were determined using one-step dynamic inverse analysis of multiple growth curves. The least square method was used in combination with the 4th order Runge-Kutta method to solve the differential Baranyi model using multiple growth curves to determine the cardinal kinetic parameters. The results showed that B. cytotoxicus NVH391-98 can grow prolifically at 50 °C. The estimated minimum, optimum and maximum temperatures were 16.7 or 18.5, 47.8 or 48.1, and 52.1 or 52.4 °C, respectively, depending on the secondary models, with an optimum growth rate of 2.1 log colony-forming-unit (CFU)/g per hour. The dynamic model is validated using isothermal curves with reasonable accuracy. B. cytotoxicus died off slowly at 15 °C. At 55 °C, thermal inactivation was observed, with a D value of approximately 2.7 h. Holding at 55 °C or below 15 °C can effectively prevent the growth of B. cytotoxicus in egg yolk.
    Matched MeSH terms: Bacillus cereus
  5. Lin YK, Show PL, Yap YJ, Ariff AB, Mohammad Annuar MS, Lai OM, et al.
    J Biosci Bioeng, 2016 Jun;121(6):692-696.
    PMID: 26702953 DOI: 10.1016/j.jbiosc.2015.11.001
    Aqueous two-phase system (ATPS) extractive bioconversion provides a technique which integrates bioconversion and purification into a single step process. Extractive bioconversion of gamma-cyclodextrin (γ-CD) from soluble starch with cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) enzyme derived from Bacillus cereus was evaluated using polyethylene glycol (PEG)/potassium phosphate based on ATPS. The optimum condition was attained in the ATPS constituted of 30.0% (w/w) PEG 3000 g/mol and 7.0% (w/w) potassium phosphate. A γ-CD concentration of 1.60 mg/mL with a 19% concentration ratio was recovered after 1 h bioconversion process. The γ-CD was mainly partitioned to the top phase (YT=81.88%), with CGTase partitioning in the salt-rich bottom phase (KCGTase=0.51). Repetitive batch processes of extractive bioconversion were successfully recycled three times, indicating that this is an environmental friendly and a cost saving technique for γ-CD production and purification.
    Matched MeSH terms: Bacillus cereus/enzymology*
  6. Wong KC, Hag Ali DM, Boey PL
    Nat Prod Res, 2012;26(7):609-18.
    PMID: 21834640 DOI: 10.1080/14786419.2010.538395
    The aqueous methanolic extracts of Melastoma malabathricum L. exhibited antibacterial activity when assayed against seven microorganisms by the agar diffusion method. Solvent fractionation afforded active chloroform and ethyl acetate fractions from the leaves and the flowers, respectively. A phytochemical study resulted in the identification of ursolic acid (1), 2α-hydroxyursolic acid (2), asiatic acid (3), β-sitosterol 3-O-β-D-glucopyranoside (4) and the glycolipid glycerol 1,2-dilinolenyl-3-O-β-D-galactopyanoside (5) from the chloroform fraction. Kaempferol (6), kaempferol 3-O-α-L-rhamnopyranoside (7), kaempferol 3-O-β-D-glucopyranoside (8), kaempferol 3-O-β-D-galactopyranoside (9), kaempferol 3-O-(2″,6″-di-O-E-p-coumaryl)-β-D-galactopyranoside (10), quercetin (11) and ellagic acid (12) were found in the ethyl acetate fraction. The structures of these compounds were determined by chemical and spectral analyses. Compounds 1-4, the flavonols (6 and 11) and ellagic acid (12) were found to be active against some of the tested microorganisms, while the kaempferol 3-O-glycosides (7-9) did not show any activity, indicating the role of the free 3-OH for antibacterial activity. Addition of p-coumaryl groups results in mild activity for 10 against Staphylococcus aureus and Bacillus cereus. Compounds 2-5, 7 and 9-12 are reported for the first time from M. malabathricum. Compound 10 is rare, being reported only once before from a plant, without assignment of the double bond geometry in the p-coumaryl moiety.
