Displaying publications 21 - 40 of 385 in total

Abstract:
Sort:
  1. Hussein AS, Ghasheer HF, Ramli NM, Schroth RJ, Abu-Hassan MI
    Eur J Paediatr Dent, 2013 Jun;14(2):113-8.
    PMID: 23758460
    AIM: To assess the salivary levels of Copper (Cu), Zinc (Zn), Manganese (Mn) and Iron (Fe) obtained from children of different ethnic backgrounds in Shah Alam, Malaysia and investigate the possible relationships with caries.

    MATERIALS AND METHODS: One hundred and twenty primary school children were included. They were divided into caries and caries-free groups. Unstimulated whole saliva was collected from each participant using spitting method. The salivary elements were measured using an Atomic Absorption Spectrophotometer. Descriptive statistics, bivariate and Pearson's correlation analysis were performed.

    RESULTS: Salivary Cu and Zn levels were significantly higher in children with dental caries compared to those caries-free (p < 0.05). Moreover, these elements had a positive correlation with dental caries (Cu: r=0.698, p<0.001; Zn: r=0.181, p<0.05). No significant variations in Mn and Fe were observed between caries and caries-free group (p>0.05). Additionally, there were significant differences in salivary Zn and Fe among different age groups (p<0.05) and highly significant differences in salivary Cu, Mn and Fe among different ethnic groups (p<0.001). However, all elements exhibited no significant differences between males and females.

    CONCLUSION: The salivary Cu and Zn levels showed significant differences between caries and caries-free groups. The findings also revealed significant variations in the levels of salivary Cu, Mn and Fe among different ethnic groups and salivary Zn and Fe among different age groups.

    Matched MeSH terms: Copper/analysis
  2. Li B, Wu G, Yang X, Li Z, Albasher G, Alsultan N, et al.
    Environ Res, 2023 Jul 15;229:115781.
    PMID: 37076035 DOI: 10.1016/j.envres.2023.115781
    Endocrine disrupting chemicals (EDCs) have been extensively explored due to their harmful effects on individual health and the environment by interfering with hormone activity and disrupting the endocrine system. However, their relationship with essential trace elements remains uncertain. This research aimed to investigate the possible correlation between essential trace elements and toxic metals, including cadmium (Cd), and lead (Pb) in children aged 1-5 years with various infectious diseases, including gastrointestinal disorders, typhoid fever, and pneumonia. The study was conducted on biological testing and specimen (scalp hair and whole blood) of diseased and non-diseased children of the same residential area and referent/control age-matched children from developed cities consuming domestically treated water. The media of biological samples were oxidized by an acid mixture before being analyzed by atomic absorption spectrophotometry. The accuracy and validity of the methodology were verified through accredited reference material from scalp hair and whole blood sample. The study results revealed that diseased children had lower mean values of essential trace elements (iron, copper, and zinc) in both scalp hair and blood, except for copper, which was found to be higher in blood samples of diseased children. This implies that the deficiency of essential residue and trace elements in children from rural areas who consume groundwater is linked to various infectious diseases. The study highlights the need for more human biomonitoring of EDCs to better comprehend their non-classical toxic properties and their concealed costs on human health. The findings suggest that exposure to EDCs could be associated with unfavorable health outcomes and emphasizes the need for future regulatory policies to minimize exposure and safeguard the health of current and forthcoming generations of children. Furthermore, the study highlights the implication of essential trace elements in maintaining good health and their potential correlation with toxic metals in the environment.
    Matched MeSH terms: Copper
  3. Rafatullah M, Sulaiman O, Hashim R, Ahmad A
    J Hazard Mater, 2009 Oct 30;170(2-3):969-77.