    Matched MeSH terms: Bacillus cereus/drug effects*
  7. Shami AM, Philip K, Muniandy S
    BMC Complement Altern Med, 2013 Dec 16;13:360.
    PMID: 24330547 DOI: 10.1186/1472-6882-13-360
    BACKGROUND: A plant mixture containing indigenous Australian plants was examined for synergistic antimicrobial activity using selected test microorganisms. This study aims to investigate antibacterial activities, antioxidant potential and the content of phenolic compounds in aqueous, ethanolic and peptide extracts of plant mixture.

    METHODS: Well diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were used to test antibacterial activity against four pathogenic bacteria namely Staphylococcus aureus, Escherichia coli, Bacillus cereus, and Pseudomonas aeruginosa. DPPH (2, 2-diphenyl-1- picrylhydrazyl) and superoxide dismutase (SOD) assays were used to evaluate antioxidant activity. HPLC and gel filtration were used for purification of the peptides. Scanning electron microscope was applied to investigate the mode of attachment of the peptides on target microbial membranes.

    RESULTS: Aqueous extraction of the mixture showed no inhibition zones against all the test bacteria. Mean diameter of inhibition zones for ethanol extraction of this mixture attained 8.33 mm, 7.33 mm, and 6.33 mm against S. aureus at corresponding concentrations of 500, 250 and 125 mg/ml while E .coli showed inhibition zones of 9.33 mm, 8.00 mm and 6.66 mm at the same concentrations. B. cereus exhibited inhibition zones of 11.33 mm, 10.33 mm and 10.00 mm at concentrations of 500, 250 and 125 mg/ml respectively. The peptide extract demonstrated antibacterial activity against S. aureus, E. coli and B. cereus. The MIC and MBC values for ethanol extracts were determined at 125 mg/ml concentration against S. aureus and E. coli and B. cereus value was 31.5 mg/ml. MIC and MBC values showed that the peptide extract was significantly effective at low concentration of the Australian plant mixture (APM). Phenolic compounds were detected in hot aqueous and ethanolic extracts of the plant mixture. Hot aqueous, ethanol and peptides extracts also exhibited antioxidant activities.

    CONCLUSIONS: It was concluded that APM possessed good antibacterial and antioxidant activities following extraction with different solvents. The results suggest that APM provide a new source with antibacterial agents and antioxidant activity for nutraceutical or medical applications.

    Matched MeSH terms: Bacillus cereus/drug effects; Bacillus cereus/ultrastructure
  8. Akinsanya MA, Goh JK, Lim SP, Ting AS
    FEMS Microbiol Lett, 2015 Dec;362(23):fnv184.
    PMID: 26454221 DOI: 10.1093/femsle/fnv184
    Twenty-nine culturable bacterial endophytes were isolated from surface-sterilized tissues (root, stem and leaf) of Aloe vera and molecularly characterized to 13 genera: Pseudomonas, Bacillus, Enterobacter, Pantoea, Chryseobacterium, Sphingobacterium, Aeromonas, Providencia, Cedecea, Klebsiella, Cronobacter, Macrococcus and Shigella. The dominant genera include Bacillus (20.7%), Pseudomonas (20.7%) and Enterobacter (13.8%). The crude and ethyl acetate fractions of the metabolites of six isolates, species of Pseudomonas, Bacillus, Chryseobacterium and Shigella, have broad spectral antimicrobial activities against pathogenic Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella Typhimurium, Proteus vulgaris, Klebsiella pneumoniae, Escherichia coli, Streptococcus pyogenes and Candida albicans, with inhibition zones ranging from 6.0 ± 0.57 to 16.6 ± 0.57 mm. In addition, 80% of the bacterial endophytes produced 1,1-diphenyl-2-picrylhydrazyl (DPPH) with scavenging properties of over 75% when their crude metabolites were compared with ascorbic acid (92%). In conclusion, this study revealed for the first time the endophytic bacteria communities from A. vera (Pseudomonas hibiscicola, Macrococcus caseolyticus, Enterobacter ludwigii, Bacillus anthracis) that produce bioactive compounds with high DPPH scavenging properties (75-88%) and (Bacillus tequilensis, Pseudomonas entomophila, Chryseobacterium indologenes, Bacillus aerophilus) that produce bioactive compounds with antimicrobial activities against bacterial pathogens. Hence, we suggest further investigation and characterization of their bioactive compounds.