    PMID: 19520510 DOI: 10.1016/j.jhazmat.2009.05.066
    The present study proposed the use of meranti sawdust in the removal of Cu(II), Cr(III), Ni(II) and Pb(II) ions from synthetic aqueous solutions. Batch adsorption studies showed that meranti sawdust was able to adsorb Cu(II), Cr(III), Ni(II) and Pb(II) ions from aqueous solutions in the concentration range 1-200mg/L. The adsorption was favoured with maximum adsorption at pH 6, whereas the adsorption starts at pH 1 for all metal ions. The effects of contact time, initial concentration of metal ions, adsorbent dosage and temperature have been reported. The applicability of Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm was tried for the system to completely understand the adsorption isotherm processes. The adsorption kinetics tested with pseudo-first-order and pseudo-second-order models yielded high R(2) values from 0.850 to 0.932 and from 0.991 to 0.999, respectively. The meranti sawdust was found to be cost effective and has good efficiency to remove these toxic metal ions from aqueous solution.
    Matched MeSH terms: Copper/isolation & purification
  4. Shuhaimi-Othman M, Mushrifah I, Lim EC, Ahmad A
    Environ Monit Assess, 2008 Aug;143(1-3):345-54.
    PMID: 17987397
    Water from 15 sampling stations in Tasik Chini (Chini Lake), Peninsular Malaysia were sampled for 12 months from September 2004 until August 2005 and analyzed for 11 metals including iron (Fe), aluminum (Al), manganese (Mn), barium (Ba), zinc (Zn), lead (Pb), copper (Cu), cadmium (Cd), nickel (Ni), chromium (Cr) and cobalt (Co). Results showed that the mean (min-max) metal concentrations (in micrograms per liter) in Tasik Chini waters for the 12 months sampling based on 15 sampling stations (in descending order) for Fe, Al, Mn, Ba, Zn, Pb, Cu and Cd were 794.84 (309.33-1609.07), 194.53 (62.37-665.93), 29.16 (16.68-79.85), 22.07 (15.64-29.71), 5.12 (2.224-6.553), 2.36 (1.165-4.240), 0.832 (0.362-1.443) and 0.421 (0.254-0.696) respectively. Concentration for three metals i.e. Ni, Cr and Co were too low and not detected by the graphite furnace Atomic Absorption Spectrophotometry (AAS). Comparison with various water quality standards showed that the mean metals concentration in surface water of Tasik Chini were low and within the range of natural background except for Fe and Al. In general, metal concentrations in Tasik Chini water varied temporally and spatially. The main factors influencing these metal concentrations in the water were the raining season and mining activities. Stations located at Tanjung Jerangking and Melai areas were the most effected due to those factors.
    Matched MeSH terms: Copper/analysis
  5. Md Yusof EN, S A Ravoof TB, Tiekink ER, Veerakumarasivam A, Crouse KA, Mohamed Tahir MI, et al.
    Int J Mol Sci, 2015 May 15;16(5):11034-54.
    PMID: 25988384 DOI: 10.3390/ijms160511034
    Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity.
    Matched MeSH terms: Copper/chemistry
  6. Zaini Hamzah, Mohd Najif Ab Rahman, Siti Mariam Sumari, Yamin Yasin, Ahmad Saat
    MyJurnal
    Layered double hydroxide (LDH) with Mg/Al molar ratio of 4/1 (MAN-4) was synthesized by co-precipitation and followed by hydrothermal method. The compound was allowed to undergo ion exchange with K2HPO4 for 48 hours to produce MgAlHPO4 (MAHP-4). The solid produced was characterized using X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR). Adsorption of copper solution by MAHP-4 was carried out using batch experiment by mixing the copper solution and the sorbent MAHP-4. The effects of
    various parameters such as contact time, pH, adsorbent dosage and initial concentration were investigated. The optimum pH for copper removal was found to be 4 and the optimum time of copper removal was found at 4 hours. The isotherm data was analysed using model isotherm Langmuir with the correlation coefficient of 0.999 was recorded. The maximum adsorption capacity, Qo (mg/g) of 142.8 mg/g was also recorded from the Langmuir isotherm. The remaining copper solution was determined by using EDXRF (Energy Dispersive XRay Fluorescence spectrometry) model MiniPal 4 (PAN analytical). The results in this study indicate that MAHP-4 has potential as an effective adsorbent for removing copper from aqueous solution.