    Matched MeSH terms: Bacillus cereus
  9. Rosli, N.A., Azilan, N A., Mahyudin, N.A., Mahmud Ab Rashid, N.K., Meon, F.N.S., Ismail, Z., et al.
    MyJurnal
    Fennel (Foeniculum vulgare Mill.) and coriander (Coriandrum sativum L.) are known to possess good antimicrobial properties. In the present work, spice-infused frozen parathas were formulated to investigate the effect of fennel and coriander on microbial (aerobic mesophilic bacteria, yeast and mould, and Bacillus cereus) reduction and sensory acceptability of frozen paratha throughout the storage at -18°C. The present work was also aimed at determining the relationship between spice concentrations and storage durations on microbiological quality of the samples. Fennel and coriander seed powder were used at concentrations of 2, 4 and 6% of wheat flour (w/w). The microbiological analysis was performed by total plate count, yeast and mould count, and Bacillus cereus count after 9, 12 and 15 weeks of storage. Sensory evaluation was conducted using hedonic scales at the end of storage durations. Results showed that spice infusion in frozen paratha significantly delayed the growth of aerobic mesophilic bacteria, yeasts and moulds, and Bacillus cereus during storage. The lowest log count was demonstrated by coriander at 6% in total plate count (3.85, 3.90 and 3.91 log10 CFU/g), and yeast and mould count (2.54, 2.59 and 2.60 log10 CFU/g) after 9, 12 and 15 weeks, respectively. Bacillus cereus was not detected throughout the storage durations. Fennel exhibited minimum activity against Bacillus cereus with no significant difference on log count reduction when compared with control. Coriander showed the highest decrease in both total plate count and Bacillus cereus count during the storage duration. Sensory evaluation result indicated that control sample exhibited the highest preference over all attributes when compared with fennel and coriander. Coriander-infused paratha was slightly darker in colour due to high concentration of 6%. Fennel yielded the lowest score in terms of taste among all samples. Fennel and coriander showed no significant difference for sensory acceptability. Overall, all frozen parathas were in good quality after 15 weeks of frozen storage. It can thus be concluded that fennel and coriander can be used as potential natural preservatives to inhibit the growth of microorganisms in paratha during frozen storage. Nevertheless, the optimum spice concentration should be determined to minimise the effects on the sensory attributes.
    Matched MeSH terms: Bacillus cereus
  10. Syarifah SM, Mohd Kassim AS, Mohd Aripin A, Chan CM, Zainulabidin MH, Ishak N, et al.
    Data Brief, 2021 Jun;36:107030.
    PMID: 34026964 DOI: 10.1016/j.dib.2021.107030
    This article presents experimental data on oil palm biomass (oil palm leaves, oil palm trunk and empty fruit bunch) handsheet production characterization by biodelignification treatment using Bacillus cereus extracted from termite gut (Coptotermus curvignathus). It associates the lignocellulose chemical composition obtained via technical association pulp and paper industry TAPPI T 222 om-02 testing on lignin content reduction determination, holocellulose and hemicellulose content determination (Kurscher-Hoffner method). Several data obtained for handsheet characterization presents brightness, opacity, contrast ratio, din transparency, thickness, bursting and tearing indexes are collected. Handsheet surface morphology was also observed on ratio of gaps differences between fiber bonding conducted using scanning electron microscope (SEM) and ImageJ software. The raw data findings supplement chemical composition analysis for both untreated and treated substrates on handsheet quality performance check as presented in the research article "Bio-Mechanical Pulping of Bacteria Pre-Treatment on Oil Palm Biomass for Handsheet Production" [1]. For understanding correlations into the difference among lignocellulose content composition which affect the handsheet formation and mechanical strength refer to article from this research [1]. This dataset is made publicly available for optimizing alternative waste material reuse in the pulp and paper industrial section.