    Matched MeSH terms: Copper
  7. Aldawsari A, Khan MA, Hameed BH, Alqadami AA, Siddiqui MR, Alothman ZA, et al.
    PLoS One, 2017;12(9):e0184493.
    PMID: 28910368 DOI: 10.1371/journal.pone.0184493
    A substantive approach converting waste date pits to mercerized mesoporous date pit activated carbon (DPAC) and utilizing it in the removal of Cd(II), Cu(II), Pb(II), and Zn(II) was reported. In general, rapid heavy metals adsorption kinetics for Co range: 25-100 mg/L was observed, accomplishing 77-97% adsorption within 15 min, finally, attaining equilibrium in 360 min. Linear and non-linear isotherm studies revealed Langmuir model applicability for Cd(II) and Pb(II) adsorption, while Freundlich model was fitted to Zn(II) and Cu(II) adsorption. Maximum monolayer adsorption capacities (qm) for Cd(II), Pb(II), Cu(II), and Zn(II) obtained by non-linear isotherm model at 298 K were 212.1, 133.5, 194.4, and 111 mg/g, respectively. Kinetics modeling parameters showed the applicability of pseudo-second-order model. The activation energy (Ea) magnitude revealed physical nature of adsorption. Maximum elution of Cu(II) (81.6%), Zn(II) (70.1%), Pb(II) (96%), and Cd(II) (78.2%) were observed with 0.1 M HCl. Thermogravimetric analysis of DPAC showed a total weight loss (in two-stages) of 28.3%. Infra-red spectral analysis showed the presence of carboxyl and hydroxyl groups over DPAC surface. The peaks at 820, 825, 845 and 885 cm-1 attributed to Zn-O, Pb-O, Cd-O, and Cu-O appeared on heavy metals saturated DPAC, confirmed their binding on DPAC during the adsorption.
    Matched MeSH terms: Copper/isolation & purification
  8. Nawaz M, Abbasi MW, Hisaindee S, Zaki MJ, Abbas HF, Mengting H, et al.
    PMID: 26945123 DOI: 10.1016/j.saa.2016.02.022
    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.
    Matched MeSH terms: Copper
  9. Raju G, Mas Haris MRH, Azura AR, Ahmed Mohamed Eid AM
    ACS Omega, 2020 Nov 10;5(44):28760-28766.
    PMID: 33195929 DOI: 10.1021/acsomega.0c04081
    The slow-release mechanism of copper into soil followed by soil biodegradation was studied using the chitosan (CTS)/epoxidized natural rubber (ENR) biocomposite. The biocomposite was prepared by homogenizing CTS in ENR50 (ENR with about 50% epoxy content) latex in the presence of curing agents and acetic acid. It was found that the adsorption property of the biocomposite was very much influenced by chitosan loading, where 20phrCTS-t-ENR biocomposite can absorb 76.31% of Cu(II) ions. The desorption study indicates that the copper (II) ion can be released at a very slow and control phase as proven by the kinetic study using zero-order, first-order, Higuchi, and Korsmeyer Peppas equations. The slow-release studies comply with the Higuchi square-root equation, indicating that the release process is diffusion-controlled. Results of desorption and biodegradation process suggest that this biocomposite has the potential use of being a slow-release matrix in the field of agriculture.
    Matched MeSH terms: Copper
  10. Goh CL, Sethupathi S, Bashir MJ, Ahmed W
    J Environ Manage, 2019 May 01;237:281-288.