    Matched MeSH terms: Bacillus cereus
  11. Azhar NS, Md Zin NH, Hamid THTA
    Trop Life Sci Res, 2017 Jul;28(2):107-118.
    PMID: 28890764 MyJurnal DOI: 10.21315/tlsr2017.28.2.8
    In this study, a Lactic acid bacteria (LAB) strain was isolated on MRS medium from gastro-intestinal tissues of Broadhead catfish (Clarias macrocephalus). Out of 50 isolates, 25 isolates were found to be positive on lactose utilisation test and were identified to be gram positive cocci. Using disc diffusion methods, one out of 22 isolates, i.e., a strain A5 demonstrated inhibitions against three indicator organisms; Bacillus cereus, Staphylococcus aureus and Salmonella thyphimurium. Partial 16S rDNA sequencing identified isolate A5 as a member of Lactococcus lactis, with 100% DNA homology. Cell free supernatant fluid from Lactococcus lactis A5 showed inhibitory activities against both gram positive pathogens (Bacillus cereus and Staphylococcus aureus) and gram negative pathogens (Salmonella thyphimurium). Chloroform precipitated bacteriocin retained antagonistic activities in the presence of catalase and lysozyme; and was completely inactivated by Proteinase K treatment. The bacteriocin has a molecular weight of 3.4 kDa, based on SDS-PAGE analysis and the extract was heat stable at 37°C and 65°C, for 15 minutes. The antibacterial activity was suppressed with the addition of EDTA but was significantly increased with the addition of SDS, Triton X-100, Tween 20 and Tween 80. This bacteriocin belongs to class 1 bacteriocin, which was shown to have a nisin-like properties. This strain can be used as potential probiotics in animal or aquaculture feeding; and the bacteriocin it produces will be useful in food preservative.
    Matched MeSH terms: Bacillus cereus
  12. Harlita TD, Oedjijono, Asnani A
    Trop Life Sci Res, 2018 Jul;29(2):39-52.
    PMID: 30112140 DOI: 10.21315/tlsr2018.29.2.4
    Antibacterial activity of indigenous Dayak onion (Eleutherine palmifolia (L.) Merr) was investigated. The Dayak onion was solvent extracted with n-hexane, ethyl acetate, and ethanol 96% consecutively. Each extract was tested its antibacterial activity towards methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus, Shigella sp., and Pseudomonas aeruginosa using disc diffusion method. The test results showed that the n-hexane, ethyl acetate, and ethanol 96% extracts positively inhibited the growth of MRSA, B. cereus, Shigella sp., and P. aeruginosa. The highest inhibition activity of each extract was obtained with 10 mg/mL of extract concentration; whereas the minimum inhibitory concentration (MIC) of each extract was 2 mg/mL. Extract with the highest inhibition activity was ethyl acetate extract against B. cereus (139.58%). TLC evaluation of ethyl acetate extract showed four spots and bioautography indicated that ethyl acetate extract contained four types of compounds with inhibition activity against B. cereus, in which two compounds have higher antibacterial activity than the other two.
    Matched MeSH terms: Bacillus cereus
  13. Bala JD, Lalung J, Al-Gheethi AAS, Hossain K, Ismail N
    Trop Life Sci Res, 2018 Jul;29(2):131-163.
    PMID: 30112146 MyJurnal DOI: 10.21315/tlsr2018.29.2.10
    This study was aimed at identifying indigenous microorganisms from palm oil mill effluent (POME) and to ascertain the microbial load. Isolation and identification of indigenous microorganisms was subjected to standard microbiological methods and sequencing of the 16S rRNA and 18S rRNA genes. Sequencing of the 16S rRNA and 18S rRNA genes for the microbial strains signifies that they were known as Micrococcus luteus 101PB, Stenotrophomonas maltophilia 102PB, Bacillus cereus 103PB, Providencia vermicola 104PB, Klebsiella pneumoniae 105PB, Bacillus subtilis 106PB, Aspergillus fumigatus 107PF, Aspergillus nomius 108PF, Aspergillus niger 109PF and Meyerozyma guilliermondii 110PF. Results revealed that the population of total heterotrophic bacteria (THB) ranged from 9.5 × 105 - 7.9 × 106 cfu/mL. The total heterotrophic fungi (THF) ranged from 2.1 × 104 - 6.4 × 104 cfu/mL. Total viable heterotrophic indigenous microbial population on CMC agar ranged from 8.2 × 105 - 9.1 × 106 cfu/mL and 1.4 × 103 - 3.4 × 103 cfu/mL for bacteria and fungi respectively. The microbial population of oil degrading bacteria (ODB) ranged from 6.4 × 105 - 4.8 × 106 cfu/mL and the oil degrading fungi (ODF) ranged from 2.8 × 103 - 4.7 × 104 cfu/mL. The findings revealed that microorganisms flourish well in POME. Therefore, this denotes that isolating native microorganisms from POME is imperative for effectual bioremediation, biotreatment and biodegradation of industrial wastewaters.
    Matched MeSH terms: Bacillus cereus
  14. Lau, K.Y., Rukayadi, Y.
    MyJurnal
    Bacterial spores have special significance in foods because they are much more resistant to physical and chemical antimicrobial treatment. Nowadays, there is interest in using natural products such as plant extract for food preservation. In this study, 26 of tropical medicinal plants and spices were screened for their sporicidal activity against the spores of Bacillus cereus. The spores of B. cereus was harvested after incubation at 30°C for 1 week and treated with various plant extracts using the method of Standard Operating Procedure for the AOAC (Association of Official Analytical Chemists) Sporicidal Activity. Glutaraldehyde was used as a positive control. Among them, Indonesian bay leaf (Eugenia polyantha Wight) inactivated more than 3 log of spores/ml of B. cereus (99.99%) at the concentration of 1% and completely killed B. cereus spores at concentration of 2.5%. These results suggest that Indonesian bay leaf extract has strong sporicidal activity against spores of B. cereus.
    Matched MeSH terms: Bacillus cereus
  15. Lili, Z.M., Noridah, O.
    MyJurnal
    Acute Gastroenteritis (AGE) is common world wide and is a major health problem. The commonest cause is from contaminated water or food. Common infective agents are Rotavirus, Staph. aureus and Bacillus cereus. There was an AGE outbreak in Ipoh City from late August till early October 2006. Epidemiological and laboratory investigations were done. Fresh stool samples were taken from symptomatic patients. Water and food sampling were also done. Descriptive analysis of the outbreak was done. A total of 170 patients, mostly between 1 - 5 years of age, were affected. The highest incidents were seen in Bercham. Fever and diarrhea were the prominent features. Two stool samples (13.3%) were positive for E.coli and rotavirus respectively. Twelve of the twenty (60%) water samples taken were contaminated with coliform and fecal matter. Twenty-one of the eighty ((26.3%) food samples taken grew either E.coli, Staph. aureus or Bacillus cereus. It was concluded that a general source was responsible for this problem. The water supply to Ipoh City and the surrounding area is the most likely source. Novovirus was suspected as the organism involved because of the self-limiting and mild nature of the illness that occurred in this outbreak.
    The AGE outbreak in Kinta District in September 2006 is due to contaminated
    water supply from two water treatment
    Matched MeSH terms: Bacillus cereus
  16. Saurabh CK, Gupta S, Variyar PS
    J Food Sci Technol, 2018 Jun;55(6):1982-1992.