    PMID: 30802752 DOI: 10.1016/j.jenvman.2018.12.103
    In this work, the influence of pyrolysis temperature on the physicochemical properties of palm oil mill sludge biochar (POSB) and its adsorption properties towards cadmium (Cd) and copper (Cu) was investigated. Characterization experiments suggested that POSBs' surface functional groups play the major role in the adsorption process. POSB pyrolyzed at 400 °C showed the best characteristics for Cu and Cd removal. Adsorption study indicated that contact time and shaking speed enhances the adsorption capacity of POSB. It was affirmed that pH adjustment is not necessary for POSB to adsorb Cu and Cd. Mechanism studies fitted well with Langmuir and Pseudo-Second Order model. Thermodynamic parameters indicated that the adsorption was spontaneous, endothermic and correspond to chemical adsorption. The highest uptakes of Cu and Cd were recorded at 48.8 mg/g and 46.2 mg/g respectively. This work verifies that the temperature used for palm oil mill sludge (POS) pyrolysis and adsorption condition played the most prominent role in Cu and Cd removal from aqueous solutions.
    Matched MeSH terms: Copper
  11. Khan FU, Asimullah, Khan SB, Kamal T, Asiri AM, Khan IU, et al.
    Int J Biol Macromol, 2017 Sep;102:868-877.
    PMID: 28428128 DOI: 10.1016/j.ijbiomac.2017.04.062
    A very simple and low-cost procedure has been adopted to synthesize efficient copper (Cu), silver (Ag) and copper-silver (Cu-Ag) mixed nanoparticles on the surface of pure cellulose acetate (CA) and cellulose acetate-copper oxide nanocomposite (CA-CuO). All nanoparticles loaded onto CA and CA-CuO presented excellent catalytic ability, but Cu-Ag nanoparticles loaded onto CA-CuO (Cu0-Ag0/CA-CuO) exhibited outstanding catalytic efficiency to convert 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) in the presence of NaBH4. Additionally, the Cu0-Ag0/CA-CuO can be easily recovered by removing the sheet from the reaction media, and can be recycled several times, maintaining high catalytic ability for four cycles.
    Matched MeSH terms: Copper/chemistry*
  12. Rahman A, Islam MT, Samsuzzaman M, Singh MJ, Akhtaruzzaman M
    Materials (Basel), 2016 May 11;9(5).
    PMID: 28773479 DOI: 10.3390/ma9050358
    In this paper, a novel phenyl-thiophene-2-carbaldehyde compound-based flexible substrate material has been presented. Optical and microwave characterization of the proposed material are done to confirm the applicability of the proposed material as a substrate. The results obtained in this work show that the phenyl-thiophene-2-carbaldehyde consists of a dielectric constant of 3.03, loss tangent of 0.003, and an optical bandgap of 3.24 eV. The proposed material is analyzed using commercially available EM simulation software and validated by the experimental analysis of the flexible substrate. The fabricated substrate also shows significant mechanical flexibility and light weight. The radiating copper patch deposited on the proposed material substrate incorporated with partial ground plane and microstrip feeding technique shows an effective impedance bandwidth of 3.8 GHz. It also confirms an averaged radiation efficiency of 81% throughout the frequency band of 5.4-9.2 GHz.
    Matched MeSH terms: Copper
  13. Brza MA, Aziz SB, Anuar H, Al Hazza MHF
    Int J Mol Sci, 2019 Aug 11;20(16).
    PMID: 31405255 DOI: 10.3390/ijms20163910
    The present work proposed a novel approach for transferring high-risk heavy metals tometal complexes via green chemistry remediation. The method of remediation of heavy metals developed in the present work is a great challenge for global environmental sciences and engineering because it is a totally environmentally friendly procedure in which black tea extract solution is used. The FTIR study indicates that black tea contains enough functional groups (OH and NH), polyphenols and conjugated double bonds. The synthesis of copper complex was confirmed by the UV-vis, XRD and FTIR spectroscopic studies. The XRD and FTIR analysis reveals the formation of complexation between Cu metal complexes and Poly (Vinyl Alcohol) (PVA) host matrix. The study of optical parameters indicates that PVA-based hybrids exhibit a small optical band gap, which is close to inorganic-based materials. It was noted that the absorption edge shifted to lower photon energy. When Cu metal complexes were added to PVA polymer, the refractive index was significantly tuned. The band gap shifts from 6.2 eV to 1.4 eV for PVA incorporated with 45 mL of Cu metal complexes. The nature of the electronic transition in hybrid materials was examined based on the Taucs model, while a close inspection of the optical dielectric loss was also performed in order to estimate the optical band gap. The obtained band gaps of the present work reveal that polymer hybrids with sufficient film-forming capability could be useful to overcome the drawbacks associated with conjugated polymers. Based on the XRD results and band gap values, the structure-property relationships were discussed in detail.
    Matched MeSH terms: Copper/chemistry*
  14. Hossan MS, Break MKB, Bradshaw TD, Collins HM, Wiart C, Khoo TJ, et al.
    Molecules, 2021 Apr 09;26(8).
    PMID: 33918814 DOI: 10.3390/molecules26082166
    Cardamonin is a polyphenolic natural product that has been shown to possess cytotoxic activity against a variety of cancer cell lines. We previously reported the semi-synthesis of a novel Cu (II)-cardamonin complex (19) that demonstrated potent antitumour activity. In this study, we further investigated the bioactivity of 19 against MDA-MB-468 and PANC-1 cancer cells in an attempt to discover an effective treatment for triple-negative breast cancer (TNBC) and pancreatic cancer, respectively. Results revealed that 19 abolished the formation of MDA-MB-468 and PANC-1 colonies, exerted growth-inhibitory activity, and inhibited cancer cell migration. Further mechanistic studies showed that 19 induced DNA damage resulting in gap 2 (G2)/mitosis (M) phase arrest and microtubule network disruption. Moreover, 19 generated reactive oxygen species (ROS) that may contribute to induction of apoptosis, corroborated by activation of caspase-3/7, PARP cleavage, and downregulation of Mcl-1. Complex 19 also decreased the expression levels of p-Akt and p-4EBP1, which indicates that the compound exerts its activity, at least in part, via inhibition of Akt signalling. Furthermore, 19 decreased the expression of c-Myc in PANC-1 cells only, which suggests that it may exert its bioactivity via multiple mechanisms of action. These results demonstrate the potential of 19 as a therapeutic agent for TNBC and pancreatic cancer.
    Matched MeSH terms: Copper/pharmacology*; Copper/chemistry
  15. Hameed HA, Hasan HA, Luddin N, Husein A, Ariffin A, Alam MK
    Biomed Res Int, 2022;2022:3675703.
    PMID: 35496039 DOI: 10.1155/2022/3675703
    AIM: To investigate and compare the cell cytotoxicity, proliferation, cell attachment, and morphology of human fetal osteoblasts (hFOB) cells of coated samples (titanium nanocopper (Ti Cu), titanium nanohydroxyapatite (Ti HA) and titanium nanocopper ion doped hydroxyapatite (Ti Cu/HA) and uncoated samples (Ti) in order to assess the suitability of these surface modifications on Ti-6Al-7Nb for dental implant application.

    MATERIALS AND METHODS: The cytotoxicity was studied by examining the hFOB cell response by MTT assessment. The cell morphology was evaluated by inverted microscopy and observed under scanning electronic microscopy (SEM).

    RESULTS: MTT assay results displayed that the Cu content on the surface of Ti-6Al-7Nb alloys did not produce any cytotoxic effect on cell viability. The cell viability rate in all samples ranges from 97% to 126%, indicating that hFOB cells grew at a high proliferation rate. However, no significant differences in cell viability were observed between Ti and Ti Cu and between Ti HA and Ti Cu/HA groups. Microscopic examination demonstrated no difference in the cell morphology of hFOB among all samples. In addition, SEM observation indicated favorable adhesion and spreading of the cells on the coated and uncoated samples.

    CONCLUSIONS: The surface modification of Ti-6Al-7Nb alloy with Cu, HA, and Cu/HA exhibits good cell biocompatibility, and the Cu has no influence on the cell proliferation and differentiation of hFOB.