    PMID: 29892098 DOI: 10.1007/s13197-018-3112-3
    The objective of this study was to develop biodegradable active film to improve the shelf-life of minimally processed fresh-produce. Guar gum (GG) based films with improved properties were fabricated by employing tween-80 (0.88%) as emulsifier, nanoclay (13.9%) as reinforcement, beeswax (1.21%) for hydrophobicity, glycerol (3.07%) as plasticizer, and grape pomace extract (5%) as active ingredient (%w/w of GG). Active films had a tensile strength of 122 MPa and water vapor transmission rate of 69 gm-2d-1. Films demonstrated significant antimicrobial activity against Escherichia coli, Staphylococcus aureus, Bacillus cereus, and Salmonella Typhimurium. The 2 kGy irradiated minimally processed pomegranate arils packed in film demonstrated a shelf-life of 12 days as compared to 4 days for unirradiated samples. The observed improvement in shelf-life was due to a radiation-induced release of antimicrobial volatiles from active films as confirmed by headspace analysis using GC-MS. Suitability of active films for food irradiation applications is thus demonstrated.
    Matched MeSH terms: Bacillus cereus
  17. Lim MM, Sultana N
    3 Biotech, 2016 Dec;6(2):211.
    PMID: 28330282 DOI: 10.1007/s13205-016-0531-6
    The development of nano-sized scaffolds with antibacterial properties that mimic the architecture of tissue is one of the challenges in tissue engineering. In this study, polycaprolactone (PCL) and PCL/gelatine (Ge) (70:30) nanofibrous scaffolds were fabricated using a less toxic and common solvent, formic acid and an electrospinning technique. Nanofibrous scaffolds were coated with silver (Ag) in different concentrations of silver nitrate (AgNO3) aqueous solution (1.25, 2.5, 5, and 10 %) by using dipping method, drying and followed by ultraviolet (UV) photoreduction. The PCL/Ge (70:30) nanofibrous scaffold had an average fibre diameter of 155.60 ± 41.13 nm. Characterization showed that Ag was physically entrapped in both the PCL and PCL/Ge (70:30) nanofibrous scaffolds. Ag(+) ions release study was performed and showed much lesser release amount than the maximum toxic concentration of Ag(+) ions in human cells. Both scaffolds were non-toxic to cells and demonstrated antibacterial effects towards Gram-positive Bacillus cereus (B. cereus) and Gram-negative Escherichia coli (E. coli). The Ag/PCL/Ge (70:30) nanofibrous scaffold has potential for tissue engineering as it can protect wounds from bacterial infection and promote tissue regeneration.
    Matched MeSH terms: Bacillus cereus
  18. Yusoff, N. A. H., Sanuan, F. M., Rukayadi, Y.
    MyJurnal
    Nowadays consumer is more demand on natural foodstuff instead of synthetic product due to their concern on health. The objective of this study is to investigate the effect of C. caudatus extract on the number of microflora in oyster mushroom at different concentration of C. caudatus extract and exposure time using dilution method. The results showed that the number of microorganisms (Log10 CFU/g) in oyster mushroom in term of Total Plate Count (TPC), Bacillus cereus, Escherichia coli and Staphylococcus aureus were 6.13 ± 0.04, 6.15 ± 0.09, 5.97 ± 0.04, and 6.46 ± 0.00, respectively. The effect of C. caudatus extract on microflora in oyster mushroom at concentrations of 0.00%, 0.05%, 0.5%, and 5.0% with exposure time of 0, 5, 10, and 15 min demonstrated that the reduction number of microflora in oyster mushroom was dependent on the concentration of C. caudatus extract and exposure times. The number of TPC (Log10 CFU/g) in oyster mushroom was significantly reduced after treated with C. caudatus extract at concentration of 0.05% for 15 min; 6.13 ± 0.04 reduced to 2.62 ± 0.07. Moreover, B. cereus (Log10 CFU/g) in oyster mushroom was significantly reduced by treatment of C. caudatus extract at concentration of 0.05% for 5 min; 6.15 ± 0.09 reduced to 3.77 ± 0.15. Meanwhile, the number of E. coli (Log10 CFU/g) in oyster mushroom was significantly reduced at concentration of 0.05% for 10 min; 5.97 ± 0.04 reduced to 3.21 ± 0.13. Lastly, the survival number of S. aureus in oyster mushroom was significantly reduced after treated with C. caudatus extract at concentration of 0.05% for 15 min; 6.46 ± 0.00 reduced to 4.83 ± 0.07. In conclusion, C. caudatus extract has potentiality to be developed as natural sanitizer for rinsing raw food materials such as oyster mushroom.