    Matched MeSH terms: Copper
  16. Abdul Aziz SFN, Hui OS, Salleh AB, Normi YM, Yusof NA, Ashari SE, et al.
    Anal Bioanal Chem, 2024 Jan;416(1):227-241.
    PMID: 37938411 DOI: 10.1007/s00216-023-05011-z
    This study aims to investigate the influence of copper(II) ions as a cofactor on the electrochemical performance of a biocomposite consisting of a mini protein mimicking uricase (mp20) and zeolitic immidazolate framework-8 (ZIF-8) for the detection of uric acid. A central composite design (CCD) was utilized to optimize the independent investigation, including pH, deposition potential, and deposition time, while the current response resulting from the electrocatalytic oxidation of uric acid was used as the response. The statistical analysis of variance (ANOVA) showed a good correlation between the experimental and predicted data, with a residual standard error percentage (RSE%) of less than 2% for predicting optimal conditions. The synergistic effect of the nanoporous ZIF-8 host, Cu(II)-activated mp20, and reduced graphene oxide (rGO) layer resulted in a highly sensitive biosensor with a limit of detection (LOD) of 0.21 μM and a reproducibility of the response (RSD = 0.63%). The Cu(II)-activated mp20@ZIF-8/rGO/SPCE was highly selective in the presence of common interferents, and the fabricated layer exhibited remarkable stability with signal changes below 4.15% after 60 days. The biosensor's reliable performance was confirmed through real sample analyses of human serum and urine, with comparable recovery values to conventional HPLC.
    Matched MeSH terms: Copper*
  17. Dabagh S, Chaudhary K, Haider Z, Ali J
    J Nanosci Nanotechnol, 2019 Jul 01;19(7):4142-4146.
    PMID: 30764983 DOI: 10.1166/jnn.2019.16331
    Aluminium substituted cobalt-copper Co1-xCuxFe2-xAlxO₄, (x ═ 0.8) nanoparticles are grown and sintered at different temperature in the range 600 to 900 °C. XRD analysis on nanoparticles prepared at sintered temperatures of 700 °C and 800 °C confirms the spinel structure and presence of hematite phase (alpha ferrite) in them. The dielectric behaviour of the prepared nano-particles is investigated. Although crystallinity improved with increase in sintering temperature and there was a dielectric loss at higher probe analyser frequency. The synthesized nanoparticles an average particle size of 20-24 nm while the FTIR absorption in regions of 586-595 cm-1 and 450-460 cm-1 indicated the presence of intrinsic vibrations of the tetrahedral and octahedral complexes respectively. Electrical resistivity as a function of temperature confirms the semiconducting nature of the Cu-Al substituted cobalt ferrite, and is attributed to the hopping mechanism between Fe2+ Fe3+ ions and Co2+ Cu2+, Co2+ Al3+. The lower values of dielectric constants and dielectric losses make Al-Cu doped cobalt ferrite, a potential material for microwave and radio wave absorber applications.
    Matched MeSH terms: Copper
  18. Sakai N, Alsaad Z, Thuong NT, Shiota K, Yoneda M, Ali Mohd M
    Chemosphere, 2017 Oct;184:857-865.