    Matched MeSH terms: Bacillus cereus
  19. Ainon Hamzah, Tavakoli A, Amir Rabu
    Sains Malaysiana, 2011;40:1231-1235.
    Toluene (C7H8) a hydrocarbon in crude oil, is a common contaminant in soil and groundwater. In this study, the ability to degrade toluene was investigated from twelve bacteria isolates which were isolated from soil contaminated with oil. Out of 12 bacterial isolates tested, most of Pseudomonas sp. showed the capability to grow in 1 mM of toluene compared with other isolates on the third day of incubation. Based on enzyme assays towards toluene monooxygenase, Pseudomonas aeruginosa UKMP-14T and Bacillus cereus UKMP-6G were shown to have the highest ability to degrade toluene. The toluene monoxygenase activity was analysed by using two calorimetric methods, Horseradish peroxidase (HRP) and indole-indigo. Both of the methods measured the production of catechol by the enzymatic reaction of toluene monooxygenase. In the HRP assay, the highest enzyme activity was 0.274 U/mL, exhibited by Pseudomonas aeruginosa UKMP-14T. However, for indole-indigo assay, Bacillus cereus UKMP-6G produced the highest enzyme activity of 0.291 U/ml. Results from both experiments showed that Pseudomonas aeruginosa UKMP-14T and Bacillus cereus UKMP-6G were able to degrade toluene.
    Matched MeSH terms: Bacillus cereus
  20. SAWEI J, NORRAKIAH ABDULLAH SANI, AMINAH ABDULLAH, SAHILAH ABD. MUTALIB
    Sains Malaysiana, 2013;42:1715-1720.
    Kajian ini dijalankan untuk mengesahkan kemampuan teknologi DNA mikroaturan cip gen OliproTM FoodPATH bagi mengesan bakteria patogen makanan. Sebanyak 9 jenis DNA bakteria patogen makanan telah digunakan iaitu Bacillus cereus, Escherichia coli O157:H7, Staphylococcus aureus, Vibrio cholerae, Vibrio parahaemolyticus, Listeria monocytogenes, Salmonella spp., Shigella spp. dan Campylobacter spp. Sebanyak 36 kombinasi templat DNA bakteria patogen makanan telah digunakan. Pengesahan bagi mengesan bakteria patogen makanan dilakukan dengan menggunakan kaedah reaksi berantai polimerase (PCR) dan penghibridan Southern-blotting di atas cip gen untuk mengesahkan kemampuannya. Keputusan daripada analisis hibridasi di atas cip gen telah dibandingkan dengan hasil gel elektroforesis 2.0% (w/v). Lima saringan diperlukan untuk menghabiskan 36 kombinasi templat DNA bakteria patogen makanan. Setiap saringan, satu cip gen telah digunakan sebagai kawalan negatif tidak diinokulasikan dengan sebarang kombinasi DNA bakteria patogen makanan. Daripada hasil kajian, didapati bahawa semua kombinasi templat DNA bakteria patogen makanan telah dapat dikesan. Cip yang digunakan sebagai kawalan negatif tidak menunjukkan kehadiran DNA. Oleh itu, daripada kajian ini cip gen OliproTM FoodPATH didapati memberikan keputusan yang lebih baik berbanding dengan 2.0% (w/v) gel elektroforesis.
    Matched MeSH terms: Bacillus cereus
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links