    PMID: 28646768 DOI: 10.1016/j.chemosphere.2017.06.070
    Arsenic and 5 heavy metals (nickel, copper, zinc, cadmium and lead) were quantitated in surface water (n = 18) and soil/ore samples (n = 45) collected from 5 land uses (oil palm converted from forest, oil palm in peat swamp, bare land, quarry and forest) in the Selangor River basin by inductively coupled plasma mass spectrometry (ICP-MS). Geographic information system (GIS) was used as a spatial analytical tool to classify 4 land uses (forest, agriculture/peat, urban and bare land) from a satellite image taken by Landsat 8. Source profiling of the 6 elements was conducted to identify their occurrence, their distribution and the pollution source associated with the land use. The concentrations of arsenic, cadmium and lead were also analyzed in maternal blood (n = 99) and cord blood (n = 87) specimens from 136 pregnant women collected at the University of Malaya Medical Center for elucidating maternal exposure as well as maternal-to-fetal transfer. The source profiling identified that nickel and zinc were discharged from sewage and/or industrial effluents, and that lead was discharged from mining sites. Arsenic showed a site-specific pollution in tin-tungsten deposit areas, and the pollution source could be associated with arsenopyrite. The maternal blood levels of arsenic (0.82 ± 0.61 μg/dL), cadmium (0.15 ± 0.2 μg/dL) and lead (2.6 ± 2.1 μg/dL) were not significantly high compared to their acute toxicity levels, but could have attributable risks of chronic toxicity. Those in cord blood were significantly decreased in cadmium (0.06 ± 0.07 μg/dL) and lead (0.99 ± 1.2 μg/dL) but were equivalent in arsenic (0.82 ± 1.1 μg/dL) because of the different kinetics of maternal-to-fetal transfer.
    Matched MeSH terms: Copper/analysis
  19. Low, K.H., Zain, S.M., Abas, M.R., Ali Mohd, M.
    ASM Science Journal, 2009;3(1):71-76.
    MyJurnal
    Fractional factorial design was utilized to evaluate the effect of combinations of nitric acid, hydrogen peroxide, hydrochloric acid and water for microwave digestion of fish muscle. Upon digestion, copper, iron and zinc were determined by flame atomic absorption spectroscopy. H2O2 and HCl volumes were found to be the most significant parameters which resulted in good metal recoveries. This is especially so for the effect of HCl on Fe recovery. The results indicated that the combination of 4 mL 65% HNO3, 2 mL 30% H2O2 and 2 mL 30% HCl gave the most satisfactory percentage recovery. There was good agreement between measured and certified values for all metals with respect to the DORM-3 fish protein.
    Matched MeSH terms: Copper
  20. Yaakub H, Masnindah M, Shanthi G, Sukardi S, Alimon AR
    Anim. Reprod. Sci., 2009 Oct;115(1-4):182-8.
    PMID: 19167847 DOI: 10.1016/j.anireprosci.2008.12.006
    Testes from nine male Malin x Santa-Ines rams with an average body weight of 43.1+/-3.53 kg, were used to study the effects of palm kernel cake (PKC) based diet on spermatogenic cells and to assess copper (Cu) levels in liver, testis and plasma in sheep. Animals were divided into three groups and randomly assigned three dietary treatments using restricted randomization of body weight in completely randomized design. The dietary treatments were 60% palm kernel cake plus 40% oil palm frond (PKC), 60% palm kernel cake plus 40% oil palm frond supplemented with 23 mg/kg dry matter of molybdenum as ammonium molybdate [(NH(4))(6)Mo(7)O(24).4H(2)O] and 600 mg/kg dry matter of sulphate as sodium sulphate [Na(2)SO(4)] (PKC-MS) and 60% concentrate of corn-soybean mix+40% oil palm frond (Control), the concentrate was mixed in a ratio of 79% corn, 20% soybean meal and 1% standard mineral mix. The results obtained showed that the number of spermatogonia, spermatocytes, spermatids and Leydig cells were not significantly different among the three treatment groups. However, spermatozoa, Sertoli cells and degenerated cells showed significant changes, which, may be probably due to the Cu content in PKC. Liver and testis Cu levels in the rams under PKC diet was found to be significantly higher (P<0.05) than rams in Control and PKC-MS diets. Plasma Cu levels showed a significant increase (P<0.05) at the end of the experiment as compared to at the beginning of the experiment for PKC and Control. In conclusion, spermatogenesis is normal in rams fed the diet without PKC and PKC supplemented with Mo and S. However spermatogenesis was altered in the PKC based diet probably due to the toxic effects of Cu and the significant changes in organs and plasma. Thus, Mo and S play a major role in reducing the accumulation of Cu in organs.
    Matched MeSH terms: Copper/blood; Copper/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links